Use of Chemically Modified Chitosan for the Adsorptive Removal of Toxic Metal Ions in Aqueous Solutions
dc.citation.epage | 419 | |
dc.citation.issue | 2 | |
dc.citation.spage | 407 | |
dc.contributor.affiliation | Imam Abdulrahman Bin Faisal University | |
dc.contributor.affiliation | University of Punjab | |
dc.contributor.author | Alakhras, Fadi | |
dc.contributor.author | Alghamdi, Huda | |
dc.contributor.author | Rehman, Rabia | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:30:37Z | |
dc.date.available | 2024-02-12T08:30:37Z | |
dc.date.created | 2023-03-16 | |
dc.date.issued | 2023-03-16 | |
dc.description.abstract | Реакцією конденсації було успішно здійснено хімічну модифікацію хітозану з використанням трьох похідних, а саме: 3-гідроксибензальдегіду, 2,3-дигідроксибензальдегіду та 3,5-ди-трет-бутил-2-гідроксибензальдегіду. Методи інфрачервоної спектроскопії з перетворенням Фур’є (FTIR), сканувальної електронної мікроскопії (СЕМ), площі поверхні Брунауера–Еммета–Теллера (БЕТ), термогравіметричного аналізу (ТГА) та рентгенівської дифракції (XRD) були виконані для характеризації адсорбентів-основ Шиффа – похідних хітозану. Досліджено ефективність синтезованих адсорбентів щодо вилучення іонів кобальту і нікелю з водного розчину та проаналізовано експериментальні дані за допомогою ізотермічної та кінетичної моделей. Площа поверхні за БЕТ хімічно модифікованого хітозану була значно збільшена до 125,83 м2 × г-1 з мезопористими характеристиками. Максимальне поглинання зафіксовано за pH 5-6, а максимальна здатність вилучення становила 243,90 мг × г-1 для іонів кобальту та 166,67 мг × г-1 для іонів нікелю. Кінетичні дані краще описуються за допомогою псевдодругого порядку. | |
dc.description.abstract | Chemical modification of chitosan was successfully carried out using three derivatives namely: 3-hydroxybenzaldehyde, 2,3-dihydroxybenzaldehyde, and 3,5-di-tert-butyl-2-hydroxybenzaldehyde by a condensation reaction. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) surface area, thermal gravimetric analysis (TGA), and X-ray diffraction (XRD) methods were performed for characterization of the chitosanderived Schiff base adsorbent materials. The efficiency of the prepared adsorbents in removing cobalt and nickel ions from aqueous solution was explored, and experimental data were analyzed using isothermal and kinetic models. The BET surface area of chemically modified chitosan was greatly enhanced 125.83 m2 g-1 with mesoporous characteristics. The maximum uptake was recorded at pH 5-6, while the maximum removal capacity was 243.90 mg g-1 for cobalt ions whereas 166.67 mg g-1 was achieved for nickel ions. The kinetic data were better fitted using pseudo-second-order. | |
dc.format.extent | 407-419 | |
dc.format.pages | 13 | |
dc.identifier.citation | Alakhras F. Use of Chemically Modified Chitosan for the Adsorptive Removal of Toxic Metal Ions in Aqueous Solutions / Fadi Alakhras, Huda Alghamdi, Rabia Rehman // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 407–419. | |
dc.identifier.citationen | Alakhras F. Use of Chemically Modified Chitosan for the Adsorptive Removal of Toxic Metal Ions in Aqueous Solutions / Fadi Alakhras, Huda Alghamdi, Rabia Rehman // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 407–419. | |
dc.identifier.doi | doi.org/10.23939/chcht17.02.407 | |
dc.identifier.issn | 1996-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61245 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (17), 2023 | |
dc.relation.references | [1] Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The Utilization of Leaf-Based Adsorbents for Dyes Removal: A Review. J. Mol. Liq. 2019, 276, 728-747. https://doi.org/10.1016/j.molliq.2018.12.001 | |
dc.relation.references | [2] Boamah, P.O.; Huang, Y.; Hua, M.; Zhang, Q.; Wu, J.; Onumah, J.; Sam-Amoah, L.K.; Boamah, P.O. Sorption of Heavy Metal Ions onto Carboxylate Chitosan Derivatives – A Mini-Review. Ecotoxicol. Environ. Saf. 2015, 116, 113-120. https://doi.org/10.1016/j.ecoenv.2015.01.012 | |
dc.relation.references | [3] Al-Shahrani, H.; Alakhras, F.; Al-Abbad, E.; Al-Mazaideh, G.M.; Hosseini-Bandegharaei, A.; Ouerfelli, N. Sorption of Cobalt (II) Ions from Aqueous Solutions Using Chemically Modified Chitosan. Glob. Nest J. 2018, 20, 620-627. https://doi.org/10.30955/gnj.002804 | |
dc.relation.references | [4] Alakhras, F.; Al-Shahrani, H.; Al-Abbad, E.; Al-Rimawi, F.; Ouerfelli, N. Removal of Pb(II) Metal Ions from Aqueous Solutions Using Chitosan-Vanillin Derivatives of Chelating Polymers. Pol. J. Environ. Stud. 2019, 28, 1523-1534. https://dspace.alquds.edu/handle/20.500.12213/5074 | |
dc.relation.references | [5] Alakhras, F.; Alabbad, E.; Alzamil, N.; Abouzeid, F.M.; Ouer-felli, N. Contribution to Modelling the Effect of Temperature on Removal of Nickel Ions by Adsorption on Nano-Bentonite. Asian J. Chem. 2018, 30, 1147-1156. | |
dc.relation.references | [6] Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt Toxicity in Humans – A Review of the Potential Sources and Systemic Health Effects. Toxicology 2017, 387, 43-56. https://doi.org/10.1016/j.tox.2017.05.015 | |
dc.relation.references | [7] Alakhras, F.; Bel Hadj Hmida, E.S.; Anastopoulos, I.; Trabelsi, Z.; Mabrouk, W.; Ouerfelli, N.; Fauvarque, J.F. Diffusion Analysis and Modeling of Kinetic Behavior for Treatment of Brine Water Using Electrodialysis Process. Water Sci. Eng. 2021, 14, 36-45. https://doi.org/10.1016/j.wse.2020.05.002 | |
dc.relation.references | [8] Junejo, R.; Memon, S.; Durmaz, F.; Ahmed, A.A.; Memon, F.N.; Jalbani, N.S.; Memon, S.S.; Bhatti, A.A. Synthesis of Piperdinomethylcalix[4]arene Attached Silica Resin for the Removal of Metal Ions from Water: Equilibrium, Thermodynamic and Kinetic Modelling Studies. Advanced Journal of Chemistry-Section A 2020, 3, 680-691. http://dx.doi.org/10.33945/SAMI/AJCA.2020.5.11 | |
dc.relation.references | [9] Junejo, R.; Memon, S.; Palabiyik, I.M. Efficient Adsorption of Heavy Metal Ions onto Diethylamine Functionalized Calix[4]arene Based Silica Resin. Eurasian Chemical Communications 2020, 2, 785-797. http://doi.org/10.33945/sami/ecc.2020.7.6 | |
dc.relation.references | [10] Kanwal, F.; Rehman, R.; Warraich, H. Synthesis of Novel Polyaniline Composites with Eriobotrya japonica Leaves for Removal of Methyl Red Dye from Wastewater. Bulg. Chem. Commun. 2019, 51, 586-591. http://doi.org/10.34049/bcc.51.4.5131 | |
dc.relation.references | [11] Sabzehmeidani, M.M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V.A.L. Carbon-Based Materials: A Review of Adsorbents for Inorganic and Organic Compounds. Materials Advances 2021, 2, 598-627. https://doi.org/10.1039/D0MA00087F | |
dc.relation.references | [12] Adegoke, K.A.; Oyewole, R.O.; Lasisi, B.M.; Bello, O.S. Abatement of Organic Pollutants Using Fly Ash-Based Adsorbents. Water Sci. Technol. 2017, 76, 2580-2592. https://doi.org/10.2166/wst.2017.437 | |
dc.relation.references | [13] Zhang, Y.; Xia, K.; Liu, X.; Chen, Z.; Du, H.; Zhang, X. Synthesis of Cationic-Modified Silica Gel and its Adsorption Properties for Anionic Dyes. J. Taiwan Inst. Chem. Eng. 2019, 102, 1-8. https://doi.org/10.1016/j.jtice.2019.05.005 | |
dc.relation.references | [14] Wang, S.; Peng, Y. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010, 156, 11-24. https://doi.org/10.1016/j.cej.2009.10.029 | |
dc.relation.references | [15] Akhouairi, S.; Ouachtak, H.; Addi, A.A.; Jada, A.; Douch, J. Natural Sawdust as an Adsorbent for the Eriochrome Black T Dye Removal from Aqueous Solution. Water Air Soil Pollut. 2019, 230, 181. https://doi.org/10.1007/s11270-019-4234-6 | |
dc.relation.references | [16] Kausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Bhatti, H.N.; Nouren, S. Dyes Adsorption Using Clay and Modified Clay: A Review. J. Mol. Liq. 2018, 256, 395-407. https://doi.org/10.1016/j.molliq.2018.02.034 | |
dc.relation.references | [17] Liu, Q.; Zhou, Y.; Lu, J.; Zhou, Y. Novel Cyclodextrin-Based Adsorbents for Removing Pollutants from Wastewater: A Critical Review. Chemosphere 2020, 241, 125043. https://doi.org/10.1016/j.chemosphere.2019.125043 | |
dc.relation.references | [18] Hossain, M.F.; Akther, N.; Zhou, Y. Recent Advancements in Graphene Adsorbents for Wastewater Treatment: Current Status and Challenges. Chin. Chem. Lett. 2020, 31, 2525–2538. https://doi.org/10.1016/j.cclet.2020.05.011 | |
dc.relation.references | [19] Habiba, U.; Siddique, T.A.; Joo, T.C.; Salleh, A.; Ang, B.C.; Afifi, A.M. Synthesis of Chitosan/Polyvinyl Alcohol/Zeolite Composite for Removal of Methyl Orange, Congo Red, and Chro-mium(VI) by Flocculation/Adsorption. Carbohydr. Polym. 2017, 157, 1568-1576. https://doi.org/10.1016/j.carbpol.2016.11.037 | |
dc.relation.references | [20] Haldorai, Y.; Shim, J.- J. An Efficient Removal of Methyl Orange dye from Aqueous Solution by Adsorption onto Chito-san/MgO Composite: A Novel Reusable Adsorbent. Appl. Surf. Sci. 2014, 292, 447-453. https://doi.org/10.1016/j.apsusc.2013.11.158 | |
dc.relation.references | [21] Alakhras, F. Biosorption of Cd(II) Ions from Aqueous Solution Using Chitosan-iso-Vanillin as a Low-Cost Sorbent: Equilibrium, Kinetics, and Thermodynamic Studies. Arab. J. Sci. Eng. 2019, 44, 279-288. https://doi.org/10.1007/s13369-018-3589-0 | |
dc.relation.references | [22] Al-Abbad, E.; Alakhras, F.; Anastopoulos, I.; Das, D.; Al-Arfaj, A.; Ouerfelli, N.; Hosseini-Bandegharaei, A. Chitosan-Based Materials for the Removal of Nickel Ions from Aqueous Solutions. Russ. J. Phys. Chem. A 2020, 94, 748. | |
dc.relation.references | [23] Saheed, I.O.; Oh, W.-D.; Suah, F.B.M. Chitosan Modifications for Adsorption of Pollutants – A Review. J. Hazard. Mater. 2021, 408, 124889. https://doi.org/10.1016/j.jhazmat.2020.124889 | |
dc.relation.references | [24] Zalloum, H.M.; Al-Qodah, Z.; Mubarak, M.S. Copper Adsorption on Chitosan-Derived Schiff Bases. J. Macromol. Sci. A 2008, 46, 46-57. https://doi.org/10.1080/10601320802515225 | |
dc.relation.references | [25] Al-Abbad, E.; Alakhras, F. Removal of Dye Acid Red 1 from Aqueous Solutions Using Chitosan-iso-Vanillin Sorbent Material. Indones. J. Sci. Technol. 2020, 5, 352-365. https://doi.org/10.17509/ijost.v5i3.24986 | |
dc.relation.references | [26] Li, Q.; Yang, D.; Ma, G.; Xu, Q.; Chen, X.; Lu, F.; Nie, J. Synthesis and Characterization of Chitosan-Based Hydrogels. Int. J. Biol. Macromol. 2009, 44, 121-127. https://doi.org/10.1016/j.ijbiomac.2008.11.001 | |
dc.relation.references | [27] Samuels, R.J. Solid-State Characterization of the Structure of Chitosan Films. J. Polym. Sci. B Polym. Phys. 1981, 19, 1081–1105. https://doi.org/10.1002/pol.1981.180190706 | |
dc.relation.references | [28] Yazdani, M.R.; Virolainen, E.; Conley, K.; Vahala, R. Chito-san-Zinc(II) Complexes as a Bio-Sorbent for the Adsorptive Abate-ment of Phosphate: Mechanism of Complexation and Assessment of Adsorption Performance. Polymers 2018, 10, 25. https://doi.org/10.3390/polym10010025 | |
dc.relation.references | [29] Madala, S.; Nadavala, S.K.; Vudagandla, S.; Boddu, V.M.; Abburi, K. Equilibrium, Kinetics and Thermodynamics of Cadmium (II) Biosorption on to Composite Chitosan Biosorbent. Arab. J. Chem. 2013, 10, S1883. https://cyberleninka.org/viewer_images/948363/f/1.png | |
dc.relation.references | [30] Mengatto, L.; Ferreyra, M.G.; Rubiolo, A.; Rintoul, I.; Luna, J. (2013). Hydrophilic and Hydrophobic Interactions in Cross-Linked Chitosan Membranes. Mater. Chem. Phys. 2013, 139, 181-186. http://dx.doi.org/10.1016/j.matchemphys.2013.01.019 | |
dc.relation.references | [31] Saravanane, R.; Sundararajan, T.; Reddy, S.S. Efficiency of Chemically Modified Low Cost Adsorbents for the Removal of Heavy Metals from Wastewater: A Comparative Study. Indian J. Environ. Health 2002, 44, 78–87. | |
dc.relation.references | [32] Lima, E.C.; Adebayo, M.A.; Machado, F.M. Kinetic and Equilibrium Models of Adsorption in Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications; Springer: Bergmann, 2015. | |
dc.relation.references | [33] Langmuir, I. The Constitutional and Fundamental Properties of Solids and Liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. https://doi.org/10.1021/ja02268a002 | |
dc.relation.references | [34] Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385-470. | |
dc.relation.references | [35] Mobasherpour, I.; Salahi, E.; Pazouki, M. Comparative of the Removal of Pb2+, Cd2+ and Ni2+ by Nano Crystallite Hydroxyapatite from Aqueous Solutions: Adsorption Isotherm Study. Arab. J. Chem. 2012, 5, 439-446. https://doi.org/10.1016/j.arabjc.2010.12.022 | |
dc.relation.references | [36] Webber, T.W.; Chakravorti, R.K. Pore and Solid Diffusion Models for Fixed-Bed Adsorbers. AIChE J. 1974, 20, 228-238. https://doi.org/10.1002/aic.690200204 | |
dc.relation.references | [37] Paulino, A.T.; Guilherme, M.R.; Reis, A.V.; Tambourgi, E.B.; Nozaki, J.; Muniz, E.C. Capacity of Adsorption of Pb2+ and Ni2+ from Aqueous Solutions by Chitosan Produced from Silkworm Chrysalides in Different Degrees of Deacetylation. J. Hazard. Mater. 2007, 147, 139-147. https://doi.org/10.1016/j.jhazmat.2006.12.059 | |
dc.relation.references | [38] Tirtom, V.N.; Dinçer, A.; Becerik, S.; Aydemir, T.; Çelik, A. Comparative Adsorption of Ni(II) and Cd(II) Ions on Epichloro-hydrin Crosslinked Chitosan–Clay Composite Beads in Aqueous Solution. Chem. Eng. J. 2012, 197, 379-386. | |
dc.relation.references | [39] Tran, H.V.; Tran, L.D.; Nguyen, T.N. Preparation of Chito-san/Magnetite Composite Beads and their Application for Removal of Pb(II) and Ni(II) from Aqueous Solution. Mater. Sci. Eng. C 2010, 30, 304-310. https://doi.org/10.1016/j.msec.2009.11.008 | |
dc.relation.references | [40] Popuri, S.R.; Vijaya, Y.; Boddu, V.M.; Abburi, K. Adsorptive Removal of Copper and Nickel Ions from Water Using Chitosan Coated PVC Beads. Bioresour. Technol. 2009, 100, 194-199. https://doi.org/10.1016/j.biortech.2008.05.041 | |
dc.relation.references | [41] Wang, H.; Tang, H.; Liu, Z.; Zhang, X.; Hao, Z.; Liu, Z. Removal of Cobalt(II) Ion from Aqueous Solution by Chitosan–Montmorillonite. J. Environ. Sci. (China) 2014, 26, 1879-1884. https://doi.org/10.1016/j.jes.2014.06.021 | |
dc.relation.references | [42] Krishnan, K.A.; Anirudhan, T.S. Kinetic and Equilibrium Modelling of Cobalt(II) Adsorption onto Bagasse Pith Based Sul-phurised Activated Carbon. Chem. Eng. J. 2008, 137, 257-264. https://doi.org/10.1016/j.cej.2007.04.029 | |
dc.relation.references | [43] Manohar, D.M.; Noeline, B.F.; Anirudhan, T.S. Adsorption Performance of Al-Pillared Bentonite Clay for the Removal of Cobalt(II) from Aqueous Phase. Appl. Clay Sci. 2006, 31, 194-206. https://doi.org/10.1016/j.clay.2005.08.008 | |
dc.relation.referencesen | [1] Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The Utilization of Leaf-Based Adsorbents for Dyes Removal: A Review. J. Mol. Liq. 2019, 276, 728-747. https://doi.org/10.1016/j.molliq.2018.12.001 | |
dc.relation.referencesen | [2] Boamah, P.O.; Huang, Y.; Hua, M.; Zhang, Q.; Wu, J.; Onumah, J.; Sam-Amoah, L.K.; Boamah, P.O. Sorption of Heavy Metal Ions onto Carboxylate Chitosan Derivatives – A Mini-Review. Ecotoxicol. Environ. Saf. 2015, 116, 113-120. https://doi.org/10.1016/j.ecoenv.2015.01.012 | |
dc.relation.referencesen | [3] Al-Shahrani, H.; Alakhras, F.; Al-Abbad, E.; Al-Mazaideh, G.M.; Hosseini-Bandegharaei, A.; Ouerfelli, N. Sorption of Cobalt (II) Ions from Aqueous Solutions Using Chemically Modified Chitosan. Glob. Nest J. 2018, 20, 620-627. https://doi.org/10.30955/gnj.002804 | |
dc.relation.referencesen | [4] Alakhras, F.; Al-Shahrani, H.; Al-Abbad, E.; Al-Rimawi, F.; Ouerfelli, N. Removal of Pb(II) Metal Ions from Aqueous Solutions Using Chitosan-Vanillin Derivatives of Chelating Polymers. Pol. J. Environ. Stud. 2019, 28, 1523-1534. https://dspace.alquds.edu/handle/20.500.12213/5074 | |
dc.relation.referencesen | [5] Alakhras, F.; Alabbad, E.; Alzamil, N.; Abouzeid, F.M.; Ouer-felli, N. Contribution to Modelling the Effect of Temperature on Removal of Nickel Ions by Adsorption on Nano-Bentonite. Asian J. Chem. 2018, 30, 1147-1156. | |
dc.relation.referencesen | [6] Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt Toxicity in Humans – A Review of the Potential Sources and Systemic Health Effects. Toxicology 2017, 387, 43-56. https://doi.org/10.1016/j.tox.2017.05.015 | |
dc.relation.referencesen | [7] Alakhras, F.; Bel Hadj Hmida, E.S.; Anastopoulos, I.; Trabelsi, Z.; Mabrouk, W.; Ouerfelli, N.; Fauvarque, J.F. Diffusion Analysis and Modeling of Kinetic Behavior for Treatment of Brine Water Using Electrodialysis Process. Water Sci. Eng. 2021, 14, 36-45. https://doi.org/10.1016/j.wse.2020.05.002 | |
dc.relation.referencesen | [8] Junejo, R.; Memon, S.; Durmaz, F.; Ahmed, A.A.; Memon, F.N.; Jalbani, N.S.; Memon, S.S.; Bhatti, A.A. Synthesis of Piperdinomethylcalix[4]arene Attached Silica Resin for the Removal of Metal Ions from Water: Equilibrium, Thermodynamic and Kinetic Modelling Studies. Advanced Journal of Chemistry-Section A 2020, 3, 680-691. http://dx.doi.org/10.33945/SAMI/AJCA.2020.5.11 | |
dc.relation.referencesen | [9] Junejo, R.; Memon, S.; Palabiyik, I.M. Efficient Adsorption of Heavy Metal Ions onto Diethylamine Functionalized Calix[4]arene Based Silica Resin. Eurasian Chemical Communications 2020, 2, 785-797. http://doi.org/10.33945/sami/ecc.2020.7.6 | |
dc.relation.referencesen | [10] Kanwal, F.; Rehman, R.; Warraich, H. Synthesis of Novel Polyaniline Composites with Eriobotrya japonica Leaves for Removal of Methyl Red Dye from Wastewater. Bulg. Chem. Commun. 2019, 51, 586-591. http://doi.org/10.34049/bcc.51.4.5131 | |
dc.relation.referencesen | [11] Sabzehmeidani, M.M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V.A.L. Carbon-Based Materials: A Review of Adsorbents for Inorganic and Organic Compounds. Materials Advances 2021, 2, 598-627. https://doi.org/10.1039/D0MA00087F | |
dc.relation.referencesen | [12] Adegoke, K.A.; Oyewole, R.O.; Lasisi, B.M.; Bello, O.S. Abatement of Organic Pollutants Using Fly Ash-Based Adsorbents. Water Sci. Technol. 2017, 76, 2580-2592. https://doi.org/10.2166/wst.2017.437 | |
dc.relation.referencesen | [13] Zhang, Y.; Xia, K.; Liu, X.; Chen, Z.; Du, H.; Zhang, X. Synthesis of Cationic-Modified Silica Gel and its Adsorption Properties for Anionic Dyes. J. Taiwan Inst. Chem. Eng. 2019, 102, 1-8. https://doi.org/10.1016/j.jtice.2019.05.005 | |
dc.relation.referencesen | [14] Wang, S.; Peng, Y. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010, 156, 11-24. https://doi.org/10.1016/j.cej.2009.10.029 | |
dc.relation.referencesen | [15] Akhouairi, S.; Ouachtak, H.; Addi, A.A.; Jada, A.; Douch, J. Natural Sawdust as an Adsorbent for the Eriochrome Black T Dye Removal from Aqueous Solution. Water Air Soil Pollut. 2019, 230, 181. https://doi.org/10.1007/s11270-019-4234-6 | |
dc.relation.referencesen | [16] Kausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Bhatti, H.N.; Nouren, S. Dyes Adsorption Using Clay and Modified Clay: A Review. J. Mol. Liq. 2018, 256, 395-407. https://doi.org/10.1016/j.molliq.2018.02.034 | |
dc.relation.referencesen | [17] Liu, Q.; Zhou, Y.; Lu, J.; Zhou, Y. Novel Cyclodextrin-Based Adsorbents for Removing Pollutants from Wastewater: A Critical Review. Chemosphere 2020, 241, 125043. https://doi.org/10.1016/j.chemosphere.2019.125043 | |
dc.relation.referencesen | [18] Hossain, M.F.; Akther, N.; Zhou, Y. Recent Advancements in Graphene Adsorbents for Wastewater Treatment: Current Status and Challenges. Chin. Chem. Lett. 2020, 31, 2525–2538. https://doi.org/10.1016/j.cclet.2020.05.011 | |
dc.relation.referencesen | [19] Habiba, U.; Siddique, T.A.; Joo, T.C.; Salleh, A.; Ang, B.C.; Afifi, A.M. Synthesis of Chitosan/Polyvinyl Alcohol/Zeolite Composite for Removal of Methyl Orange, Congo Red, and Chro-mium(VI) by Flocculation/Adsorption. Carbohydr. Polym. 2017, 157, 1568-1576. https://doi.org/10.1016/j.carbpol.2016.11.037 | |
dc.relation.referencesen | [20] Haldorai, Y.; Shim, J, J. An Efficient Removal of Methyl Orange dye from Aqueous Solution by Adsorption onto Chito-san/MgO Composite: A Novel Reusable Adsorbent. Appl. Surf. Sci. 2014, 292, 447-453. https://doi.org/10.1016/j.apsusc.2013.11.158 | |
dc.relation.referencesen | [21] Alakhras, F. Biosorption of Cd(II) Ions from Aqueous Solution Using Chitosan-iso-Vanillin as a Low-Cost Sorbent: Equilibrium, Kinetics, and Thermodynamic Studies. Arab. J. Sci. Eng. 2019, 44, 279-288. https://doi.org/10.1007/s13369-018-3589-0 | |
dc.relation.referencesen | [22] Al-Abbad, E.; Alakhras, F.; Anastopoulos, I.; Das, D.; Al-Arfaj, A.; Ouerfelli, N.; Hosseini-Bandegharaei, A. Chitosan-Based Materials for the Removal of Nickel Ions from Aqueous Solutions. Russ. J. Phys. Chem. A 2020, 94, 748. | |
dc.relation.referencesen | [23] Saheed, I.O.; Oh, W.-D.; Suah, F.B.M. Chitosan Modifications for Adsorption of Pollutants – A Review. J. Hazard. Mater. 2021, 408, 124889. https://doi.org/10.1016/j.jhazmat.2020.124889 | |
dc.relation.referencesen | [24] Zalloum, H.M.; Al-Qodah, Z.; Mubarak, M.S. Copper Adsorption on Chitosan-Derived Schiff Bases. J. Macromol. Sci. A 2008, 46, 46-57. https://doi.org/10.1080/10601320802515225 | |
dc.relation.referencesen | [25] Al-Abbad, E.; Alakhras, F. Removal of Dye Acid Red 1 from Aqueous Solutions Using Chitosan-iso-Vanillin Sorbent Material. Indones. J. Sci. Technol. 2020, 5, 352-365. https://doi.org/10.17509/ijost.v5i3.24986 | |
dc.relation.referencesen | [26] Li, Q.; Yang, D.; Ma, G.; Xu, Q.; Chen, X.; Lu, F.; Nie, J. Synthesis and Characterization of Chitosan-Based Hydrogels. Int. J. Biol. Macromol. 2009, 44, 121-127. https://doi.org/10.1016/j.ijbiomac.2008.11.001 | |
dc.relation.referencesen | [27] Samuels, R.J. Solid-State Characterization of the Structure of Chitosan Films. J. Polym. Sci. B Polym. Phys. 1981, 19, 1081–1105. https://doi.org/10.1002/pol.1981.180190706 | |
dc.relation.referencesen | [28] Yazdani, M.R.; Virolainen, E.; Conley, K.; Vahala, R. Chito-san-Zinc(II) Complexes as a Bio-Sorbent for the Adsorptive Abate-ment of Phosphate: Mechanism of Complexation and Assessment of Adsorption Performance. Polymers 2018, 10, 25. https://doi.org/10.3390/polym10010025 | |
dc.relation.referencesen | [29] Madala, S.; Nadavala, S.K.; Vudagandla, S.; Boddu, V.M.; Abburi, K. Equilibrium, Kinetics and Thermodynamics of Cadmium (II) Biosorption on to Composite Chitosan Biosorbent. Arab. J. Chem. 2013, 10, S1883. https://cyberleninka.org/viewer_images/948363/f/1.png | |
dc.relation.referencesen | [30] Mengatto, L.; Ferreyra, M.G.; Rubiolo, A.; Rintoul, I.; Luna, J. (2013). Hydrophilic and Hydrophobic Interactions in Cross-Linked Chitosan Membranes. Mater. Chem. Phys. 2013, 139, 181-186. http://dx.doi.org/10.1016/j.matchemphys.2013.01.019 | |
dc.relation.referencesen | [31] Saravanane, R.; Sundararajan, T.; Reddy, S.S. Efficiency of Chemically Modified Low Cost Adsorbents for the Removal of Heavy Metals from Wastewater: A Comparative Study. Indian J. Environ. Health 2002, 44, 78–87. | |
dc.relation.referencesen | [32] Lima, E.C.; Adebayo, M.A.; Machado, F.M. Kinetic and Equilibrium Models of Adsorption in Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications; Springer: Bergmann, 2015. | |
dc.relation.referencesen | [33] Langmuir, I. The Constitutional and Fundamental Properties of Solids and Liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. https://doi.org/10.1021/ja02268a002 | |
dc.relation.referencesen | [34] Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385-470. | |
dc.relation.referencesen | [35] Mobasherpour, I.; Salahi, E.; Pazouki, M. Comparative of the Removal of Pb2+, Cd2+ and Ni2+ by Nano Crystallite Hydroxyapatite from Aqueous Solutions: Adsorption Isotherm Study. Arab. J. Chem. 2012, 5, 439-446. https://doi.org/10.1016/j.arabjc.2010.12.022 | |
dc.relation.referencesen | [36] Webber, T.W.; Chakravorti, R.K. Pore and Solid Diffusion Models for Fixed-Bed Adsorbers. AIChE J. 1974, 20, 228-238. https://doi.org/10.1002/aic.690200204 | |
dc.relation.referencesen | [37] Paulino, A.T.; Guilherme, M.R.; Reis, A.V.; Tambourgi, E.B.; Nozaki, J.; Muniz, E.C. Capacity of Adsorption of Pb2+ and Ni2+ from Aqueous Solutions by Chitosan Produced from Silkworm Chrysalides in Different Degrees of Deacetylation. J. Hazard. Mater. 2007, 147, 139-147. https://doi.org/10.1016/j.jhazmat.2006.12.059 | |
dc.relation.referencesen | [38] Tirtom, V.N.; Dinçer, A.; Becerik, S.; Aydemir, T.; Çelik, A. Comparative Adsorption of Ni(II) and Cd(II) Ions on Epichloro-hydrin Crosslinked Chitosan–Clay Composite Beads in Aqueous Solution. Chem. Eng. J. 2012, 197, 379-386. | |
dc.relation.referencesen | [39] Tran, H.V.; Tran, L.D.; Nguyen, T.N. Preparation of Chito-san/Magnetite Composite Beads and their Application for Removal of Pb(II) and Ni(II) from Aqueous Solution. Mater. Sci. Eng. P. 2010, 30, 304-310. https://doi.org/10.1016/j.msec.2009.11.008 | |
dc.relation.referencesen | [40] Popuri, S.R.; Vijaya, Y.; Boddu, V.M.; Abburi, K. Adsorptive Removal of Copper and Nickel Ions from Water Using Chitosan Coated PVC Beads. Bioresour. Technol. 2009, 100, 194-199. https://doi.org/10.1016/j.biortech.2008.05.041 | |
dc.relation.referencesen | [41] Wang, H.; Tang, H.; Liu, Z.; Zhang, X.; Hao, Z.; Liu, Z. Removal of Cobalt(II) Ion from Aqueous Solution by Chitosan–Montmorillonite. J. Environ. Sci. (China) 2014, 26, 1879-1884. https://doi.org/10.1016/j.jes.2014.06.021 | |
dc.relation.referencesen | [42] Krishnan, K.A.; Anirudhan, T.S. Kinetic and Equilibrium Modelling of Cobalt(II) Adsorption onto Bagasse Pith Based Sul-phurised Activated Carbon. Chem. Eng. J. 2008, 137, 257-264. https://doi.org/10.1016/j.cej.2007.04.029 | |
dc.relation.referencesen | [43] Manohar, D.M.; Noeline, B.F.; Anirudhan, T.S. Adsorption Performance of Al-Pillared Bentonite Clay for the Removal of Cobalt(II) from Aqueous Phase. Appl. Clay Sci. 2006, 31, 194-206. https://doi.org/10.1016/j.clay.2005.08.008 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2018.12.001 | |
dc.relation.uri | https://doi.org/10.1016/j.ecoenv.2015.01.012 | |
dc.relation.uri | https://doi.org/10.30955/gnj.002804 | |
dc.relation.uri | https://dspace.alquds.edu/handle/20.500.12213/5074 | |
dc.relation.uri | https://doi.org/10.1016/j.tox.2017.05.015 | |
dc.relation.uri | https://doi.org/10.1016/j.wse.2020.05.002 | |
dc.relation.uri | http://dx.doi.org/10.33945/SAMI/AJCA.2020.5.11 | |
dc.relation.uri | http://doi.org/10.33945/sami/ecc.2020.7.6 | |
dc.relation.uri | http://doi.org/10.34049/bcc.51.4.5131 | |
dc.relation.uri | https://doi.org/10.1039/D0MA00087F | |
dc.relation.uri | https://doi.org/10.2166/wst.2017.437 | |
dc.relation.uri | https://doi.org/10.1016/j.jtice.2019.05.005 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2009.10.029 | |
dc.relation.uri | https://doi.org/10.1007/s11270-019-4234-6 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2018.02.034 | |
dc.relation.uri | https://doi.org/10.1016/j.chemosphere.2019.125043 | |
dc.relation.uri | https://doi.org/10.1016/j.cclet.2020.05.011 | |
dc.relation.uri | https://doi.org/10.1016/j.carbpol.2016.11.037 | |
dc.relation.uri | https://doi.org/10.1016/j.apsusc.2013.11.158 | |
dc.relation.uri | https://doi.org/10.1007/s13369-018-3589-0 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2020.124889 | |
dc.relation.uri | https://doi.org/10.1080/10601320802515225 | |
dc.relation.uri | https://doi.org/10.17509/ijost.v5i3.24986 | |
dc.relation.uri | https://doi.org/10.1016/j.ijbiomac.2008.11.001 | |
dc.relation.uri | https://doi.org/10.1002/pol.1981.180190706 | |
dc.relation.uri | https://doi.org/10.3390/polym10010025 | |
dc.relation.uri | https://cyberleninka.org/viewer_images/948363/f/1.png | |
dc.relation.uri | http://dx.doi.org/10.1016/j.matchemphys.2013.01.019 | |
dc.relation.uri | https://doi.org/10.1021/ja02268a002 | |
dc.relation.uri | https://doi.org/10.1016/j.arabjc.2010.12.022 | |
dc.relation.uri | https://doi.org/10.1002/aic.690200204 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2006.12.059 | |
dc.relation.uri | https://doi.org/10.1016/j.msec.2009.11.008 | |
dc.relation.uri | https://doi.org/10.1016/j.biortech.2008.05.041 | |
dc.relation.uri | https://doi.org/10.1016/j.jes.2014.06.021 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2007.04.029 | |
dc.relation.uri | https://doi.org/10.1016/j.clay.2005.08.008 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Alakhras F., Alghamdi H., Rehman R., 2023 | |
dc.subject | токсичні іони | |
dc.subject | хітозан | |
dc.subject | очищення стічних вод | |
dc.subject | адсорбція | |
dc.subject | адсорбент-основа Шиффа | |
dc.subject | toxic ions | |
dc.subject | chitosan | |
dc.subject | wastewater treatment | |
dc.subject | adsorption | |
dc.subject | Schiff-based adsorbent | |
dc.title | Use of Chemically Modified Chitosan for the Adsorptive Removal of Toxic Metal Ions in Aqueous Solutions | |
dc.title.alternative | Використання хімічно модифікованого хітозану для адсорбційного вилучення іонів токсичних металів у водних розчинах | |
dc.type | Article |
Files
License bundle
1 - 1 of 1