Establishment of the automated system of geodetic monitoring for structures of Tereble-Ritska HPP

dc.citation.epage21
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.spage13
dc.citation.volume95
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorТретяк, Корнилій
dc.contributor.authorЗаяць, Олександр
dc.contributor.authorГлотов, Володимир
dc.contributor.authorНаводич, Михайло
dc.contributor.authorБрусак, Іван
dc.contributor.authorTretyak, Kornyliy
dc.contributor.authorZayats, Olexandr
dc.contributor.authorHlotov, Volodymyr
dc.contributor.authorNavodych, Mykhailo
dc.contributor.authorBrusak, Ivan
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-06-07T08:41:44Z
dc.date.available2023-06-07T08:41:44Z
dc.date.created2022-02-22
dc.date.issued2022-02-22
dc.description.abstractУ статті показані аспекти історичного розвитку моніторингу Теребле-Ріцької ГЕС, які спричинили необхідність переходу до автоматизованої системи геодезичного моніторингу (АСГМ) деформацій напірного трубопроводу та інших споруд ГЕС. З 2018 року систему автоматизували та розширили її інструментальну частину. Так, станом на 2022 рік інструментальна частина АСГМ включає в себе три основні компоненти, а саме: лінійно-кутові виміри з визначенням метеорологічних параметрів, супутникові ГНСС-вимірювання, п’єзометричні вимірювання. У цій статті з метою моніторингу деформацій показані результати роботи АСГМ. Також наведені переваги застосування АСГМ у порівнянніз класичними вимірюваннями, які перш за все дають можливість постійного визначення координат в режимі реального часу з підвищенням точності виявлення просторових деформацій до рівня 2 мм (по горизонталі) і 3 мм (по висоті) на площі 2 км2. Також передбачена можливість інформувати служби технічного обслуговування об'єкта моніторингу, коли отримана деформація перевищує встановлені пороги. За результатами часових серій лінійно-кутових вимірювань можна стверджувати, що напірний трубопровід зазнає сезонних зміщень, які проявляються у горизонтальному зміщенні опор в сторону будівлі ГЕС з зимового до літнього періоду, і навпаки, зміщуються в сторону водосховища з літнього періоду до зимового. На сьогодні для сукупного аналізу лінійно-кутових вимірів з визначенням метеорологічних параметрів, ГНСС-вимірювань та п’єзометричних вимірювань даних недостатньо. З накопиченням масиву даних важливим буде встановити взаємозв’язки між цими параметрами.
dc.description.abstractThe article presents the aspects of historical development of monitoring of Tereble-Ritska hydroelectric power station (HPP), which led to the need of establishing an automated system of geodetic monitoring (ASGM) of deformations of the water pipeline and other structures. Since 2018, the system has been automated and the instrumental part continues to be expanded. Thus, as of 2022, the instrumental part of ASGM includes 3 main components, namely: linear-angular measurements with the determination of meteorological parameters, satellite GNSS measurements, and piezometric measurements. This article presents the results of ASGM work in order to monitor deformations. There are also some advantages of using ASGM in comparison with classical measurements, which first of all allow determining of coordinates in real-time and increase the accuracy of spatial deformation detection to 2 mm (horizontal) and 3 mm (height) on an area of 2 km2 . It is also possible to inform the maintenance services of the monitored object when the received deformation exceeds the established limits. According to the results of the time series of linear-angular measurements, it can be stated that the pipeline undergoes seasonal displacements which are manifested in the horizontal displacement of supports towards the HPP building from winter to summer, and vice versa from summer to winter. To date, the amount of special data for the aggregate analysis of linear-angular measurements with the determination of meteorological parameters, GNSS measurements and piezometric measurements is insufficient. As data accumulates, it will be important to establish relationships between these parameters.
dc.format.extent13-21
dc.format.pages9
dc.identifier.citationEstablishment of the automated system of geodetic monitoring for structures of Tereble-Ritska HPP / Kornyliy Tretyak, Olexandr Zayats, Volodymyr Hlotov, Mykhailo Navodych, Ivan Brusak // Geodesy, Cartography and Aerial photography. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 95. — P. 13–21.
dc.identifier.citationenEstablishment of the automated system of geodetic monitoring for structures of Tereble-Ritska HPP / Kornyliy Tretyak, Olexandr Zayats, Volodymyr Hlotov, Mykhailo Navodych, Ivan Brusak // Geodesy, Cartography and Aerial photography. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 95. — P. 13–21.
dc.identifier.doidoi.org/10.23939/istcgcap2022.95.013
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59188
dc.language.isoen
dc.publisherВидавництво Львівської політехніки,
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання (95), 2022
dc.relation.ispartofGeodesy, Cartography and Aerial photography (95), 2022
dc.relation.referencesBarzaghi, R., Cazzaniga, N. E., De Gaetani, C. I., Pinto, L.,
dc.relation.references& Tornatore, V. (2018). Estimating and comparing dam
dc.relation.referencesdeformation using classical and GNSS techniques.
dc.relation.referencesSensors, 18(3), 756. https://doi.org/10.3390/s18030756.
dc.relation.referencesBisovetskyi, Yu., Tretyak, K., & Shchuchik, E. (2011)
dc.relation.referencesAutomation of geodetic observations of hydraulic
dc.relation.referencesstructures of Ukrhydroenergo hydroelectric power
dc.relation.referencesplants. Hydropower of Ukraine, 2, 45–51. (in Russian).
dc.relation.referencesBehr, J. A., Hudnut, K. W., & King, N. E. (1998,
dc.relation.referencesSeptember). Monitoring structural deformation at
dc.relation.referencesPacoima dam, California using continuous GPS. In
dc.relation.referencesProceedings of the 11th International Technical
dc.relation.referencesMeeting of the Satellite Division of the Institute of
dc.relation.referencesNavigation (ION GPS 1998) (pp. 59–68).
dc.relation.referenceshttps://www.ion.org/publications/abstract.cfm?articleID=2934.
dc.relation.referencesDemedyuk, M., Sidorov, I., & Tretyak, K. (1993).
dc.relation.referencesInfluence of the Rika tectonic fault on the deformation
dc.relation.referencesof the Tereblya-Rikska HPP pressure pipeline.
dc.relation.referencesGeodesy, Cartography and Aerial Photography, 55, 14–22. (in Ukrainian). https://science.lpnu.ua/istcgcap/all-volumes-and-issues/volume-55-1993/influence-rick-tectonic-fractures-deformation.
dc.relation.referencesFarenyuk, G., Vaynberg, O., & Shuminskyi, V. (2020).
dc.relation.referencesReliability and safety of hydraulic structures of the
dc.relation.referencesDnieper and Dniester cascades of HPP. Science and
dc.relation.referencesConstruction, 25(3), 3–12. https://doi.org/10.33644/scienceandconstruction.v25i3.1 (In Ukrainian).
dc.relation.referencesGrytsyuk, T. (2010). Geodetic monitoring of short-period
dc.relation.referencesdisplacements of pressure pipelines of hydropower
dc.relation.referencesfacilities (on the example of Tereble-Ritska HPP).
dc.relation.referencesPh.D-thesis. Lviv Polythechnic University. (in
dc.relation.referencesUkrainian).
dc.relation.referencesKulchytskyi A. (2009). Structural and geological features
dc.relation.referencesof the territory of Tereble-Ritskaya HPP and
dc.relation.referencesassessment of their impact on the deformation of
dc.relation.referencesthe derivation pipeline by geological and geodetic
dc.relation.referencesmethods. Modern Achievements in Geodetic
dc.relation.referencesScience and Industry, 18, 44–48 (in Ukrainian).
dc.relation.referenceshttp://vlp.com.ua/files/11_69.pdf.
dc.relation.referencesMogilny, S., Sholomitsky, A., Shmorgun, E., & Prigarov, V.
dc.relation.references(2010) Automated system of geodetic monitoring.
dc.relation.referencesModern Achievementsin Geodetic Science and Industry,19, 193–197. (In Russian). https://vlp.com.ua/taxonomy/term/3164?page=1.
dc.relation.referencesMunekane, H, Tobita, M., Takashima, K. (2004)
dc.relation.referencesGroundwater-induced vertical movements observed
dc.relation.referencesin Tsukuba, Japan. Geophys Res Lett., 31(12).
dc.relation.referenceshttps://doi.org/10.1029/2004GL020158.
dc.relation.referencesNazarevych, A., Nazarevych, L., & Shlapinskyy, V.
dc.relation.references(2016). Seismicity, geology, seismotectonics and
dc.relation.referencesgeodynamics of Tereblya-Ritska HPP’s area (Ukrainian
dc.relation.referencesTranscarpathians). Geodynamics, 20, 170–192. (in
dc.relation.referencesUkrainian). https://doi.org/10.23939/jgd2016.01.170.
dc.relation.referencesSavchyn, I., & Pronyshyn R. (2020) Differentiation of
dc.relation.referencesrecent local geodynamic and seismic processes of
dc.relation.referencestechnogenic-loaded territories based on the example
dc.relation.referencesof Dnister Hydro Power Complex (Ukraine). Geodesy
dc.relation.referencesand Geodynamics, 11(5), 391–400. https://doi.org/10.1016/j.geog.2020.06.001.
dc.relation.referencesSavchyn, I., & Vaskovets, S. (2018). Local geodynamics
dc.relation.referencesof the territory of Dniester pumped storage power
dc.relation.referencesplant. Acta Geodynamica et Geomaterialia, 15(1), 41–47. http://dx.doi.org/10.13168/AGG.2018.0002.
dc.relation.referencesSokoła-Szewioła, V., & Siejka, Z. (2021). Validation of
dc.relation.referencesthe accuracy of geodetic automated measurement
dc.relation.referencessystem based on GNSS platform for continuous
dc.relation.referencesmonitoring of surface movements in post-mining
dc.relation.referencesareas. Reports on Geodesy and Geoinformatics, 112(1), 47–57. https://sciendo.com/it/article/10.2478/rgg-2021-0007.
dc.relation.referencesTretyak, K., & Palianytsia B. (2021). Research of
dc.relation.referencesseasonal deformations of the Dnipro HPP dam
dc.relation.referencesaccording to GNSS measurements. Geodynamics, 1(30), 5–16. https://doi.org/10.23939/jgd2021.01.005.
dc.relation.referencesTretyak, K., Brusak, І., Bubniak, І., & Zablotskyi, F.
dc.relation.references(2021b). Impact of non-tidal atmospheric loading on
dc.relation.referencescivil engineering structures. Geodynamics, 2(31), 16–28. https://doi.org/10.23939/jgd2021.02.016.
dc.relation.referencesTretyak, K., Grytsyuk, T., Dvulit, P., & Babiy, L. (2010).
dc.relation.referencesApplication of geodetic methods for monitoring of
dc.relation.referencesstresses of penstock on Tereblya-Rikska hydropower
dc.relation.referencesstation. Infrastruktura i Ekologia Terenów Wiejskich,
dc.relation.references(11), 135–149. https://agro.icm.edu.pl/agro/element/bwmeta1.element.dl-catalog-3d582503-5092-4bce8faf-142bd08ab088.
dc.relation.referencesTretyak, K., Korliatovych, T., Brusak I., & Smirnova O.
dc.relation.references(2021a). Differentiation of kinematics of the Dnister
dc.relation.referencesHPP-1 dam (based on the data of GNSS monitoring
dc.relation.referencesof spatial displacements) Modern Achievements in
dc.relation.referencesGeodetic Science and Industry, 42, 57–66.
dc.relation.referenceshttps://doi.org/10.33841/1819-1339-2-42-57-66
dc.relation.references(in Ukrainian).
dc.relation.referencesTretyak, K., Kylchitskiy, A., & Sidorov, I. (2009).
dc.relation.referencesGeodynamics of Tereblja-Riksky technogenic range.
dc.relation.referencesGeodynamics, 1(8), 47–52 https://doi.org/10.23939/jgd2009.01.047 (in Ukrainian).
dc.relation.referencesTretyak, K., Petrov, S., Golubinka, Yu., Al-Alusi, F.
dc.relation.references(2014). Analysis of points stability of automated
dc.relation.referencesgeodetic monitoring of engineering structures of
dc.relation.referencesKaniv HPP. Geodesy, Cartography and Aerial
dc.relation.referencesPhotography, 80, 5–19. (in Ukrainian). https://science.lpnu.ua/istcgcap/all-volumes-and-issues/volume-80-2014/analysis-stability-points-automated-geodetic.
dc.relation.referencesTretyak, K., Savchyn, I., Zayats, O., Golubinka, Yu.,
dc.relation.referencesLompas, O., & Bisovetskyi Yu. (2017). Installation
dc.relation.referencesand maintenance of automated systems for control
dc.relation.referencesof spatial displacements of engineering structures
dc.relation.referencesof Ukrainian hydropower plants. Hydropower
dc.relation.referencesof Ukraine, (1–2), 33–41. (in Ukrainian).
dc.relation.referenceshttps://uhe.gov.ua/sites/default/files/2018-08/8.pdf
dc.relation.referencesZayats, O. S., Tretyak, K. R., Smirnova, O. M., &
dc.relation.referencesTserklevych, A. L. (2021, November). Development
dc.relation.referencesand implementation of automated system of geodetic
dc.relation.referencesmonitoring on Tereble-Ritska HPP for structural
dc.relation.referencescontrol of engineering constructions. In 15th
dc.relation.referencesInternational Conference Monitoring of Geological
dc.relation.referencesProcesses and Ecological Condition of the
dc.relation.referencesEnvironment (Vol. 2021, No. 1, pp. 1–5). European
dc.relation.referencesAssociation of Geoscientists & Engineers.
dc.relation.referenceshttps://doi.org/10.3997/2214-4609.20215K2089
dc.relation.referencesenBarzaghi, R., Cazzaniga, N. E., De Gaetani, C. I., Pinto, L.,
dc.relation.referencesen& Tornatore, V. (2018). Estimating and comparing dam
dc.relation.referencesendeformation using classical and GNSS techniques.
dc.relation.referencesenSensors, 18(3), 756. https://doi.org/10.3390/s18030756.
dc.relation.referencesenBisovetskyi, Yu., Tretyak, K., & Shchuchik, E. (2011)
dc.relation.referencesenAutomation of geodetic observations of hydraulic
dc.relation.referencesenstructures of Ukrhydroenergo hydroelectric power
dc.relation.referencesenplants. Hydropower of Ukraine, 2, 45–51. (in Russian).
dc.relation.referencesenBehr, J. A., Hudnut, K. W., & King, N. E. (1998,
dc.relation.referencesenSeptember). Monitoring structural deformation at
dc.relation.referencesenPacoima dam, California using continuous GPS. In
dc.relation.referencesenProceedings of the 11th International Technical
dc.relation.referencesenMeeting of the Satellite Division of the Institute of
dc.relation.referencesenNavigation (ION GPS 1998) (pp. 59–68).
dc.relation.referencesenhttps://www.ion.org/publications/abstract.cfm?articleID=2934.
dc.relation.referencesenDemedyuk, M., Sidorov, I., & Tretyak, K. (1993).
dc.relation.referencesenInfluence of the Rika tectonic fault on the deformation
dc.relation.referencesenof the Tereblya-Rikska HPP pressure pipeline.
dc.relation.referencesenGeodesy, Cartography and Aerial Photography, 55, 14–22. (in Ukrainian). https://science.lpnu.ua/istcgcap/all-volumes-and-issues/volume-55-1993/influence-rick-tectonic-fractures-deformation.
dc.relation.referencesenFarenyuk, G., Vaynberg, O., & Shuminskyi, V. (2020).
dc.relation.referencesenReliability and safety of hydraulic structures of the
dc.relation.referencesenDnieper and Dniester cascades of HPP. Science and
dc.relation.referencesenConstruction, 25(3), 3–12. https://doi.org/10.33644/scienceandconstruction.v25i3.1 (In Ukrainian).
dc.relation.referencesenGrytsyuk, T. (2010). Geodetic monitoring of short-period
dc.relation.referencesendisplacements of pressure pipelines of hydropower
dc.relation.referencesenfacilities (on the example of Tereble-Ritska HPP).
dc.relation.referencesenPh.D-thesis. Lviv Polythechnic University. (in
dc.relation.referencesenUkrainian).
dc.relation.referencesenKulchytskyi A. (2009). Structural and geological features
dc.relation.referencesenof the territory of Tereble-Ritskaya HPP and
dc.relation.referencesenassessment of their impact on the deformation of
dc.relation.referencesenthe derivation pipeline by geological and geodetic
dc.relation.referencesenmethods. Modern Achievements in Geodetic
dc.relation.referencesenScience and Industry, 18, 44–48 (in Ukrainian).
dc.relation.referencesenhttp://vlp.com.ua/files/11_69.pdf.
dc.relation.referencesenMogilny, S., Sholomitsky, A., Shmorgun, E., & Prigarov, V.
dc.relation.referencesen(2010) Automated system of geodetic monitoring.
dc.relation.referencesenModern Achievementsin Geodetic Science and Industry,19, 193–197. (In Russian). https://vlp.com.ua/taxonomy/term/3164?page=1.
dc.relation.referencesenMunekane, H, Tobita, M., Takashima, K. (2004)
dc.relation.referencesenGroundwater-induced vertical movements observed
dc.relation.referencesenin Tsukuba, Japan. Geophys Res Lett., 31(12).
dc.relation.referencesenhttps://doi.org/10.1029/2004GL020158.
dc.relation.referencesenNazarevych, A., Nazarevych, L., & Shlapinskyy, V.
dc.relation.referencesen(2016). Seismicity, geology, seismotectonics and
dc.relation.referencesengeodynamics of Tereblya-Ritska HPP’s area (Ukrainian
dc.relation.referencesenTranscarpathians). Geodynamics, 20, 170–192. (in
dc.relation.referencesenUkrainian). https://doi.org/10.23939/jgd2016.01.170.
dc.relation.referencesenSavchyn, I., & Pronyshyn R. (2020) Differentiation of
dc.relation.referencesenrecent local geodynamic and seismic processes of
dc.relation.referencesentechnogenic-loaded territories based on the example
dc.relation.referencesenof Dnister Hydro Power Complex (Ukraine). Geodesy
dc.relation.referencesenand Geodynamics, 11(5), 391–400. https://doi.org/10.1016/j.geog.2020.06.001.
dc.relation.referencesenSavchyn, I., & Vaskovets, S. (2018). Local geodynamics
dc.relation.referencesenof the territory of Dniester pumped storage power
dc.relation.referencesenplant. Acta Geodynamica et Geomaterialia, 15(1), 41–47. http://dx.doi.org/10.13168/AGG.2018.0002.
dc.relation.referencesenSokoła-Szewioła, V., & Siejka, Z. (2021). Validation of
dc.relation.referencesenthe accuracy of geodetic automated measurement
dc.relation.referencesensystem based on GNSS platform for continuous
dc.relation.referencesenmonitoring of surface movements in post-mining
dc.relation.referencesenareas. Reports on Geodesy and Geoinformatics, 112(1), 47–57. https://sciendo.com/it/article/10.2478/rgg-2021-0007.
dc.relation.referencesenTretyak, K., & Palianytsia B. (2021). Research of
dc.relation.referencesenseasonal deformations of the Dnipro HPP dam
dc.relation.referencesenaccording to GNSS measurements. Geodynamics, 1(30), 5–16. https://doi.org/10.23939/jgd2021.01.005.
dc.relation.referencesenTretyak, K., Brusak, I., Bubniak, I., & Zablotskyi, F.
dc.relation.referencesen(2021b). Impact of non-tidal atmospheric loading on
dc.relation.referencesencivil engineering structures. Geodynamics, 2(31), 16–28. https://doi.org/10.23939/jgd2021.02.016.
dc.relation.referencesenTretyak, K., Grytsyuk, T., Dvulit, P., & Babiy, L. (2010).
dc.relation.referencesenApplication of geodetic methods for monitoring of
dc.relation.referencesenstresses of penstock on Tereblya-Rikska hydropower
dc.relation.referencesenstation. Infrastruktura i Ekologia Terenów Wiejskich,
dc.relation.referencesen(11), 135–149. https://agro.icm.edu.pl/agro/element/bwmeta1.element.dl-catalog-3d582503-5092-4bce8faf-142bd08ab088.
dc.relation.referencesenTretyak, K., Korliatovych, T., Brusak I., & Smirnova O.
dc.relation.referencesen(2021a). Differentiation of kinematics of the Dnister
dc.relation.referencesenHPP-1 dam (based on the data of GNSS monitoring
dc.relation.referencesenof spatial displacements) Modern Achievements in
dc.relation.referencesenGeodetic Science and Industry, 42, 57–66.
dc.relation.referencesenhttps://doi.org/10.33841/1819-1339-2-42-57-66
dc.relation.referencesen(in Ukrainian).
dc.relation.referencesenTretyak, K., Kylchitskiy, A., & Sidorov, I. (2009).
dc.relation.referencesenGeodynamics of Tereblja-Riksky technogenic range.
dc.relation.referencesenGeodynamics, 1(8), 47–52 https://doi.org/10.23939/jgd2009.01.047 (in Ukrainian).
dc.relation.referencesenTretyak, K., Petrov, S., Golubinka, Yu., Al-Alusi, F.
dc.relation.referencesen(2014). Analysis of points stability of automated
dc.relation.referencesengeodetic monitoring of engineering structures of
dc.relation.referencesenKaniv HPP. Geodesy, Cartography and Aerial
dc.relation.referencesenPhotography, 80, 5–19. (in Ukrainian). https://science.lpnu.ua/istcgcap/all-volumes-and-issues/volume-80-2014/analysis-stability-points-automated-geodetic.
dc.relation.referencesenTretyak, K., Savchyn, I., Zayats, O., Golubinka, Yu.,
dc.relation.referencesenLompas, O., & Bisovetskyi Yu. (2017). Installation
dc.relation.referencesenand maintenance of automated systems for control
dc.relation.referencesenof spatial displacements of engineering structures
dc.relation.referencesenof Ukrainian hydropower plants. Hydropower
dc.relation.referencesenof Ukraine, (1–2), 33–41. (in Ukrainian).
dc.relation.referencesenhttps://uhe.gov.ua/sites/default/files/2018-08/8.pdf
dc.relation.referencesenZayats, O. S., Tretyak, K. R., Smirnova, O. M., &
dc.relation.referencesenTserklevych, A. L. (2021, November). Development
dc.relation.referencesenand implementation of automated system of geodetic
dc.relation.referencesenmonitoring on Tereble-Ritska HPP for structural
dc.relation.referencesencontrol of engineering constructions. In 15th
dc.relation.referencesenInternational Conference Monitoring of Geological
dc.relation.referencesenProcesses and Ecological Condition of the
dc.relation.referencesenEnvironment (Vol. 2021, No. 1, pp. 1–5). European
dc.relation.referencesenAssociation of Geoscientists & Engineers.
dc.relation.referencesenhttps://doi.org/10.3997/2214-4609.20215K2089
dc.relation.urihttps://doi.org/10.3390/s18030756
dc.relation.urihttps://www.ion.org/publications/abstract.cfm?articleID=2934
dc.relation.urihttps://science.lpnu.ua/istcgcap/all-volumes-and-issues/volume-55-1993/influence-rick-tectonic-fractures-deformation
dc.relation.urihttps://doi.org/10.33644/scienceandconstruction.v25i3.1
dc.relation.urihttp://vlp.com.ua/files/11_69.pdf
dc.relation.urihttps://vlp.com.ua/taxonomy/term/3164?page=1
dc.relation.urihttps://doi.org/10.1029/2004GL020158
dc.relation.urihttps://doi.org/10.23939/jgd2016.01.170
dc.relation.urihttps://doi.org/10.1016/j.geog.2020.06.001
dc.relation.urihttp://dx.doi.org/10.13168/AGG.2018.0002
dc.relation.urihttps://sciendo.com/it/article/10.2478/rgg-2021-0007
dc.relation.urihttps://doi.org/10.23939/jgd2021.01.005
dc.relation.urihttps://doi.org/10.23939/jgd2021.02.016
dc.relation.urihttps://agro.icm.edu.pl/agro/element/bwmeta1.element.dl-catalog-3d582503-5092-4bce8faf-142bd08ab088
dc.relation.urihttps://doi.org/10.33841/1819-1339-2-42-57-66
dc.relation.urihttps://doi.org/10.23939/jgd2009.01.047
dc.relation.urihttps://science.lpnu.ua/istcgcap/all-volumes-and-issues/volume-80-2014/analysis-stability-points-automated-geodetic
dc.relation.urihttps://uhe.gov.ua/sites/default/files/2018-08/8.pdf
dc.relation.urihttps://doi.org/10.3997/2214-4609.20215K2089
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectавтоматизована система моніторингу
dc.subjectмоніторинг деформацій
dc.subjectлінійно-кутові вимірювання
dc.subjectГНСС
dc.subjectп’єзометр
dc.subjectТеребле-Ріцька ГЕС
dc.subjectautomated system of geodetic monitoring
dc.subjectdeformation monitoring
dc.subjectlinear-angular measurements
dc.subjectGNSS
dc.subjectpiezometer
dc.subjectTereble-Ritska HPP
dc.subject.udc528.482
dc.titleEstablishment of the automated system of geodetic monitoring for structures of Tereble-Ritska HPP
dc.title.alternativeСтворення автоматизованої системи моніторингу споруд Теребле-Ріцької ГЕС
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v95_Tretyak_K-Establishment_of_the_automated_13-21.pdf
Size:
672.22 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v95_Tretyak_K-Establishment_of_the_automated_13-21__COVER.png
Size:
483.92 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.96 KB
Format:
Plain Text
Description: