Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen

dc.citation.epage687
dc.citation.issue3
dc.citation.spage681
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorDonchenko, Myroslava
dc.contributor.authorGrynyshyn, Oleg
dc.contributor.authorDemchuk, Yuriy
dc.contributor.authorTopilnytskyy, Petro
dc.contributor.authorTurba, Yuriy
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:52:04Z
dc.date.available2024-02-12T08:52:04Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractДосліджено можливість використання гумату калію як інгібітора технологічного старіння окисненого нафтового бітуму. Для порівняння відібрано зразки гумату калію, що одержували з різної сировини, зокрема торфу та леонардиту. Проведено розрахунок коефіцієнтів старіння та досліджено експлуатаційні властивості модифікованого бітуму як в’яжучого матеріалу для гарячих асфальтобетонних сумішей. Встановлено, що додавання до окисненого нафтового бітуму 3.0 % мас. PH-3 дозволяє сповільнювати процеси технологічного старіння та одержувати асфальтове покриття із кращими характеристиками в порівнянні з покриттям, виготовленим на основі немодифікованого бітуму.
dc.description.abstractThe possibility of using potassium humate as an inhibitor of the technological aging of oxidized petro-leum bitumen has been investigated. Samples of potas-sium humate obtained from various raw materials, in particular peat and leonardite, were selected and compared. Aging coefficients have been calculated and operational properties of modified bitumen as a binding material for hot mix asphalt have been investigated. It was established that 3.0 wt. % of PH-3 added to oxidized petroleum bitumen, slows down the technological aging processes and allows obtaining asphalt concrete with better characteristics compared to the coating made on the basis of unmodified bitumen.
dc.format.extent681-687
dc.format.pages7
dc.identifier.citationInfluence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen / Myroslava Donchenko, Oleg Grynyshyn, Yuriy Demchuk, Petro Topilnytskyy, Yuriy Turba // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 681–687.
dc.identifier.citationenInfluence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen / Myroslava Donchenko, Oleg Grynyshyn, Yuriy Demchuk, Petro Topilnytskyy, Yuriy Turba // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 681–687.
dc.identifier.doidoi.org/10.23939/chcht17.03.681
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61275
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (17), 2023
dc.relation.references[1] Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M. Understanding the bitumen ageing phenomenon: A review. Constr. Build. Mater. 2018, 192, 593-609. https://doi.org/10.1016/j.conbuildmat.2018.10.169
dc.relation.references[2] Cong, P.; Wang, J.; Li, K.; Chen, S. Physical and rheological properties of asphalt binders containing various antiaging agents. Fuel 2012, 97, 678-684. https://doi.org/10.1016/j.fuel.2012.02.028
dc.relation.references[3] Apeagyei, A. Laboratory evaluation of antioxidants for asphalt binders. Constr. Build. Mater. 2011, 25, 47-53. https://doi.org/10.1016/j.conbuildmat.2010.06.058
dc.relation.references[4] Isacsson, U.; Zeng, H. Relationships between bitumen chemistry and low temperature behaviour of asphalt. Constr. Build. Mater. 1997, 11, 83-91. https://doi.org/10.1016/S0950-0618(97)00008-1
dc.relation.references[5] Ghavibazoo, A.; Abdelrahman, M.; Ragab, M. Evaluation of oxidization of crumb rubber-modified asphalt during short-term aging. J. Transp. Res. Board 2015, 2505, 84-91.
dc.relation.references[6] Cortés, C.; Pérez-Lepe, A.; Fermoso, J.; Costa, A.; Guisado, F.; Esquena, J.; Potti, J. Envejecimiento foto-oxidativo de betunes asfálticos. Jornada Nacional ASEFMA. 2010, V, 227-238.
dc.relation.references[7] Ouyang, C.; Wang, S.; Zhang, Y. Improving the aging resistance of styrene-butadiene-styrene tri-block copolymer modified asphalt by addition of antioxidants. J. Appl. Polym. Sci. 2006, 91, 795-804. https://doi.org/10.1016/j.polymdegradstab.2005.06.009
dc.relation.references[8] Banerjee, A.; Smit, A.; Prozzi, J. The effect of long-term aging on the rheology of warm mix asphalt binders. Fuel 2012, 97, 603-611. https://doi.org/10.1016/j.fuel.2012.01.072
dc.relation.references[9] Dessouky, S.; Contreras, D.; Sánchez, J.; Park, D. Anti-oxidants’ effect on bitumen rheology and mixes’ mechanical performance. Innovative Mater. Des. Sustainable Transp. Infrast. 2015, 8-18.
dc.relation.references[10] Martin, K. Laboratory evaluation of antioxidants for bitumen. Proc. Aust. Road Res. Board 1968, 2, 431.
dc.relation.references[11] Dessouky, S.; Ilias, M.; Park, D.; Kim, I. Influence of antioxi-dant-enhanced polymers in bitumen rheology and bituminous con-crete mixtures mechanical performance. Adv. Mater. Sci. Eng. 2015, 1-9. https://doi.org/10.1155/2015/214585
dc.relation.references[12] Petersen, J. A Review of the Fundamentals of Asphalt Oxida-tion: Chemical, Physicochemical, Physical Property, and Durability Relationships explores the current physicochemical understanding of the chemistry, kinetics, and mechanisms of asphalt oxidation and its influence on asphalt durability. Transportation Research Circu-lar 2009, E-C140, 1-78. https://onlinepubs.trb.org/onlinepubs/circulars/ec140.pdf
dc.relation.references[13] Hadi Nahi, M.; Kamaruddin, I.; Napiah, M. The Utilization of Rice Husks powder as an Antioxidant in Asphalt Binder. Appl. Mech. Mater. 2014, 567, 539-544. https://doi.org/10.4028/www.scientific.net/AMM.567.539
dc.relation.references[14] Cavalcante, L.; Soares, S.; Soares, J. Characterization and thermal behavior of polymer-modified asphalt. Mater. Res. 2004, 7, 529-534. https://doi.org/10.1590/S1516-14392004000400004
dc.relation.references[15] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
dc.relation.references[16] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
dc.relation.references[17] Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk, V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem. Chem. Technol. 2022, 16, 461-468. https://doi.org/10.23939/chcht16.03.461
dc.relation.references[18] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of phenol-cresol-formaldehyde resin on adhesive and physi-co-mechanical properties of road bitumen. Chem. Chem. Technol. 2018, 12, 456-461. https://doi.org/10.23939/chcht12.04.456
dc.relation.references[19] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucińska-Lipka, J.; Bratychak, M. Slurry surfacing mixes on the basis of bitumen modified with phenol-cresol-formaldehyde resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
dc.relation.references[20] Rossi, C.; Caputo, P.; Ashimova, S.; Fabozzi, A.; D’Errico, G.; Angelico, R. Effects of Natural Antioxidant Agents on the Bitumen Aging Process: An EPR and Rheological Investigation. Appl. Sci. 2018, 8, 1-13. https://doi.org/10.3390/app8081405
dc.relation.references[21] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of petroleum bitumen resistance to aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438
dc.relation.references[22] Donchenko, M.; Grynyshyn, O. Investigation of resistance of modified bitumens to technological aging. Chemistry, technology and application of substances 2022, 5, 56-60. https://doi.org/10.23939/ctas2022.01.056
dc.relation.references[23] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D.; Nikolaichuk, Y. Use of humic acids from low-grade metamorphism coal for the modification of biofilms based on polyvinyl alcohol. Pet. Coal. 2021, 63, 953-962.
dc.relation.references[24] EN 1427:2015, Bitumen and bituminous binders. Determina-tion of the softening point. Ring and Ball method, 2015.
dc.relation.references[25] EN 1426:2015, Bitumen and bituminous binders. Determina-tion of needle penetration, 2015.
dc.relation.references[26] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of phenol-cresol-formaldehyde resin as an adhesion promoter for bitumen and asphalt concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918.
dc.relation.references[27] EN 12607-1:2014, Bitumen and bituminous binders. Determi-nation of the resistance to hardening under influence of heat and air RTFOT method, 2014.
dc.relation.referencesen[1] Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M. Understanding the bitumen ageing phenomenon: A review. Constr. Build. Mater. 2018, 192, 593-609. https://doi.org/10.1016/j.conbuildmat.2018.10.169
dc.relation.referencesen[2] Cong, P.; Wang, J.; Li, K.; Chen, S. Physical and rheological properties of asphalt binders containing various antiaging agents. Fuel 2012, 97, 678-684. https://doi.org/10.1016/j.fuel.2012.02.028
dc.relation.referencesen[3] Apeagyei, A. Laboratory evaluation of antioxidants for asphalt binders. Constr. Build. Mater. 2011, 25, 47-53. https://doi.org/10.1016/j.conbuildmat.2010.06.058
dc.relation.referencesen[4] Isacsson, U.; Zeng, H. Relationships between bitumen chemistry and low temperature behaviour of asphalt. Constr. Build. Mater. 1997, 11, 83-91. https://doi.org/10.1016/S0950-0618(97)00008-1
dc.relation.referencesen[5] Ghavibazoo, A.; Abdelrahman, M.; Ragab, M. Evaluation of oxidization of crumb rubber-modified asphalt during short-term aging. J. Transp. Res. Board 2015, 2505, 84-91.
dc.relation.referencesen[6] Cortés, C.; Pérez-Lepe, A.; Fermoso, J.; Costa, A.; Guisado, F.; Esquena, J.; Potti, J. Envejecimiento foto-oxidativo de betunes asfálticos. Jornada Nacional ASEFMA. 2010, V, 227-238.
dc.relation.referencesen[7] Ouyang, C.; Wang, S.; Zhang, Y. Improving the aging resistance of styrene-butadiene-styrene tri-block copolymer modified asphalt by addition of antioxidants. J. Appl. Polym. Sci. 2006, 91, 795-804. https://doi.org/10.1016/j.polymdegradstab.2005.06.009
dc.relation.referencesen[8] Banerjee, A.; Smit, A.; Prozzi, J. The effect of long-term aging on the rheology of warm mix asphalt binders. Fuel 2012, 97, 603-611. https://doi.org/10.1016/j.fuel.2012.01.072
dc.relation.referencesen[9] Dessouky, S.; Contreras, D.; Sánchez, J.; Park, D. Anti-oxidants’ effect on bitumen rheology and mixes’ mechanical performance. Innovative Mater. Des. Sustainable Transp. Infrast. 2015, 8-18.
dc.relation.referencesen[10] Martin, K. Laboratory evaluation of antioxidants for bitumen. Proc. Aust. Road Res. Board 1968, 2, 431.
dc.relation.referencesen[11] Dessouky, S.; Ilias, M.; Park, D.; Kim, I. Influence of antioxi-dant-enhanced polymers in bitumen rheology and bituminous con-crete mixtures mechanical performance. Adv. Mater. Sci. Eng. 2015, 1-9. https://doi.org/10.1155/2015/214585
dc.relation.referencesen[12] Petersen, J. A Review of the Fundamentals of Asphalt Oxida-tion: Chemical, Physicochemical, Physical Property, and Durability Relationships explores the current physicochemical understanding of the chemistry, kinetics, and mechanisms of asphalt oxidation and its influence on asphalt durability. Transportation Research Circu-lar 2009, E-P.140, 1-78. https://onlinepubs.trb.org/onlinepubs/circulars/ec140.pdf
dc.relation.referencesen[13] Hadi Nahi, M.; Kamaruddin, I.; Napiah, M. The Utilization of Rice Husks powder as an Antioxidant in Asphalt Binder. Appl. Mech. Mater. 2014, 567, 539-544. https://doi.org/10.4028/www.scientific.net/AMM.567.539
dc.relation.referencesen[14] Cavalcante, L.; Soares, S.; Soares, J. Characterization and thermal behavior of polymer-modified asphalt. Mater. Res. 2004, 7, 529-534. https://doi.org/10.1590/S1516-14392004000400004
dc.relation.referencesen[15] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
dc.relation.referencesen[16] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
dc.relation.referencesen[17] Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk, V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem. Chem. Technol. 2022, 16, 461-468. https://doi.org/10.23939/chcht16.03.461
dc.relation.referencesen[18] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of phenol-cresol-formaldehyde resin on adhesive and physi-co-mechanical properties of road bitumen. Chem. Chem. Technol. 2018, 12, 456-461. https://doi.org/10.23939/chcht12.04.456
dc.relation.referencesen[19] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucińska-Lipka, J.; Bratychak, M. Slurry surfacing mixes on the basis of bitumen modified with phenol-cresol-formaldehyde resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
dc.relation.referencesen[20] Rossi, C.; Caputo, P.; Ashimova, S.; Fabozzi, A.; D’Errico, G.; Angelico, R. Effects of Natural Antioxidant Agents on the Bitumen Aging Process: An EPR and Rheological Investigation. Appl. Sci. 2018, 8, 1-13. https://doi.org/10.3390/app8081405
dc.relation.referencesen[21] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of petroleum bitumen resistance to aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438
dc.relation.referencesen[22] Donchenko, M.; Grynyshyn, O. Investigation of resistance of modified bitumens to technological aging. Chemistry, technology and application of substances 2022, 5, 56-60. https://doi.org/10.23939/ctas2022.01.056
dc.relation.referencesen[23] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D.; Nikolaichuk, Y. Use of humic acids from low-grade metamorphism coal for the modification of biofilms based on polyvinyl alcohol. Pet. Coal. 2021, 63, 953-962.
dc.relation.referencesen[24] EN 1427:2015, Bitumen and bituminous binders. Determina-tion of the softening point. Ring and Ball method, 2015.
dc.relation.referencesen[25] EN 1426:2015, Bitumen and bituminous binders. Determina-tion of needle penetration, 2015.
dc.relation.referencesen[26] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of phenol-cresol-formaldehyde resin as an adhesion promoter for bitumen and asphalt concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918.
dc.relation.referencesen[27] EN 12607-1:2014, Bitumen and bituminous binders. Determi-nation of the resistance to hardening under influence of heat and air RTFOT method, 2014.
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2018.10.169
dc.relation.urihttps://doi.org/10.1016/j.fuel.2012.02.028
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2010.06.058
dc.relation.urihttps://doi.org/10.1016/S0950-0618(97)00008-1
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2005.06.009
dc.relation.urihttps://doi.org/10.1016/j.fuel.2012.01.072
dc.relation.urihttps://doi.org/10.1155/2015/214585
dc.relation.urihttps://onlinepubs.trb.org/onlinepubs/circulars/ec140.pdf
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMM.567.539
dc.relation.urihttps://doi.org/10.1590/S1516-14392004000400004
dc.relation.urihttps://doi.org/10.23939/chcht15.04.608
dc.relation.urihttps://doi.org/10.23939/chcht16.01.142
dc.relation.urihttps://doi.org/10.23939/chcht16.03.461
dc.relation.urihttps://doi.org/10.23939/chcht12.04.456
dc.relation.urihttps://doi.org/10.23939/chcht14.02.251
dc.relation.urihttps://doi.org/10.3390/app8081405
dc.relation.urihttps://doi.org/10.23939/chcht15.03.438
dc.relation.urihttps://doi.org/10.23939/ctas2022.01.056
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Donchenko M., Grynyshyn O., Demchuk Yu., Topilnytskyy P., Turba Yu., 2023
dc.subjectбітум
dc.subjectстаріння бітуму
dc.subjectмодифікація
dc.subjectокиснений бітум
dc.subjectгумат калію
dc.subjectпокриття
dc.subjectbitumen
dc.subjectbitumen aging
dc.subjectmodification
dc.subjectoxidized bitumen
dc.subjectpotassium humate
dc.subjectpavement
dc.titleInfluence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen
dc.title.alternativeВплив гумату калію на процеси технологічного старіння окисненого нафтового бітуму
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n3_Donchenko_M-Influence_of_Potassium_681-687.pdf
Size:
418.46 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n3_Donchenko_M-Influence_of_Potassium_681-687__COVER.png
Size:
541.05 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: