Wetland meadows of Carex acutiformis as a source of bioelectricity

dc.citation.epage129
dc.citation.issue3
dc.citation.spage125
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorRusyn, Iryna
dc.contributor.authorDyachok, Vasyl
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-05-04T07:13:50Z
dc.date.available2023-05-04T07:13:50Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractThe article presents the assessment of bioelectroproductivity of wetland sedge ecosystems of Carex acutiformis in situ. It was found that it is possible to obtain a bioelectric potential at the level of 864.2–1114.8 mV, depending on external conditions using a pair of electrodes graphite/zincgalvanized steel and graphite/aluminum. The increase in soil moisture had a positive effect on bioelectric potential parameters. Widespread in Polissya biotopes of sedge have prospects as sources of green plant-microbial energy.
dc.format.extent125-129
dc.format.pages5
dc.identifier.citationRusyn I. Wetland meadows of Carex acutiformis as a source of bioelectricity / Iryna Rusyn, Vasyl Dyachok // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 3. — P. 125–129.
dc.identifier.citationenRusyn I. Wetland meadows of Carex acutiformis as a source of bioelectricity / Iryna Rusyn, Vasyl Dyachok // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 3. — P. 125–129.
dc.identifier.doidoi.org/10.23939/ep2021.03.125
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/58986
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 3 (6), 2021
dc.relation.referencesBalashov, L. S., & Solomakha, V. A. (2005). Klasyfikatsiia
dc.relation.referencesekosystem zaplavnykh luk Ukrainy [Ecosystem`s classification
dc.relation.referencesof flood-plain meadow of Ukraine]. Ukrainskyi
dc.relation.referencesfitotsenolohichnyi zbirnyk,1(23),108–114.
dc.relation.referencesBodnar, V. O. (2016, April 1). Zahalna kharakterystyka
dc.relation.referenceslisiv ta lisovoho hospodarstva Ukrainy [General
dc.relation.referencescharacteristics of Ukraine forests]. Public report of the
dc.relation.referencesState Agency of Forest Resources of Ukraine.. Retrieved
dc.relation.referencesfrom http://dklg.kmu.gov.ua/forest/control/uk/publish/article?art_id=62921
dc.relation.referencesChiranjeevi, P., Mohanakrishna, G., & Mohan, S. V. (2012).
dc.relation.referencesRhizosphere mediated electrogenesis with the function of
dc.relation.referencesanode placement for harnessing bioenergy through CO2
dc.relation.referencessequestration. Bioresoure Technology, 124, 364–370. doi:
dc.relation.referenceshttps://doi.org/doi:10.1016/j.biortech.2012.08.020
dc.relation.referencesDai, J., Wang, J.-J., Chow, A. T., & Conner, W. H. (2015).
dc.relation.referencesElectrical energy production from forest detritus in a
dc.relation.referencesforested wetland using microbial fuel cells. Global Change
dc.relation.referencesBiology Bioenergy, 7, 244–252. doi: https://doi.org/10.1111/gcbb.12117
dc.relation.referencesde Schamphelaire, L., Cabezas, A., Marzorati, M., Friedrich, M. W.,
dc.relation.referencesBoon, N., & Verstraete, W. (2010). Microbial community
dc.relation.referencesanalysis of anodes from sediment microbial fuel cells
dc.relation.referencespowered by rhizodeposits of living rice plants. Applied &
dc.relation.referencesEnvironmental Microbiology, 76, 2002–2008. doi:
dc.relation.referenceshttps://doi.org/10.1128/AEM.02432-09
dc.relation.referencesEshel, A., & Beeckman, T. (2013). Plant Roots: The Hidden
dc.relation.referencesHalf. Boca Raton: CRC Press.
dc.relation.referencesIvchenko, A. S. (2009). Bolotnyie massivyi Ukrainyi [Marshlands
dc.relation.referencesof Ukraine]. Svitohliad, 4, 42–47.
dc.relation.referencesKaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008).
dc.relation.referencesPlant/microbe cooperation for electricity generation in a
dc.relation.referencesrice paddy field. Applied Microbiology & Biotechnology, 79(1), 43–49. doi: https://doi.org/10.1007/s00253-008-1410-9
dc.relation.referencesKouzuma, A., Kasai, T., Nakagawa, G., Yamamuro, A., Abe, T.,
dc.relation.references& Watanabe, K. (2013). Comparative metagenomics of
dc.relation.referencesanode-associated microbiomes developed in rice paddyfield
dc.relation.referencesmicrobial fuel cells. PLoS One, 8(11), Article e77443.
dc.relation.referencesdoi: https://doi.org/10.1371/journal.pone.0077443
dc.relation.referencesLiu, S., Song, H., Li, X., & Yang, F. (2013). Power generation
dc.relation.referencesenhancement by utilizing plant photosynthate in microbial
dc.relation.referencesfuel cell coupled constructed wetland system. International
dc.relation.referencesJournal of Photoenergy, Article ID 172010, 1–10. doi:
dc.relation.referenceshttps://doi.org/10.1155/2013/172010
dc.relation.referencesLu, L., Xing, D., & Ren, Z. J. (2015). Microbial community
dc.relation.referencesstructure accompanied with electricity production in a
dc.relation.referencesconstructed wetland plant microbial fuel cell. Bioresource
dc.relation.referencesTechnology, 195, 115–121. doi: https://doi.org/10.1016/j.biortech.2015.05.098
dc.relation.referencesMarynych, O. M., Babychev, F. S., Bieliaiev, V. I.,
dc.relation.referencesDorohuntsov, S. I. (Eds.) (1989-1993). Heohrafichna
dc.relation.referencesentsyklopediia Ukrainy [Geographical encyclopedia of
dc.relation.referencesUkraine]. (Vol. 1–3). Kyiv: Ukrainska Radianska
dc.relation.referencesEntsyklopediia im. M. P. Bazhana [in Ukrainian].
dc.relation.referencesNdjebayi, J. N. (2017). Aluminum Production Costs: A
dc.relation.referencesComparative Case Study of Production Strategy. Walden
dc.relation.referencesUniversity. Minneapolis.
dc.relation.referencesRusyn, I. B., & Medvediev, O. V. (2016). U.А. Patent No 112093. Ukrainskyi instytut intelektualnoi vlasnosti
dc.relation.references(Ukrpatent).
dc.relation.referencesRusyn, I. B., & Hamkalo, Кh. R. (2019). Bioelectricity
dc.relation.referencesproduction in an indoor plant-microbial biotechnological
dc.relation.referencessystem with Alisma plantago-aquatica. Acta Biologica
dc.relation.referencesSzegediensis, 62(2), 170–179. doi: https://doi.org/10.14232/abs.2018.2.170-179.
dc.relation.referencesStrik, D. P. B. T. B., Hamelers, H. V. M., Snel, J. F. H., &
dc.relation.referencesBuisman, C. J. (2008). Green electricity production with
dc.relation.referencesliving plants and bacteria in a fuel cell. International
dc.relation.referencesJournal of Energy Research, 32(9), 870–876. doi:
dc.relation.referenceshttps://doi.org/10.1002/er.1397
dc.relation.referencesSudirjo, E., de Jager, P., Buisman, C. J. N., & Strik, D. P. B. T. B.
dc.relation.references(2019). Performance and Long Distance Data Acquisition
dc.relation.referencesvia LoRa Technology of a Tubular Plant Microbial Fuel
dc.relation.referencesCell Located in a Paddy Field in West Kalimantan.
dc.relation.referencesIndonesia Sensors, 19, 4647, 1–18. doi: https://doi.org/10.3390/s19214647
dc.relation.referencesTakanezawa, K., Nishio, K., Kato, S., Hashimoto, K., &
dc.relation.referencesWatanabe, K. (2010). Factors affecting electric output
dc.relation.referencesfrom rice-paddy microbial fuel cells. Bioscience,
dc.relation.referencesBiotechnology & Biochemistry, 74, 1271–1273. doi:
dc.relation.referenceshttps://doi.org/10.1271/bbb.90852
dc.relation.referencesTou, I., Azri, Y. M., Sadi, M. H., Lounici, H., & Кebbouche-
dc.relation.referencesGana, S. (2019). Chlorophytum microbial fuel cell
dc.relation.referencescharacterization. International Journal of Green Energy, 16(12), 1–13. doi: https://doi.org/10.1080/15435075.2019.1650049
dc.relation.referencesUeoka, N., Sese, N., Sue, M., Kouzuma, A., & Watanabe, K.
dc.relation.references(2016). Sizes of Anode and Cathode Affect Electricity
dc.relation.referencesGeneration in Rice Paddy-Field Microbial Fuel Cells.
dc.relation.referencesJournal of Sustainable Bioenergy Systems, 06(01), 10–15.
dc.relation.referencesdoi: https://doi.org/10.4236/jsbs.2016.61002
dc.relation.referencesWetser, K., Liu, J., Buisman, C. J. N., & Strik, D. P. B. T. B.
dc.relation.references(2015). Plant microbial fuel cell applied in wetlands:
dc.relation.referencesSpatial, temporal and potential electricity generation of
dc.relation.referencesSpartina anglica salt marshes and Phragmites australis
dc.relation.referencespeat soils. Biomass & Bioenergy, 83, 543–550. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.biombioe.2015.11.006
dc.relation.referencesWetser, K., Dieleman, K., Buisman, C., & Strik, D. P. B. T. B.
dc.relation.references(2017). Electricity from wetlands: Tubular plant microbial
dc.relation.referencesfuels with silicone gas-diffusion biocathodes. Applied
dc.relation.referencesEnergy, 185, 642–649. doi: 10.1016/j.apenergy. 2016.10.122
dc.relation.referencesenBalashov, L. S., & Solomakha, V. A. (2005). Klasyfikatsiia
dc.relation.referencesenekosystem zaplavnykh luk Ukrainy [Ecosystem`s classification
dc.relation.referencesenof flood-plain meadow of Ukraine]. Ukrainskyi
dc.relation.referencesenfitotsenolohichnyi zbirnyk,1(23),108–114.
dc.relation.referencesenBodnar, V. O. (2016, April 1). Zahalna kharakterystyka
dc.relation.referencesenlisiv ta lisovoho hospodarstva Ukrainy [General
dc.relation.referencesencharacteristics of Ukraine forests]. Public report of the
dc.relation.referencesenState Agency of Forest Resources of Ukraine.. Retrieved
dc.relation.referencesenfrom http://dklg.kmu.gov.ua/forest/control/uk/publish/article?art_id=62921
dc.relation.referencesenChiranjeevi, P., Mohanakrishna, G., & Mohan, S. V. (2012).
dc.relation.referencesenRhizosphere mediated electrogenesis with the function of
dc.relation.referencesenanode placement for harnessing bioenergy through CO2
dc.relation.referencesensequestration. Bioresoure Technology, 124, 364–370. doi:
dc.relation.referencesenhttps://doi.org/doi:10.1016/j.biortech.2012.08.020
dc.relation.referencesenDai, J., Wang, J.-J., Chow, A. T., & Conner, W. H. (2015).
dc.relation.referencesenElectrical energy production from forest detritus in a
dc.relation.referencesenforested wetland using microbial fuel cells. Global Change
dc.relation.referencesenBiology Bioenergy, 7, 244–252. doi: https://doi.org/10.1111/gcbb.12117
dc.relation.referencesende Schamphelaire, L., Cabezas, A., Marzorati, M., Friedrich, M. W.,
dc.relation.referencesenBoon, N., & Verstraete, W. (2010). Microbial community
dc.relation.referencesenanalysis of anodes from sediment microbial fuel cells
dc.relation.referencesenpowered by rhizodeposits of living rice plants. Applied &
dc.relation.referencesenEnvironmental Microbiology, 76, 2002–2008. doi:
dc.relation.referencesenhttps://doi.org/10.1128/AEM.02432-09
dc.relation.referencesenEshel, A., & Beeckman, T. (2013). Plant Roots: The Hidden
dc.relation.referencesenHalf. Boca Raton: CRC Press.
dc.relation.referencesenIvchenko, A. S. (2009). Bolotnyie massivyi Ukrainyi [Marshlands
dc.relation.referencesenof Ukraine]. Svitohliad, 4, 42–47.
dc.relation.referencesenKaku, N., Yonezawa, N., Kodama, Y., & Watanabe, K. (2008).
dc.relation.referencesenPlant/microbe cooperation for electricity generation in a
dc.relation.referencesenrice paddy field. Applied Microbiology & Biotechnology, 79(1), 43–49. doi: https://doi.org/10.1007/s00253-008-1410-9
dc.relation.referencesenKouzuma, A., Kasai, T., Nakagawa, G., Yamamuro, A., Abe, T.,
dc.relation.referencesen& Watanabe, K. (2013). Comparative metagenomics of
dc.relation.referencesenanode-associated microbiomes developed in rice paddyfield
dc.relation.referencesenmicrobial fuel cells. PLoS One, 8(11), Article e77443.
dc.relation.referencesendoi: https://doi.org/10.1371/journal.pone.0077443
dc.relation.referencesenLiu, S., Song, H., Li, X., & Yang, F. (2013). Power generation
dc.relation.referencesenenhancement by utilizing plant photosynthate in microbial
dc.relation.referencesenfuel cell coupled constructed wetland system. International
dc.relation.referencesenJournal of Photoenergy, Article ID 172010, 1–10. doi:
dc.relation.referencesenhttps://doi.org/10.1155/2013/172010
dc.relation.referencesenLu, L., Xing, D., & Ren, Z. J. (2015). Microbial community
dc.relation.referencesenstructure accompanied with electricity production in a
dc.relation.referencesenconstructed wetland plant microbial fuel cell. Bioresource
dc.relation.referencesenTechnology, 195, 115–121. doi: https://doi.org/10.1016/j.biortech.2015.05.098
dc.relation.referencesenMarynych, O. M., Babychev, F. S., Bieliaiev, V. I.,
dc.relation.referencesenDorohuntsov, S. I. (Eds.) (1989-1993). Heohrafichna
dc.relation.referencesenentsyklopediia Ukrainy [Geographical encyclopedia of
dc.relation.referencesenUkraine]. (Vol. 1–3). Kyiv: Ukrainska Radianska
dc.relation.referencesenEntsyklopediia im. M. P. Bazhana [in Ukrainian].
dc.relation.referencesenNdjebayi, J. N. (2017). Aluminum Production Costs: A
dc.relation.referencesenComparative Case Study of Production Strategy. Walden
dc.relation.referencesenUniversity. Minneapolis.
dc.relation.referencesenRusyn, I. B., & Medvediev, O. V. (2016). U.A. Patent No 112093. Ukrainskyi instytut intelektualnoi vlasnosti
dc.relation.referencesen(Ukrpatent).
dc.relation.referencesenRusyn, I. B., & Hamkalo, Kh. R. (2019). Bioelectricity
dc.relation.referencesenproduction in an indoor plant-microbial biotechnological
dc.relation.referencesensystem with Alisma plantago-aquatica. Acta Biologica
dc.relation.referencesenSzegediensis, 62(2), 170–179. doi: https://doi.org/10.14232/abs.2018.2.170-179.
dc.relation.referencesenStrik, D. P. B. T. B., Hamelers, H. V. M., Snel, J. F. H., &
dc.relation.referencesenBuisman, C. J. (2008). Green electricity production with
dc.relation.referencesenliving plants and bacteria in a fuel cell. International
dc.relation.referencesenJournal of Energy Research, 32(9), 870–876. doi:
dc.relation.referencesenhttps://doi.org/10.1002/er.1397
dc.relation.referencesenSudirjo, E., de Jager, P., Buisman, C. J. N., & Strik, D. P. B. T. B.
dc.relation.referencesen(2019). Performance and Long Distance Data Acquisition
dc.relation.referencesenvia LoRa Technology of a Tubular Plant Microbial Fuel
dc.relation.referencesenCell Located in a Paddy Field in West Kalimantan.
dc.relation.referencesenIndonesia Sensors, 19, 4647, 1–18. doi: https://doi.org/10.3390/s19214647
dc.relation.referencesenTakanezawa, K., Nishio, K., Kato, S., Hashimoto, K., &
dc.relation.referencesenWatanabe, K. (2010). Factors affecting electric output
dc.relation.referencesenfrom rice-paddy microbial fuel cells. Bioscience,
dc.relation.referencesenBiotechnology & Biochemistry, 74, 1271–1273. doi:
dc.relation.referencesenhttps://doi.org/10.1271/bbb.90852
dc.relation.referencesenTou, I., Azri, Y. M., Sadi, M. H., Lounici, H., & Kebbouche-
dc.relation.referencesenGana, S. (2019). Chlorophytum microbial fuel cell
dc.relation.referencesencharacterization. International Journal of Green Energy, 16(12), 1–13. doi: https://doi.org/10.1080/15435075.2019.1650049
dc.relation.referencesenUeoka, N., Sese, N., Sue, M., Kouzuma, A., & Watanabe, K.
dc.relation.referencesen(2016). Sizes of Anode and Cathode Affect Electricity
dc.relation.referencesenGeneration in Rice Paddy-Field Microbial Fuel Cells.
dc.relation.referencesenJournal of Sustainable Bioenergy Systems, 06(01), 10–15.
dc.relation.referencesendoi: https://doi.org/10.4236/jsbs.2016.61002
dc.relation.referencesenWetser, K., Liu, J., Buisman, C. J. N., & Strik, D. P. B. T. B.
dc.relation.referencesen(2015). Plant microbial fuel cell applied in wetlands:
dc.relation.referencesenSpatial, temporal and potential electricity generation of
dc.relation.referencesenSpartina anglica salt marshes and Phragmites australis
dc.relation.referencesenpeat soils. Biomass & Bioenergy, 83, 543–550. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.biombioe.2015.11.006
dc.relation.referencesenWetser, K., Dieleman, K., Buisman, C., & Strik, D. P. B. T. B.
dc.relation.referencesen(2017). Electricity from wetlands: Tubular plant microbial
dc.relation.referencesenfuels with silicone gas-diffusion biocathodes. Applied
dc.relation.referencesenEnergy, 185, 642–649. doi: 10.1016/j.apenergy. 2016.10.122
dc.relation.urihttp://dklg.kmu.gov.ua/forest/control/uk/publish/article?art_id=62921
dc.relation.urihttps://doi.org/doi:10.1016/j.biortech.2012.08.020
dc.relation.urihttps://doi.org/10.1111/gcbb.12117
dc.relation.urihttps://doi.org/10.1128/AEM.02432-09
dc.relation.urihttps://doi.org/10.1007/s00253-008-1410-9
dc.relation.urihttps://doi.org/10.1371/journal.pone.0077443
dc.relation.urihttps://doi.org/10.1155/2013/172010
dc.relation.urihttps://doi.org/10.1016/j.biortech.2015.05.098
dc.relation.urihttps://doi.org/10.14232/abs.2018.2.170-179
dc.relation.urihttps://doi.org/10.1002/er.1397
dc.relation.urihttps://doi.org/10.3390/s19214647
dc.relation.urihttps://doi.org/10.1271/bbb.90852
dc.relation.urihttps://doi.org/10.1080/15435075.2019.1650049
dc.relation.urihttps://doi.org/10.4236/jsbs.2016.61002
dc.relation.urihttps://doi.org/10.1016/j.biombioe.2015.11.006
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Rusyn I., Dyachok V., 2021
dc.subjectbioelectricity
dc.subjectrenewable energy
dc.subjectplant
dc.subjectrhizospheric microorganism
dc.subjectecosystem
dc.titleWetland meadows of Carex acutiformis as a source of bioelectricity
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v6n3_Rusyn_I-Wetland_meadows_of_Carex_125-129.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v6n3_Rusyn_I-Wetland_meadows_of_Carex_125-129__COVER.png
Size:
410.81 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: