Армування альгінат-желатинового гідрогелю функціоналізованим поліпропіленовим мікроволокном
dc.citation.epage | 238 | |
dc.citation.issue | 1 | |
dc.citation.spage | 232 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Носова, Н. Г. | |
dc.contributor.author | Майкович, О. В. | |
dc.contributor.author | Борденюк, О. Ю. | |
dc.contributor.author | Яковів, М. В. | |
dc.contributor.author | Варваренко, С. М. | |
dc.contributor.author | Nosova, N. | |
dc.contributor.author | Maikovych, O. | |
dc.contributor.author | Bordeniuk, O. | |
dc.contributor.author | Yakoviv, M. | |
dc.contributor.author | Varvarenko, S. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2021-01-28T11:24:18Z | |
dc.date.available | 2021-01-28T11:24:18Z | |
dc.date.created | 2020-02-24 | |
dc.date.issued | 2020-02-24 | |
dc.description.abstract | Подано метод модифікування поліпропіленових планарних поверхонь та мікроволокон через ковалентне прищеплення наношару поліакрилової кислоти за вільно-радикальним механізмом. Після прищеплення наношарів гідрофобна поверхня поліпропілену набуває гідрофільних властивостей, що підтверджено зміною вільної поверхневої енергії на планарних поверхнях і зміною величини водоутримання мікроволокнами до та після модифікування. У разі використання для армування альгінат-желатинового гідрогелю модифікованих мікроволокон (1 % в гідрогелі) досягається значне (на 100 %) підвищення його механічних властивостей. | |
dc.description.abstract | In this paper the method of modification of polypropylene planar surfaces and microfibers through covalent grafting of a polyacrylic acid nanolayer by a free radical mechanismis presented. After grafting of the nanolayers, the hydrophobic surface of the polypropylene acquires hydrophilic properties. These changes are confirmed by the alteration of the free surface energy on the planar surfaces and by the increase of retentioned water by the microfibers before and after modification. Reinforcing of the alginate-gelatin hydrogel by modified microfibers (1% in the hydrogel) allows to achieve a significant (100 %) increase of its mechanical properties. | |
dc.format.extent | 232-238 | |
dc.format.pages | 7 | |
dc.identifier.citation | Армування альгінат-желатинового гідрогелю функціоналізованим поліпропіленовим мікроволокном / Н. Г. Носова, О. В. Майкович, О. Ю. Борденюк, М. В. Яковів, С. М. Варваренко // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 232–238. | |
dc.identifier.citationen | Reinforcement of alginate-gelatin hydrogel using functionalized polypropylene microfiber / N. Nosova, O. Maikovych, O. Bordeniuk, M. Yakoviv, S. Varvarenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 232–238. | |
dc.identifier.doi | doi.org/10.23939/ctas2020.01.232 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/56091 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (3), 2020 | |
dc.relation.references | 1. Koehler, J., Brandl, F. P., & Goepferich, A. M. (2018). Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal, 100, 1–11. doi: 10.1016/j.eurpolymj.2017.12.046 | |
dc.relation.references | 2. Hennink, W., & Nostrum, C. V. (2012). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64, 223–236. doi: 10.1016/j.addr.2012.09.009 | |
dc.relation.references | 3. Alaei, J., Boroojerdi, S. H., Rabiei, Z. (2005). Application of hydrogels in drying operation. Petrol Coal,47(3), 32–37. | |
dc.relation.references | 4. Boateng, J., Burgos-Amador, R., Okeke, O., & Pawar, H. (2015). Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing. International Journal of Biological Macromolecules, 79, 63–71. doi: 10. 1016/ j.ijbiomac.2015.04.048 | |
dc.relation.references | 5. Oyen, M. L. (2013). Mechanical characterisation of hydrogel materials. International Materials Reviews, 59(1), 44–59. doi: 10.1179/1743280413y. 0000000022 | |
dc.relation.references | 6. Khan, A., Othman, M. B. H., Razak, K. A., & Akil, H. M. (2013). Synthesis and physicochemical investigation of chitosan-PMAA-based dual-responsive hydrogels. Journal of Polymer Research, 20(10). doi: 10.1007/s10965-013-0273-7 | |
dc.relation.references | 7. Peppas, N. A., Huang, Y., Torres-Lugo,M.,Ward, J. H., & Zhang, J. (2000). Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology. Annual Review of Biomedical Engineering, 2(1), 9–29. doi: 10.1146/annurev.bioeng.2.1.9 | |
dc.relation.references | 8. Schoener, C. A., Hutson, H. N., & Peppas, N. A. (2012). pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics. Journal of Biomedical Materials Research Part A, 101A(8), 2229–2236. doi: 10.1002/ jbm.a. 34532 | |
dc.relation.references | 9. Uyama, Y., Kato, K., & Ikada, Y. (n.d.). Surface Modification of Polymers by Grafting. Grafting/Characterization Techniques/Kinetic Modeling Advances in Polymer Science, 1–39. doi: 10.1007/3-540-69685-7_1 | |
dc.relation.references | 10. Tirrell, M., Kokkoli, E., & Biesalski, M. (2002). The role of surface science in bioengineered materials. Surface Science, 500(1-3), 61–83. doi: 10.1016/s0039-6028(01)01548-5 | |
dc.relation.references | 11. Reznickova, A., Kvitek, O., Kolarova, K., Smejkalova, Z., & Svorcik, V. (2017). Cell adhesion and proliferation on poly(tetrafluoroethylene) with plasma–metal and plasma–metal–carbon interfaces. Japanese Journal of Applied Physics, 56(6S1). doi: 10.7567/jjap.56.06gg03 | |
dc.relation.references | 12. Granados, E., Martinez-Calderon, M., Gomez, M., Rodriguez, A., & Olaizola, S. M. (2017). Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS). Optics Express, 25(13), 15330. doi: 10.1364/oe.25.015330 | |
dc.relation.references | 13. Varvarenko, S., Voronov, A., Samaryk, V., Tarnavchyk, I., Roiter, Y., Minko, S., … Voronov, S. (2011). Polyolefin surface activation by grafting of functional polyperoxide. Reactive and Functional Polymers, 71(2), 210–218. doi: 10.1016/ j.reactfunctpolym. 2010.11.028 | |
dc.relation.references | 14. Nosova, N., Roiter, Y., Samaryk, V., Varvarenko, S., Stetsyshyn, Y., Minko, S., … Voronov, S. (2004). Polypropylene surface peroxidation with heterofunctional polyperoxides. Macromolecular Symposia, 210(1), 339–348. doi: 10.1002/masy.20045063 | |
dc.relation.references | 15. Samaryk, V., Tarnavchyk, I., Voronov, A., Varvarenko, S., Nosova, N., Kohut, A., & Voronov, S. (2009). A New Acrylamide-Based Peroxide Monomer: Synthesis and Copolymerization with Octyl Methacrylate. Macromolecules, 42(17), 6495–6500. doi: 10.1021/ma901211s | |
dc.relation.references | 16. Samaryk, V., Voronov, A., Tarnavchyk, I., Varvarenko, S., Nosova, N., Budishevskaya, O., Kohut, A., Voronov S. (2012) Formation of Coatings with Tailored Properties on Polyperoxide-Modified Polymeric Surfaces. Progress in Organic Coatings, 74(4), 687–696. doi.org/10.1016/j.porgcoat.2011.07.015 | |
dc.relation.references | 17. Van Krevelen, D. V. (1976). Svoystva i khimicheskoye stroyeniye polimerov. Moscov: Khimiya. | |
dc.relation.references | 18. Hogt, A. H., Meijer, J., & Jelenič, J. (1997). Modification of polypropylene by organic peroxides. Reactive Modifiers for Polymers, 84–132. doi: 10.1007/978-94-009-1449-0_2 | |
dc.relation.referencesen | 1. Koehler, J., Brandl, F. P., & Goepferich, A. M. (2018). Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal, 100, 1–11. doi: 10.1016/j.eurpolymj.2017.12.046 | |
dc.relation.referencesen | 2. Hennink, W., & Nostrum, C. V. (2012). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64, 223–236. doi: 10.1016/j.addr.2012.09.009 | |
dc.relation.referencesen | 3. Alaei, J., Boroojerdi, S. H., Rabiei, Z. (2005). Application of hydrogels in drying operation. Petrol Coal,47(3), 32–37. | |
dc.relation.referencesen | 4. Boateng, J., Burgos-Amador, R., Okeke, O., & Pawar, H. (2015). Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing. International Journal of Biological Macromolecules, 79, 63–71. doi: 10. 1016/ j.ijbiomac.2015.04.048 | |
dc.relation.referencesen | 5. Oyen, M. L. (2013). Mechanical characterisation of hydrogel materials. International Materials Reviews, 59(1), 44–59. doi: 10.1179/1743280413y. 0000000022 | |
dc.relation.referencesen | 6. Khan, A., Othman, M. B. H., Razak, K. A., & Akil, H. M. (2013). Synthesis and physicochemical investigation of chitosan-PMAA-based dual-responsive hydrogels. Journal of Polymer Research, 20(10). doi: 10.1007/s10965-013-0273-7 | |
dc.relation.referencesen | 7. Peppas, N. A., Huang, Y., Torres-Lugo,M.,Ward, J. H., & Zhang, J. (2000). Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology. Annual Review of Biomedical Engineering, 2(1), 9–29. doi: 10.1146/annurev.bioeng.2.1.9 | |
dc.relation.referencesen | 8. Schoener, C. A., Hutson, H. N., & Peppas, N. A. (2012). pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics. Journal of Biomedical Materials Research Part A, 101A(8), 2229–2236. doi: 10.1002/ jbm.a. 34532 | |
dc.relation.referencesen | 9. Uyama, Y., Kato, K., & Ikada, Y. (n.d.). Surface Modification of Polymers by Grafting. Grafting/Characterization Techniques/Kinetic Modeling Advances in Polymer Science, 1–39. doi: 10.1007/3-540-69685-7_1 | |
dc.relation.referencesen | 10. Tirrell, M., Kokkoli, E., & Biesalski, M. (2002). The role of surface science in bioengineered materials. Surface Science, 500(1-3), 61–83. doi: 10.1016/s0039-6028(01)01548-5 | |
dc.relation.referencesen | 11. Reznickova, A., Kvitek, O., Kolarova, K., Smejkalova, Z., & Svorcik, V. (2017). Cell adhesion and proliferation on poly(tetrafluoroethylene) with plasma–metal and plasma–metal–carbon interfaces. Japanese Journal of Applied Physics, 56(6S1). doi: 10.7567/jjap.56.06gg03 | |
dc.relation.referencesen | 12. Granados, E., Martinez-Calderon, M., Gomez, M., Rodriguez, A., & Olaizola, S. M. (2017). Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS). Optics Express, 25(13), 15330. doi: 10.1364/oe.25.015330 | |
dc.relation.referencesen | 13. Varvarenko, S., Voronov, A., Samaryk, V., Tarnavchyk, I., Roiter, Y., Minko, S., … Voronov, S. (2011). Polyolefin surface activation by grafting of functional polyperoxide. Reactive and Functional Polymers, 71(2), 210–218. doi: 10.1016/ j.reactfunctpolym. 2010.11.028 | |
dc.relation.referencesen | 14. Nosova, N., Roiter, Y., Samaryk, V., Varvarenko, S., Stetsyshyn, Y., Minko, S., … Voronov, S. (2004). Polypropylene surface peroxidation with heterofunctional polyperoxides. Macromolecular Symposia, 210(1), 339–348. doi: 10.1002/masy.20045063 | |
dc.relation.referencesen | 15. Samaryk, V., Tarnavchyk, I., Voronov, A., Varvarenko, S., Nosova, N., Kohut, A., & Voronov, S. (2009). A New Acrylamide-Based Peroxide Monomer: Synthesis and Copolymerization with Octyl Methacrylate. Macromolecules, 42(17), 6495–6500. doi: 10.1021/ma901211s | |
dc.relation.referencesen | 16. Samaryk, V., Voronov, A., Tarnavchyk, I., Varvarenko, S., Nosova, N., Budishevskaya, O., Kohut, A., Voronov S. (2012) Formation of Coatings with Tailored Properties on Polyperoxide-Modified Polymeric Surfaces. Progress in Organic Coatings, 74(4), 687–696. doi.org/10.1016/j.porgcoat.2011.07.015 | |
dc.relation.referencesen | 17. Van Krevelen, D. V. (1976). Svoystva i khimicheskoye stroyeniye polimerov. Moscov: Khimiya. | |
dc.relation.referencesen | 18. Hogt, A. H., Meijer, J., & Jelenič, J. (1997). Modification of polypropylene by organic peroxides. Reactive Modifiers for Polymers, 84–132. doi: 10.1007/978-94-009-1449-0_2 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.subject | поліпропілен | |
dc.subject | мікроволокно | |
dc.subject | акрилова кислота | |
dc.subject | наношар | |
dc.subject | поліпероксид | |
dc.subject | polypropylene | |
dc.subject | microfiber | |
dc.subject | acrylic acid | |
dc.subject | nanolayer | |
dc.subject | polyperoxide | |
dc.title | Армування альгінат-желатинового гідрогелю функціоналізованим поліпропіленовим мікроволокном | |
dc.title.alternative | Reinforcement of alginate-gelatin hydrogel using functionalized polypropylene microfiber | |
dc.type | Article |
Files
License bundle
1 - 1 of 1