Stability of the vector-borne disease model with direct transmission using Boubaker polynomials approach

dc.citation.epage318
dc.citation.issue11
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage309
dc.citation.volume1
dc.contributor.affiliationУніверситет Мохаммеда V у Рабаті
dc.contributor.affiliationУніверситет Аль-Ахавайн в Іфране
dc.contributor.affiliationКоманда MMCS, лабораторія LMAID, ENSMR-Рабат
dc.contributor.affiliationMohammed V University in Rabat
dc.contributor.affiliationAl Akhawayn University in Ifrane
dc.contributor.affiliationMMCS Team, LMAID Laboratory, ENSMR-Rabat
dc.contributor.authorІбріхич, О.
dc.contributor.authorЗін, Р.
dc.contributor.authorЛуартассі, Ю.
dc.contributor.authorМедаргрі, І.
dc.contributor.authorIbrihich, O.
dc.contributor.authorZine, R.
dc.contributor.authorLouartassi, Y.
dc.contributor.authorMedarhri, I.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T07:44:21Z
dc.date.created2024-02-24
dc.date.issued2024-02-24
dc.description.abstractУ цій статті заглиблюємося в аналіз епідемічної моделі трансмісивного захворювання. Наше дослідження зосереджено на використанні базової версії моделі звичайних диференціальних рівнянь (ЗДР) для опису динаміки передачі захворювання. Зокрема, прагнемо вивчити довгострокову поведінку та властивості рішень моделі, використовуючи новий аналітичний підхід, відомий як схема розкладання поліноміів Бубакера (BPES). Крім того, на доповнення до нашого теоретичного аналізу проводимо числове моделювання, щоб забезпечити більш практичний погляд на епідемію.
dc.description.abstractIn this paper, we delve into the analysis of an epidemic model for a vector-borne disease. Our study focuses on utilizing a baseline version of the ordinary differential equations (ODE) model to capture the dynamics of the disease transmission. Specifically, we aim to study the long-term behavior and properties of the model's solutions using a novel analytical approach known as the Boubaker polynomial Expansion Scheme (BPES). Furthermore, to complement our theoretical analysis, we conduct numerical simulations to provide a more practical perspective on the epidemic.
dc.format.extent309-318
dc.format.pages10
dc.identifier.citationStability of the vector-borne disease model with direct transmission using Boubaker polynomials approach / O. Ibrihich, R. Zine, Y. Louartassi, I. Medarhri // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 309–318.
dc.identifier.citationenStability of the vector-borne disease model with direct transmission using Boubaker polynomials approach / O. Ibrihich, R. Zine, Y. Louartassi, I. Medarhri // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 309–318.
dc.identifier.doi10.23939/mmc2024.01.309
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113790
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 11 (1), 2024
dc.relation.ispartofMathematical Modeling and Computing, 11 (1), 2024
dc.relation.references[1] Chitnis N., Smith T., Steketee R. A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population. Journal of Biological Dynamics. 2 (3), 259–285 (2008).
dc.relation.references[2] Derouich M., Boutayeb A. Mathematical modelling and computer simulations of Dengue fever. Applied Mathematics and Computation. 177 (2), 528–544 (2006).
dc.relation.references[3] Esteva L., Vergas C. A model for dengue disease with variable human populations. Journal of Mathematical Biology. 38, 220–240 (1999).
dc.relation.references[4] Pongsuumpun P., Miami T., Kongnuy R. Age structural transmission model for leptospirosis. The 3rd International Symposium on Biomedical Engineering. 411–416 (2008).
dc.relation.references[5] Triampo W., Baowan D., Tang I. M., Nuttavut N., Wong-Ekkabut J., Doungchawee G. A simple deterministic model for the spread of leptospirosis in Thailand. International Journal of Biomedical Sciences. 2 (1), 22–26 (2007).
dc.relation.references[6] Zaman G. Dynamical behavior of leptospirosis disease and role of optimal control theory. International Journal of Mathematics and Computation. 7 (j10), 80–92 (2010).
dc.relation.references[7] Zaman G., Khan M. A., Islam S., Chohan M. I., Jung I. H. Modeling dynamical interactions between leptospirosis infected vector and human population. Applied Mathematical Sciences. 6 (26), 1287–1302 (2012).
dc.relation.references[8] Taftaf C., Benazza H., Louartassi Y., Hamidi Z. Analysis of a malaria transmission mathematical model considering immigration. Journal of Mathematics and Computer Science. 30 (4), 390–406 (2023).
dc.relation.references[9] Boubaker K. On modified Boubaker polynomials: some differential and analytical properties of the new polynomials issued from an attempt for solving Bi-varied heat equation. Trends in Applied Sciences Research. 2 (6), 540–544 (2007).
dc.relation.references[10] Awojoyogbe O. B., Boubaker K. A solution to Bloch NMR flow equations for the analysis of hemodynamic functions of blood flow system using m-Boubaker polynomials. Current Applied Physics. 9 (1), 278–283 (2009).
dc.relation.references[11] Agida M., Kumar A. S. A Boubaker Polynomials Expansion Scheme Solution to Random Love’s Equation in the Case of a Rational Kernel. Electronic Journal of Theoretical Physics. 7 (24), 319–326 (2010).
dc.relation.references[12] Slama S. M., Bouhafs K. B., Ben Mahmoud A. A Boubaker polynomials solution to heat equation for monitoring A3 point evolution during resistance spot welding. International Journal of Heat and Technology. 26 (2), 141–146 (2008).
dc.relation.references[13] O’Leary D. P., Whitman P. Parallel QR factorization by Householder and modified Gram–Schmidt algorithms. Parallel Computing. 16 (3), 99–112 (1990).
dc.relation.references[14] Benhamadou M. On the Gauss, Cholesky and Householder algorithms. Advances in Engineering Software. 40 (2), 110–117 (2009).
dc.relation.referencesen[1] Chitnis N., Smith T., Steketee R. A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population. Journal of Biological Dynamics. 2 (3), 259–285 (2008).
dc.relation.referencesen[2] Derouich M., Boutayeb A. Mathematical modelling and computer simulations of Dengue fever. Applied Mathematics and Computation. 177 (2), 528–544 (2006).
dc.relation.referencesen[3] Esteva L., Vergas C. A model for dengue disease with variable human populations. Journal of Mathematical Biology. 38, 220–240 (1999).
dc.relation.referencesen[4] Pongsuumpun P., Miami T., Kongnuy R. Age structural transmission model for leptospirosis. The 3rd International Symposium on Biomedical Engineering. 411–416 (2008).
dc.relation.referencesen[5] Triampo W., Baowan D., Tang I. M., Nuttavut N., Wong-Ekkabut J., Doungchawee G. A simple deterministic model for the spread of leptospirosis in Thailand. International Journal of Biomedical Sciences. 2 (1), 22–26 (2007).
dc.relation.referencesen[6] Zaman G. Dynamical behavior of leptospirosis disease and role of optimal control theory. International Journal of Mathematics and Computation. 7 (j10), 80–92 (2010).
dc.relation.referencesen[7] Zaman G., Khan M. A., Islam S., Chohan M. I., Jung I. H. Modeling dynamical interactions between leptospirosis infected vector and human population. Applied Mathematical Sciences. 6 (26), 1287–1302 (2012).
dc.relation.referencesen[8] Taftaf C., Benazza H., Louartassi Y., Hamidi Z. Analysis of a malaria transmission mathematical model considering immigration. Journal of Mathematics and Computer Science. 30 (4), 390–406 (2023).
dc.relation.referencesen[9] Boubaker K. On modified Boubaker polynomials: some differential and analytical properties of the new polynomials issued from an attempt for solving Bi-varied heat equation. Trends in Applied Sciences Research. 2 (6), 540–544 (2007).
dc.relation.referencesen[10] Awojoyogbe O. B., Boubaker K. A solution to Bloch NMR flow equations for the analysis of hemodynamic functions of blood flow system using m-Boubaker polynomials. Current Applied Physics. 9 (1), 278–283 (2009).
dc.relation.referencesen[11] Agida M., Kumar A. S. A Boubaker Polynomials Expansion Scheme Solution to Random Love’s Equation in the Case of a Rational Kernel. Electronic Journal of Theoretical Physics. 7 (24), 319–326 (2010).
dc.relation.referencesen[12] Slama S. M., Bouhafs K. B., Ben Mahmoud A. A Boubaker polynomials solution to heat equation for monitoring A3 point evolution during resistance spot welding. International Journal of Heat and Technology. 26 (2), 141–146 (2008).
dc.relation.referencesen[13] O’Leary D. P., Whitman P. Parallel QR factorization by Householder and modified Gram–Schmidt algorithms. Parallel Computing. 16 (3), 99–112 (1990).
dc.relation.referencesen[14] Benhamadou M. On the Gauss, Cholesky and Householder algorithms. Advances in Engineering Software. 40 (2), 110–117 (2009).
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectмалярія
dc.subjectепідемічні моделі
dc.subjectпереносні
dc.subjectстійкість
dc.subjectполіном Бубакера
dc.subjectmalaria
dc.subjectepidemic models
dc.subjectvector-borne
dc.subjectstability
dc.subjectBoubaker polynomial
dc.titleStability of the vector-borne disease model with direct transmission using Boubaker polynomials approach
dc.title.alternativeСтійкість моделі трансмісивних хворіб із прямою передачею з використанням підходу поліномів Бубакера
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n11_Ibrihich_O-Stability_of_the_vector_309-318.pdf
Size:
6.98 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n11_Ibrihich_O-Stability_of_the_vector_309-318__COVER.png
Size:
481.49 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: