Use of Chemically Modified Chitosan for the Adsorptive Removal of Toxic Metal Ions in Aqueous Solutions

dc.citation.epage419
dc.citation.issue2
dc.citation.spage407
dc.contributor.affiliationImam Abdulrahman Bin Faisal University
dc.contributor.affiliationUniversity of Punjab
dc.contributor.authorAlakhras, Fadi
dc.contributor.authorAlghamdi, Huda
dc.contributor.authorRehman, Rabia
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:30:37Z
dc.date.available2024-02-12T08:30:37Z
dc.date.created2023-03-16
dc.date.issued2023-03-16
dc.description.abstractРеакцією конденсації було успішно здійснено хімічну модифікацію хітозану з використанням трьох похідних, а саме: 3-гідроксибензальдегіду, 2,3-дигідроксибензальдегіду та 3,5-ди-трет-бутил-2-гідроксибензальдегіду. Методи інфрачервоної спектроскопії з перетворенням Фур’є (FTIR), сканувальної електронної мікроскопії (СЕМ), площі поверхні Брунауера–Еммета–Теллера (БЕТ), термогравіметричного аналізу (ТГА) та рентгенівської дифракції (XRD) були виконані для характеризації адсорбентів-основ Шиффа – похідних хітозану. Досліджено ефективність синтезованих адсорбентів щодо вилучення іонів кобальту і нікелю з водного розчину та проаналізовано експериментальні дані за допомогою ізотермічної та кінетичної моделей. Площа поверхні за БЕТ хімічно модифікованого хітозану була значно збільшена до 125,83 м2 × г-1 з мезопористими характеристиками. Максимальне поглинання зафіксовано за pH 5-6, а максимальна здатність вилучення становила 243,90 мг × г-1 для іонів кобальту та 166,67 мг × г-1 для іонів нікелю. Кінетичні дані краще описуються за допомогою псевдодругого порядку.
dc.description.abstractChemical modification of chitosan was successfully carried out using three derivatives namely: 3-hydroxybenzaldehyde, 2,3-dihydroxybenzaldehyde, and 3,5-di-tert-butyl-2-hydroxybenzaldehyde by a condensation reaction. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) surface area, thermal gravimetric analysis (TGA), and X-ray diffraction (XRD) methods were performed for characterization of the chitosanderived Schiff base adsorbent materials. The efficiency of the prepared adsorbents in removing cobalt and nickel ions from aqueous solution was explored, and experimental data were analyzed using isothermal and kinetic models. The BET surface area of chemically modified chitosan was greatly enhanced 125.83 m2 g-1 with mesoporous characteristics. The maximum uptake was recorded at pH 5-6, while the maximum removal capacity was 243.90 mg g-1 for cobalt ions whereas 166.67 mg g-1 was achieved for nickel ions. The kinetic data were better fitted using pseudo-second-order.
dc.format.extent407-419
dc.format.pages13
dc.identifier.citationAlakhras F. Use of Chemically Modified Chitosan for the Adsorptive Removal of Toxic Metal Ions in Aqueous Solutions / Fadi Alakhras, Huda Alghamdi, Rabia Rehman // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 407–419.
dc.identifier.citationenAlakhras F. Use of Chemically Modified Chitosan for the Adsorptive Removal of Toxic Metal Ions in Aqueous Solutions / Fadi Alakhras, Huda Alghamdi, Rabia Rehman // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 407–419.
dc.identifier.doidoi.org/10.23939/chcht17.02.407
dc.identifier.issn1996-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61245
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (17), 2023
dc.relation.references[1] Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The Utilization of Leaf-Based Adsorbents for Dyes Removal: A Review. J. Mol. Liq. 2019, 276, 728-747. https://doi.org/10.1016/j.molliq.2018.12.001
dc.relation.references[2] Boamah, P.O.; Huang, Y.; Hua, M.; Zhang, Q.; Wu, J.; Onumah, J.; Sam-Amoah, L.K.; Boamah, P.O. Sorption of Heavy Metal Ions onto Carboxylate Chitosan Derivatives – A Mini-Review. Ecotoxicol. Environ. Saf. 2015, 116, 113-120. https://doi.org/10.1016/j.ecoenv.2015.01.012
dc.relation.references[3] Al-Shahrani, H.; Alakhras, F.; Al-Abbad, E.; Al-Mazaideh, G.M.; Hosseini-Bandegharaei, A.; Ouerfelli, N. Sorption of Cobalt (II) Ions from Aqueous Solutions Using Chemically Modified Chitosan. Glob. Nest J. 2018, 20, 620-627. https://doi.org/10.30955/gnj.002804
dc.relation.references[4] Alakhras, F.; Al-Shahrani, H.; Al-Abbad, E.; Al-Rimawi, F.; Ouerfelli, N. Removal of Pb(II) Metal Ions from Aqueous Solutions Using Chitosan-Vanillin Derivatives of Chelating Polymers. Pol. J. Environ. Stud. 2019, 28, 1523-1534. https://dspace.alquds.edu/handle/20.500.12213/5074
dc.relation.references[5] Alakhras, F.; Alabbad, E.; Alzamil, N.; Abouzeid, F.M.; Ouer-felli, N. Contribution to Modelling the Effect of Temperature on Removal of Nickel Ions by Adsorption on Nano-Bentonite. Asian J. Chem. 2018, 30, 1147-1156.
dc.relation.references[6] Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt Toxicity in Humans – A Review of the Potential Sources and Systemic Health Effects. Toxicology 2017, 387, 43-56. https://doi.org/10.1016/j.tox.2017.05.015
dc.relation.references[7] Alakhras, F.; Bel Hadj Hmida, E.S.; Anastopoulos, I.; Trabelsi, Z.; Mabrouk, W.; Ouerfelli, N.; Fauvarque, J.F. Diffusion Analysis and Modeling of Kinetic Behavior for Treatment of Brine Water Using Electrodialysis Process. Water Sci. Eng. 2021, 14, 36-45. https://doi.org/10.1016/j.wse.2020.05.002
dc.relation.references[8] Junejo, R.; Memon, S.; Durmaz, F.; Ahmed, A.A.; Memon, F.N.; Jalbani, N.S.; Memon, S.S.; Bhatti, A.A. Synthesis of Piperdinomethylcalix[4]arene Attached Silica Resin for the Removal of Metal Ions from Water: Equilibrium, Thermodynamic and Kinetic Modelling Studies. Advanced Journal of Chemistry-Section A 2020, 3, 680-691. http://dx.doi.org/10.33945/SAMI/AJCA.2020.5.11
dc.relation.references[9] Junejo, R.; Memon, S.; Palabiyik, I.M. Efficient Adsorption of Heavy Metal Ions onto Diethylamine Functionalized Calix[4]arene Based Silica Resin. Eurasian Chemical Communications 2020, 2, 785-797. http://doi.org/10.33945/sami/ecc.2020.7.6
dc.relation.references[10] Kanwal, F.; Rehman, R.; Warraich, H. Synthesis of Novel Polyaniline Composites with Eriobotrya japonica Leaves for Removal of Methyl Red Dye from Wastewater. Bulg. Chem. Commun. 2019, 51, 586-591. http://doi.org/10.34049/bcc.51.4.5131
dc.relation.references[11] Sabzehmeidani, M.M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V.A.L. Carbon-Based Materials: A Review of Adsorbents for Inorganic and Organic Compounds. Materials Advances 2021, 2, 598-627. https://doi.org/10.1039/D0MA00087F
dc.relation.references[12] Adegoke, K.A.; Oyewole, R.O.; Lasisi, B.M.; Bello, O.S. Abatement of Organic Pollutants Using Fly Ash-Based Adsorbents. Water Sci. Technol. 2017, 76, 2580-2592. https://doi.org/10.2166/wst.2017.437
dc.relation.references[13] Zhang, Y.; Xia, K.; Liu, X.; Chen, Z.; Du, H.; Zhang, X. Synthesis of Cationic-Modified Silica Gel and its Adsorption Properties for Anionic Dyes. J. Taiwan Inst. Chem. Eng. 2019, 102, 1-8. https://doi.org/10.1016/j.jtice.2019.05.005
dc.relation.references[14] Wang, S.; Peng, Y. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010, 156, 11-24. https://doi.org/10.1016/j.cej.2009.10.029
dc.relation.references[15] Akhouairi, S.; Ouachtak, H.; Addi, A.A.; Jada, A.; Douch, J. Natural Sawdust as an Adsorbent for the Eriochrome Black T Dye Removal from Aqueous Solution. Water Air Soil Pollut. 2019, 230, 181. https://doi.org/10.1007/s11270-019-4234-6
dc.relation.references[16] Kausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Bhatti, H.N.; Nouren, S. Dyes Adsorption Using Clay and Modified Clay: A Review. J. Mol. Liq. 2018, 256, 395-407. https://doi.org/10.1016/j.molliq.2018.02.034
dc.relation.references[17] Liu, Q.; Zhou, Y.; Lu, J.; Zhou, Y. Novel Cyclodextrin-Based Adsorbents for Removing Pollutants from Wastewater: A Critical Review. Chemosphere 2020, 241, 125043. https://doi.org/10.1016/j.chemosphere.2019.125043
dc.relation.references[18] Hossain, M.F.; Akther, N.; Zhou, Y. Recent Advancements in Graphene Adsorbents for Wastewater Treatment: Current Status and Challenges. Chin. Chem. Lett. 2020, 31, 2525–2538. https://doi.org/10.1016/j.cclet.2020.05.011
dc.relation.references[19] Habiba, U.; Siddique, T.A.; Joo, T.C.; Salleh, A.; Ang, B.C.; Afifi, A.M. Synthesis of Chitosan/Polyvinyl Alcohol/Zeolite Composite for Removal of Methyl Orange, Congo Red, and Chro-mium(VI) by Flocculation/Adsorption. Carbohydr. Polym. 2017, 157, 1568-1576. https://doi.org/10.1016/j.carbpol.2016.11.037
dc.relation.references[20] Haldorai, Y.; Shim, J.- J. An Efficient Removal of Methyl Orange dye from Aqueous Solution by Adsorption onto Chito-san/MgO Composite: A Novel Reusable Adsorbent. Appl. Surf. Sci. 2014, 292, 447-453. https://doi.org/10.1016/j.apsusc.2013.11.158
dc.relation.references[21] Alakhras, F. Biosorption of Cd(II) Ions from Aqueous Solution Using Chitosan-iso-Vanillin as a Low-Cost Sorbent: Equilibrium, Kinetics, and Thermodynamic Studies. Arab. J. Sci. Eng. 2019, 44, 279-288. https://doi.org/10.1007/s13369-018-3589-0
dc.relation.references[22] Al-Abbad, E.; Alakhras, F.; Anastopoulos, I.; Das, D.; Al-Arfaj, A.; Ouerfelli, N.; Hosseini-Bandegharaei, A. Chitosan-Based Materials for the Removal of Nickel Ions from Aqueous Solutions. Russ. J. Phys. Chem. A 2020, 94, 748.
dc.relation.references[23] Saheed, I.O.; Oh, W.-D.; Suah, F.B.M. Chitosan Modifications for Adsorption of Pollutants – A Review. J. Hazard. Mater. 2021, 408, 124889. https://doi.org/10.1016/j.jhazmat.2020.124889
dc.relation.references[24] Zalloum, H.M.; Al-Qodah, Z.; Mubarak, M.S. Copper Adsorption on Chitosan-Derived Schiff Bases. J. Macromol. Sci. A 2008, 46, 46-57. https://doi.org/10.1080/10601320802515225
dc.relation.references[25] Al-Abbad, E.; Alakhras, F. Removal of Dye Acid Red 1 from Aqueous Solutions Using Chitosan-iso-Vanillin Sorbent Material. Indones. J. Sci. Technol. 2020, 5, 352-365. https://doi.org/10.17509/ijost.v5i3.24986
dc.relation.references[26] Li, Q.; Yang, D.; Ma, G.; Xu, Q.; Chen, X.; Lu, F.; Nie, J. Synthesis and Characterization of Chitosan-Based Hydrogels. Int. J. Biol. Macromol. 2009, 44, 121-127. https://doi.org/10.1016/j.ijbiomac.2008.11.001
dc.relation.references[27] Samuels, R.J. Solid-State Characterization of the Structure of Chitosan Films. J. Polym. Sci. B Polym. Phys. 1981, 19, 1081–1105. https://doi.org/10.1002/pol.1981.180190706
dc.relation.references[28] Yazdani, M.R.; Virolainen, E.; Conley, K.; Vahala, R. Chito-san-Zinc(II) Complexes as a Bio-Sorbent for the Adsorptive Abate-ment of Phosphate: Mechanism of Complexation and Assessment of Adsorption Performance. Polymers 2018, 10, 25. https://doi.org/10.3390/polym10010025
dc.relation.references[29] Madala, S.; Nadavala, S.K.; Vudagandla, S.; Boddu, V.M.; Abburi, K. Equilibrium, Kinetics and Thermodynamics of Cadmium (II) Biosorption on to Composite Chitosan Biosorbent. Arab. J. Chem. 2013, 10, S1883. https://cyberleninka.org/viewer_images/948363/f/1.png
dc.relation.references[30] Mengatto, L.; Ferreyra, M.G.; Rubiolo, A.; Rintoul, I.; Luna, J. (2013). Hydrophilic and Hydrophobic Interactions in Cross-Linked Chitosan Membranes. Mater. Chem. Phys. 2013, 139, 181-186. http://dx.doi.org/10.1016/j.matchemphys.2013.01.019
dc.relation.references[31] Saravanane, R.; Sundararajan, T.; Reddy, S.S. Efficiency of Chemically Modified Low Cost Adsorbents for the Removal of Heavy Metals from Wastewater: A Comparative Study. Indian J. Environ. Health 2002, 44, 78–87.
dc.relation.references[32] Lima, E.C.; Adebayo, M.A.; Machado, F.M. Kinetic and Equilibrium Models of Adsorption in Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications; Springer: Bergmann, 2015.
dc.relation.references[33] Langmuir, I. The Constitutional and Fundamental Properties of Solids and Liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. https://doi.org/10.1021/ja02268a002
dc.relation.references[34] Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385-470.
dc.relation.references[35] Mobasherpour, I.; Salahi, E.; Pazouki, M. Comparative of the Removal of Pb2+, Cd2+ and Ni2+ by Nano Crystallite Hydroxyapatite from Aqueous Solutions: Adsorption Isotherm Study. Arab. J. Chem. 2012, 5, 439-446. https://doi.org/10.1016/j.arabjc.2010.12.022
dc.relation.references[36] Webber, T.W.; Chakravorti, R.K. Pore and Solid Diffusion Models for Fixed-Bed Adsorbers. AIChE J. 1974, 20, 228-238. https://doi.org/10.1002/aic.690200204
dc.relation.references[37] Paulino, A.T.; Guilherme, M.R.; Reis, A.V.; Tambourgi, E.B.; Nozaki, J.; Muniz, E.C. Capacity of Adsorption of Pb2+ and Ni2+ from Aqueous Solutions by Chitosan Produced from Silkworm Chrysalides in Different Degrees of Deacetylation. J. Hazard. Mater. 2007, 147, 139-147. https://doi.org/10.1016/j.jhazmat.2006.12.059
dc.relation.references[38] Tirtom, V.N.; Dinçer, A.; Becerik, S.; Aydemir, T.; Çelik, A. Comparative Adsorption of Ni(II) and Cd(II) Ions on Epichloro-hydrin Crosslinked Chitosan–Clay Composite Beads in Aqueous Solution. Chem. Eng. J. 2012, 197, 379-386.
dc.relation.references[39] Tran, H.V.; Tran, L.D.; Nguyen, T.N. Preparation of Chito-san/Magnetite Composite Beads and their Application for Removal of Pb(II) and Ni(II) from Aqueous Solution. Mater. Sci. Eng. C 2010, 30, 304-310. https://doi.org/10.1016/j.msec.2009.11.008
dc.relation.references[40] Popuri, S.R.; Vijaya, Y.; Boddu, V.M.; Abburi, K. Adsorptive Removal of Copper and Nickel Ions from Water Using Chitosan Coated PVC Beads. Bioresour. Technol. 2009, 100, 194-199. https://doi.org/10.1016/j.biortech.2008.05.041
dc.relation.references[41] Wang, H.; Tang, H.; Liu, Z.; Zhang, X.; Hao, Z.; Liu, Z. Removal of Cobalt(II) Ion from Aqueous Solution by Chitosan–Montmorillonite. J. Environ. Sci. (China) 2014, 26, 1879-1884. https://doi.org/10.1016/j.jes.2014.06.021
dc.relation.references[42] Krishnan, K.A.; Anirudhan, T.S. Kinetic and Equilibrium Modelling of Cobalt(II) Adsorption onto Bagasse Pith Based Sul-phurised Activated Carbon. Chem. Eng. J. 2008, 137, 257-264. https://doi.org/10.1016/j.cej.2007.04.029
dc.relation.references[43] Manohar, D.M.; Noeline, B.F.; Anirudhan, T.S. Adsorption Performance of Al-Pillared Bentonite Clay for the Removal of Cobalt(II) from Aqueous Phase. Appl. Clay Sci. 2006, 31, 194-206. https://doi.org/10.1016/j.clay.2005.08.008
dc.relation.referencesen[1] Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The Utilization of Leaf-Based Adsorbents for Dyes Removal: A Review. J. Mol. Liq. 2019, 276, 728-747. https://doi.org/10.1016/j.molliq.2018.12.001
dc.relation.referencesen[2] Boamah, P.O.; Huang, Y.; Hua, M.; Zhang, Q.; Wu, J.; Onumah, J.; Sam-Amoah, L.K.; Boamah, P.O. Sorption of Heavy Metal Ions onto Carboxylate Chitosan Derivatives – A Mini-Review. Ecotoxicol. Environ. Saf. 2015, 116, 113-120. https://doi.org/10.1016/j.ecoenv.2015.01.012
dc.relation.referencesen[3] Al-Shahrani, H.; Alakhras, F.; Al-Abbad, E.; Al-Mazaideh, G.M.; Hosseini-Bandegharaei, A.; Ouerfelli, N. Sorption of Cobalt (II) Ions from Aqueous Solutions Using Chemically Modified Chitosan. Glob. Nest J. 2018, 20, 620-627. https://doi.org/10.30955/gnj.002804
dc.relation.referencesen[4] Alakhras, F.; Al-Shahrani, H.; Al-Abbad, E.; Al-Rimawi, F.; Ouerfelli, N. Removal of Pb(II) Metal Ions from Aqueous Solutions Using Chitosan-Vanillin Derivatives of Chelating Polymers. Pol. J. Environ. Stud. 2019, 28, 1523-1534. https://dspace.alquds.edu/handle/20.500.12213/5074
dc.relation.referencesen[5] Alakhras, F.; Alabbad, E.; Alzamil, N.; Abouzeid, F.M.; Ouer-felli, N. Contribution to Modelling the Effect of Temperature on Removal of Nickel Ions by Adsorption on Nano-Bentonite. Asian J. Chem. 2018, 30, 1147-1156.
dc.relation.referencesen[6] Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt Toxicity in Humans – A Review of the Potential Sources and Systemic Health Effects. Toxicology 2017, 387, 43-56. https://doi.org/10.1016/j.tox.2017.05.015
dc.relation.referencesen[7] Alakhras, F.; Bel Hadj Hmida, E.S.; Anastopoulos, I.; Trabelsi, Z.; Mabrouk, W.; Ouerfelli, N.; Fauvarque, J.F. Diffusion Analysis and Modeling of Kinetic Behavior for Treatment of Brine Water Using Electrodialysis Process. Water Sci. Eng. 2021, 14, 36-45. https://doi.org/10.1016/j.wse.2020.05.002
dc.relation.referencesen[8] Junejo, R.; Memon, S.; Durmaz, F.; Ahmed, A.A.; Memon, F.N.; Jalbani, N.S.; Memon, S.S.; Bhatti, A.A. Synthesis of Piperdinomethylcalix[4]arene Attached Silica Resin for the Removal of Metal Ions from Water: Equilibrium, Thermodynamic and Kinetic Modelling Studies. Advanced Journal of Chemistry-Section A 2020, 3, 680-691. http://dx.doi.org/10.33945/SAMI/AJCA.2020.5.11
dc.relation.referencesen[9] Junejo, R.; Memon, S.; Palabiyik, I.M. Efficient Adsorption of Heavy Metal Ions onto Diethylamine Functionalized Calix[4]arene Based Silica Resin. Eurasian Chemical Communications 2020, 2, 785-797. http://doi.org/10.33945/sami/ecc.2020.7.6
dc.relation.referencesen[10] Kanwal, F.; Rehman, R.; Warraich, H. Synthesis of Novel Polyaniline Composites with Eriobotrya japonica Leaves for Removal of Methyl Red Dye from Wastewater. Bulg. Chem. Commun. 2019, 51, 586-591. http://doi.org/10.34049/bcc.51.4.5131
dc.relation.referencesen[11] Sabzehmeidani, M.M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V.A.L. Carbon-Based Materials: A Review of Adsorbents for Inorganic and Organic Compounds. Materials Advances 2021, 2, 598-627. https://doi.org/10.1039/D0MA00087F
dc.relation.referencesen[12] Adegoke, K.A.; Oyewole, R.O.; Lasisi, B.M.; Bello, O.S. Abatement of Organic Pollutants Using Fly Ash-Based Adsorbents. Water Sci. Technol. 2017, 76, 2580-2592. https://doi.org/10.2166/wst.2017.437
dc.relation.referencesen[13] Zhang, Y.; Xia, K.; Liu, X.; Chen, Z.; Du, H.; Zhang, X. Synthesis of Cationic-Modified Silica Gel and its Adsorption Properties for Anionic Dyes. J. Taiwan Inst. Chem. Eng. 2019, 102, 1-8. https://doi.org/10.1016/j.jtice.2019.05.005
dc.relation.referencesen[14] Wang, S.; Peng, Y. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010, 156, 11-24. https://doi.org/10.1016/j.cej.2009.10.029
dc.relation.referencesen[15] Akhouairi, S.; Ouachtak, H.; Addi, A.A.; Jada, A.; Douch, J. Natural Sawdust as an Adsorbent for the Eriochrome Black T Dye Removal from Aqueous Solution. Water Air Soil Pollut. 2019, 230, 181. https://doi.org/10.1007/s11270-019-4234-6
dc.relation.referencesen[16] Kausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Bhatti, H.N.; Nouren, S. Dyes Adsorption Using Clay and Modified Clay: A Review. J. Mol. Liq. 2018, 256, 395-407. https://doi.org/10.1016/j.molliq.2018.02.034
dc.relation.referencesen[17] Liu, Q.; Zhou, Y.; Lu, J.; Zhou, Y. Novel Cyclodextrin-Based Adsorbents for Removing Pollutants from Wastewater: A Critical Review. Chemosphere 2020, 241, 125043. https://doi.org/10.1016/j.chemosphere.2019.125043
dc.relation.referencesen[18] Hossain, M.F.; Akther, N.; Zhou, Y. Recent Advancements in Graphene Adsorbents for Wastewater Treatment: Current Status and Challenges. Chin. Chem. Lett. 2020, 31, 2525–2538. https://doi.org/10.1016/j.cclet.2020.05.011
dc.relation.referencesen[19] Habiba, U.; Siddique, T.A.; Joo, T.C.; Salleh, A.; Ang, B.C.; Afifi, A.M. Synthesis of Chitosan/Polyvinyl Alcohol/Zeolite Composite for Removal of Methyl Orange, Congo Red, and Chro-mium(VI) by Flocculation/Adsorption. Carbohydr. Polym. 2017, 157, 1568-1576. https://doi.org/10.1016/j.carbpol.2016.11.037
dc.relation.referencesen[20] Haldorai, Y.; Shim, J, J. An Efficient Removal of Methyl Orange dye from Aqueous Solution by Adsorption onto Chito-san/MgO Composite: A Novel Reusable Adsorbent. Appl. Surf. Sci. 2014, 292, 447-453. https://doi.org/10.1016/j.apsusc.2013.11.158
dc.relation.referencesen[21] Alakhras, F. Biosorption of Cd(II) Ions from Aqueous Solution Using Chitosan-iso-Vanillin as a Low-Cost Sorbent: Equilibrium, Kinetics, and Thermodynamic Studies. Arab. J. Sci. Eng. 2019, 44, 279-288. https://doi.org/10.1007/s13369-018-3589-0
dc.relation.referencesen[22] Al-Abbad, E.; Alakhras, F.; Anastopoulos, I.; Das, D.; Al-Arfaj, A.; Ouerfelli, N.; Hosseini-Bandegharaei, A. Chitosan-Based Materials for the Removal of Nickel Ions from Aqueous Solutions. Russ. J. Phys. Chem. A 2020, 94, 748.
dc.relation.referencesen[23] Saheed, I.O.; Oh, W.-D.; Suah, F.B.M. Chitosan Modifications for Adsorption of Pollutants – A Review. J. Hazard. Mater. 2021, 408, 124889. https://doi.org/10.1016/j.jhazmat.2020.124889
dc.relation.referencesen[24] Zalloum, H.M.; Al-Qodah, Z.; Mubarak, M.S. Copper Adsorption on Chitosan-Derived Schiff Bases. J. Macromol. Sci. A 2008, 46, 46-57. https://doi.org/10.1080/10601320802515225
dc.relation.referencesen[25] Al-Abbad, E.; Alakhras, F. Removal of Dye Acid Red 1 from Aqueous Solutions Using Chitosan-iso-Vanillin Sorbent Material. Indones. J. Sci. Technol. 2020, 5, 352-365. https://doi.org/10.17509/ijost.v5i3.24986
dc.relation.referencesen[26] Li, Q.; Yang, D.; Ma, G.; Xu, Q.; Chen, X.; Lu, F.; Nie, J. Synthesis and Characterization of Chitosan-Based Hydrogels. Int. J. Biol. Macromol. 2009, 44, 121-127. https://doi.org/10.1016/j.ijbiomac.2008.11.001
dc.relation.referencesen[27] Samuels, R.J. Solid-State Characterization of the Structure of Chitosan Films. J. Polym. Sci. B Polym. Phys. 1981, 19, 1081–1105. https://doi.org/10.1002/pol.1981.180190706
dc.relation.referencesen[28] Yazdani, M.R.; Virolainen, E.; Conley, K.; Vahala, R. Chito-san-Zinc(II) Complexes as a Bio-Sorbent for the Adsorptive Abate-ment of Phosphate: Mechanism of Complexation and Assessment of Adsorption Performance. Polymers 2018, 10, 25. https://doi.org/10.3390/polym10010025
dc.relation.referencesen[29] Madala, S.; Nadavala, S.K.; Vudagandla, S.; Boddu, V.M.; Abburi, K. Equilibrium, Kinetics and Thermodynamics of Cadmium (II) Biosorption on to Composite Chitosan Biosorbent. Arab. J. Chem. 2013, 10, S1883. https://cyberleninka.org/viewer_images/948363/f/1.png
dc.relation.referencesen[30] Mengatto, L.; Ferreyra, M.G.; Rubiolo, A.; Rintoul, I.; Luna, J. (2013). Hydrophilic and Hydrophobic Interactions in Cross-Linked Chitosan Membranes. Mater. Chem. Phys. 2013, 139, 181-186. http://dx.doi.org/10.1016/j.matchemphys.2013.01.019
dc.relation.referencesen[31] Saravanane, R.; Sundararajan, T.; Reddy, S.S. Efficiency of Chemically Modified Low Cost Adsorbents for the Removal of Heavy Metals from Wastewater: A Comparative Study. Indian J. Environ. Health 2002, 44, 78–87.
dc.relation.referencesen[32] Lima, E.C.; Adebayo, M.A.; Machado, F.M. Kinetic and Equilibrium Models of Adsorption in Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications; Springer: Bergmann, 2015.
dc.relation.referencesen[33] Langmuir, I. The Constitutional and Fundamental Properties of Solids and Liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. https://doi.org/10.1021/ja02268a002
dc.relation.referencesen[34] Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385-470.
dc.relation.referencesen[35] Mobasherpour, I.; Salahi, E.; Pazouki, M. Comparative of the Removal of Pb2+, Cd2+ and Ni2+ by Nano Crystallite Hydroxyapatite from Aqueous Solutions: Adsorption Isotherm Study. Arab. J. Chem. 2012, 5, 439-446. https://doi.org/10.1016/j.arabjc.2010.12.022
dc.relation.referencesen[36] Webber, T.W.; Chakravorti, R.K. Pore and Solid Diffusion Models for Fixed-Bed Adsorbers. AIChE J. 1974, 20, 228-238. https://doi.org/10.1002/aic.690200204
dc.relation.referencesen[37] Paulino, A.T.; Guilherme, M.R.; Reis, A.V.; Tambourgi, E.B.; Nozaki, J.; Muniz, E.C. Capacity of Adsorption of Pb2+ and Ni2+ from Aqueous Solutions by Chitosan Produced from Silkworm Chrysalides in Different Degrees of Deacetylation. J. Hazard. Mater. 2007, 147, 139-147. https://doi.org/10.1016/j.jhazmat.2006.12.059
dc.relation.referencesen[38] Tirtom, V.N.; Dinçer, A.; Becerik, S.; Aydemir, T.; Çelik, A. Comparative Adsorption of Ni(II) and Cd(II) Ions on Epichloro-hydrin Crosslinked Chitosan–Clay Composite Beads in Aqueous Solution. Chem. Eng. J. 2012, 197, 379-386.
dc.relation.referencesen[39] Tran, H.V.; Tran, L.D.; Nguyen, T.N. Preparation of Chito-san/Magnetite Composite Beads and their Application for Removal of Pb(II) and Ni(II) from Aqueous Solution. Mater. Sci. Eng. P. 2010, 30, 304-310. https://doi.org/10.1016/j.msec.2009.11.008
dc.relation.referencesen[40] Popuri, S.R.; Vijaya, Y.; Boddu, V.M.; Abburi, K. Adsorptive Removal of Copper and Nickel Ions from Water Using Chitosan Coated PVC Beads. Bioresour. Technol. 2009, 100, 194-199. https://doi.org/10.1016/j.biortech.2008.05.041
dc.relation.referencesen[41] Wang, H.; Tang, H.; Liu, Z.; Zhang, X.; Hao, Z.; Liu, Z. Removal of Cobalt(II) Ion from Aqueous Solution by Chitosan–Montmorillonite. J. Environ. Sci. (China) 2014, 26, 1879-1884. https://doi.org/10.1016/j.jes.2014.06.021
dc.relation.referencesen[42] Krishnan, K.A.; Anirudhan, T.S. Kinetic and Equilibrium Modelling of Cobalt(II) Adsorption onto Bagasse Pith Based Sul-phurised Activated Carbon. Chem. Eng. J. 2008, 137, 257-264. https://doi.org/10.1016/j.cej.2007.04.029
dc.relation.referencesen[43] Manohar, D.M.; Noeline, B.F.; Anirudhan, T.S. Adsorption Performance of Al-Pillared Bentonite Clay for the Removal of Cobalt(II) from Aqueous Phase. Appl. Clay Sci. 2006, 31, 194-206. https://doi.org/10.1016/j.clay.2005.08.008
dc.relation.urihttps://doi.org/10.1016/j.molliq.2018.12.001
dc.relation.urihttps://doi.org/10.1016/j.ecoenv.2015.01.012
dc.relation.urihttps://doi.org/10.30955/gnj.002804
dc.relation.urihttps://dspace.alquds.edu/handle/20.500.12213/5074
dc.relation.urihttps://doi.org/10.1016/j.tox.2017.05.015
dc.relation.urihttps://doi.org/10.1016/j.wse.2020.05.002
dc.relation.urihttp://dx.doi.org/10.33945/SAMI/AJCA.2020.5.11
dc.relation.urihttp://doi.org/10.33945/sami/ecc.2020.7.6
dc.relation.urihttp://doi.org/10.34049/bcc.51.4.5131
dc.relation.urihttps://doi.org/10.1039/D0MA00087F
dc.relation.urihttps://doi.org/10.2166/wst.2017.437
dc.relation.urihttps://doi.org/10.1016/j.jtice.2019.05.005
dc.relation.urihttps://doi.org/10.1016/j.cej.2009.10.029
dc.relation.urihttps://doi.org/10.1007/s11270-019-4234-6
dc.relation.urihttps://doi.org/10.1016/j.molliq.2018.02.034
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2019.125043
dc.relation.urihttps://doi.org/10.1016/j.cclet.2020.05.011
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2016.11.037
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2013.11.158
dc.relation.urihttps://doi.org/10.1007/s13369-018-3589-0
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2020.124889
dc.relation.urihttps://doi.org/10.1080/10601320802515225
dc.relation.urihttps://doi.org/10.17509/ijost.v5i3.24986
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2008.11.001
dc.relation.urihttps://doi.org/10.1002/pol.1981.180190706
dc.relation.urihttps://doi.org/10.3390/polym10010025
dc.relation.urihttps://cyberleninka.org/viewer_images/948363/f/1.png
dc.relation.urihttp://dx.doi.org/10.1016/j.matchemphys.2013.01.019
dc.relation.urihttps://doi.org/10.1021/ja02268a002
dc.relation.urihttps://doi.org/10.1016/j.arabjc.2010.12.022
dc.relation.urihttps://doi.org/10.1002/aic.690200204
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2006.12.059
dc.relation.urihttps://doi.org/10.1016/j.msec.2009.11.008
dc.relation.urihttps://doi.org/10.1016/j.biortech.2008.05.041
dc.relation.urihttps://doi.org/10.1016/j.jes.2014.06.021
dc.relation.urihttps://doi.org/10.1016/j.cej.2007.04.029
dc.relation.urihttps://doi.org/10.1016/j.clay.2005.08.008
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Alakhras F., Alghamdi H., Rehman R., 2023
dc.subjectтоксичні іони
dc.subjectхітозан
dc.subjectочищення стічних вод
dc.subjectадсорбція
dc.subjectадсорбент-основа Шиффа
dc.subjecttoxic ions
dc.subjectchitosan
dc.subjectwastewater treatment
dc.subjectadsorption
dc.subjectSchiff-based adsorbent
dc.titleUse of Chemically Modified Chitosan for the Adsorptive Removal of Toxic Metal Ions in Aqueous Solutions
dc.title.alternativeВикористання хімічно модифікованого хітозану для адсорбційного вилучення іонів токсичних металів у водних розчинах
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n2_Alakhras_F-Use_of_Chemically_Modified_407-419.pdf
Size:
901.05 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n2_Alakhras_F-Use_of_Chemically_Modified_407-419__COVER.png
Size:
554.4 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: