Stability of the vector-borne disease model with direct transmission using Boubaker polynomials approach
| dc.citation.epage | 318 | |
| dc.citation.issue | 11 | |
| dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
| dc.citation.spage | 309 | |
| dc.citation.volume | 1 | |
| dc.contributor.affiliation | Університет Мохаммеда V у Рабаті | |
| dc.contributor.affiliation | Університет Аль-Ахавайн в Іфране | |
| dc.contributor.affiliation | Команда MMCS, лабораторія LMAID, ENSMR-Рабат | |
| dc.contributor.affiliation | Mohammed V University in Rabat | |
| dc.contributor.affiliation | Al Akhawayn University in Ifrane | |
| dc.contributor.affiliation | MMCS Team, LMAID Laboratory, ENSMR-Rabat | |
| dc.contributor.author | Ібріхич, О. | |
| dc.contributor.author | Зін, Р. | |
| dc.contributor.author | Луартассі, Ю. | |
| dc.contributor.author | Медаргрі, І. | |
| dc.contributor.author | Ibrihich, O. | |
| dc.contributor.author | Zine, R. | |
| dc.contributor.author | Louartassi, Y. | |
| dc.contributor.author | Medarhri, I. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-10-20T07:44:21Z | |
| dc.date.created | 2024-02-24 | |
| dc.date.issued | 2024-02-24 | |
| dc.description.abstract | У цій статті заглиблюємося в аналіз епідемічної моделі трансмісивного захворювання. Наше дослідження зосереджено на використанні базової версії моделі звичайних диференціальних рівнянь (ЗДР) для опису динаміки передачі захворювання. Зокрема, прагнемо вивчити довгострокову поведінку та властивості рішень моделі, використовуючи новий аналітичний підхід, відомий як схема розкладання поліноміів Бубакера (BPES). Крім того, на доповнення до нашого теоретичного аналізу проводимо числове моделювання, щоб забезпечити більш практичний погляд на епідемію. | |
| dc.description.abstract | In this paper, we delve into the analysis of an epidemic model for a vector-borne disease. Our study focuses on utilizing a baseline version of the ordinary differential equations (ODE) model to capture the dynamics of the disease transmission. Specifically, we aim to study the long-term behavior and properties of the model's solutions using a novel analytical approach known as the Boubaker polynomial Expansion Scheme (BPES). Furthermore, to complement our theoretical analysis, we conduct numerical simulations to provide a more practical perspective on the epidemic. | |
| dc.format.extent | 309-318 | |
| dc.format.pages | 10 | |
| dc.identifier.citation | Stability of the vector-borne disease model with direct transmission using Boubaker polynomials approach / O. Ibrihich, R. Zine, Y. Louartassi, I. Medarhri // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 309–318. | |
| dc.identifier.citationen | Stability of the vector-borne disease model with direct transmission using Boubaker polynomials approach / O. Ibrihich, R. Zine, Y. Louartassi, I. Medarhri // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 309–318. | |
| dc.identifier.doi | 10.23939/mmc2024.01.309 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/113790 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Математичне моделювання та комп'ютинг, 11 (1), 2024 | |
| dc.relation.ispartof | Mathematical Modeling and Computing, 11 (1), 2024 | |
| dc.relation.references | [1] Chitnis N., Smith T., Steketee R. A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population. Journal of Biological Dynamics. 2 (3), 259–285 (2008). | |
| dc.relation.references | [2] Derouich M., Boutayeb A. Mathematical modelling and computer simulations of Dengue fever. Applied Mathematics and Computation. 177 (2), 528–544 (2006). | |
| dc.relation.references | [3] Esteva L., Vergas C. A model for dengue disease with variable human populations. Journal of Mathematical Biology. 38, 220–240 (1999). | |
| dc.relation.references | [4] Pongsuumpun P., Miami T., Kongnuy R. Age structural transmission model for leptospirosis. The 3rd International Symposium on Biomedical Engineering. 411–416 (2008). | |
| dc.relation.references | [5] Triampo W., Baowan D., Tang I. M., Nuttavut N., Wong-Ekkabut J., Doungchawee G. A simple deterministic model for the spread of leptospirosis in Thailand. International Journal of Biomedical Sciences. 2 (1), 22–26 (2007). | |
| dc.relation.references | [6] Zaman G. Dynamical behavior of leptospirosis disease and role of optimal control theory. International Journal of Mathematics and Computation. 7 (j10), 80–92 (2010). | |
| dc.relation.references | [7] Zaman G., Khan M. A., Islam S., Chohan M. I., Jung I. H. Modeling dynamical interactions between leptospirosis infected vector and human population. Applied Mathematical Sciences. 6 (26), 1287–1302 (2012). | |
| dc.relation.references | [8] Taftaf C., Benazza H., Louartassi Y., Hamidi Z. Analysis of a malaria transmission mathematical model considering immigration. Journal of Mathematics and Computer Science. 30 (4), 390–406 (2023). | |
| dc.relation.references | [9] Boubaker K. On modified Boubaker polynomials: some differential and analytical properties of the new polynomials issued from an attempt for solving Bi-varied heat equation. Trends in Applied Sciences Research. 2 (6), 540–544 (2007). | |
| dc.relation.references | [10] Awojoyogbe O. B., Boubaker K. A solution to Bloch NMR flow equations for the analysis of hemodynamic functions of blood flow system using m-Boubaker polynomials. Current Applied Physics. 9 (1), 278–283 (2009). | |
| dc.relation.references | [11] Agida M., Kumar A. S. A Boubaker Polynomials Expansion Scheme Solution to Random Love’s Equation in the Case of a Rational Kernel. Electronic Journal of Theoretical Physics. 7 (24), 319–326 (2010). | |
| dc.relation.references | [12] Slama S. M., Bouhafs K. B., Ben Mahmoud A. A Boubaker polynomials solution to heat equation for monitoring A3 point evolution during resistance spot welding. International Journal of Heat and Technology. 26 (2), 141–146 (2008). | |
| dc.relation.references | [13] O’Leary D. P., Whitman P. Parallel QR factorization by Householder and modified Gram–Schmidt algorithms. Parallel Computing. 16 (3), 99–112 (1990). | |
| dc.relation.references | [14] Benhamadou M. On the Gauss, Cholesky and Householder algorithms. Advances in Engineering Software. 40 (2), 110–117 (2009). | |
| dc.relation.referencesen | [1] Chitnis N., Smith T., Steketee R. A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population. Journal of Biological Dynamics. 2 (3), 259–285 (2008). | |
| dc.relation.referencesen | [2] Derouich M., Boutayeb A. Mathematical modelling and computer simulations of Dengue fever. Applied Mathematics and Computation. 177 (2), 528–544 (2006). | |
| dc.relation.referencesen | [3] Esteva L., Vergas C. A model for dengue disease with variable human populations. Journal of Mathematical Biology. 38, 220–240 (1999). | |
| dc.relation.referencesen | [4] Pongsuumpun P., Miami T., Kongnuy R. Age structural transmission model for leptospirosis. The 3rd International Symposium on Biomedical Engineering. 411–416 (2008). | |
| dc.relation.referencesen | [5] Triampo W., Baowan D., Tang I. M., Nuttavut N., Wong-Ekkabut J., Doungchawee G. A simple deterministic model for the spread of leptospirosis in Thailand. International Journal of Biomedical Sciences. 2 (1), 22–26 (2007). | |
| dc.relation.referencesen | [6] Zaman G. Dynamical behavior of leptospirosis disease and role of optimal control theory. International Journal of Mathematics and Computation. 7 (j10), 80–92 (2010). | |
| dc.relation.referencesen | [7] Zaman G., Khan M. A., Islam S., Chohan M. I., Jung I. H. Modeling dynamical interactions between leptospirosis infected vector and human population. Applied Mathematical Sciences. 6 (26), 1287–1302 (2012). | |
| dc.relation.referencesen | [8] Taftaf C., Benazza H., Louartassi Y., Hamidi Z. Analysis of a malaria transmission mathematical model considering immigration. Journal of Mathematics and Computer Science. 30 (4), 390–406 (2023). | |
| dc.relation.referencesen | [9] Boubaker K. On modified Boubaker polynomials: some differential and analytical properties of the new polynomials issued from an attempt for solving Bi-varied heat equation. Trends in Applied Sciences Research. 2 (6), 540–544 (2007). | |
| dc.relation.referencesen | [10] Awojoyogbe O. B., Boubaker K. A solution to Bloch NMR flow equations for the analysis of hemodynamic functions of blood flow system using m-Boubaker polynomials. Current Applied Physics. 9 (1), 278–283 (2009). | |
| dc.relation.referencesen | [11] Agida M., Kumar A. S. A Boubaker Polynomials Expansion Scheme Solution to Random Love’s Equation in the Case of a Rational Kernel. Electronic Journal of Theoretical Physics. 7 (24), 319–326 (2010). | |
| dc.relation.referencesen | [12] Slama S. M., Bouhafs K. B., Ben Mahmoud A. A Boubaker polynomials solution to heat equation for monitoring A3 point evolution during resistance spot welding. International Journal of Heat and Technology. 26 (2), 141–146 (2008). | |
| dc.relation.referencesen | [13] O’Leary D. P., Whitman P. Parallel QR factorization by Householder and modified Gram–Schmidt algorithms. Parallel Computing. 16 (3), 99–112 (1990). | |
| dc.relation.referencesen | [14] Benhamadou M. On the Gauss, Cholesky and Householder algorithms. Advances in Engineering Software. 40 (2), 110–117 (2009). | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | малярія | |
| dc.subject | епідемічні моделі | |
| dc.subject | переносні | |
| dc.subject | стійкість | |
| dc.subject | поліном Бубакера | |
| dc.subject | malaria | |
| dc.subject | epidemic models | |
| dc.subject | vector-borne | |
| dc.subject | stability | |
| dc.subject | Boubaker polynomial | |
| dc.title | Stability of the vector-borne disease model with direct transmission using Boubaker polynomials approach | |
| dc.title.alternative | Стійкість моделі трансмісивних хворіб із прямою передачею з використанням підходу поліномів Бубакера | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1