Армування альгінат-желатинового гідрогелю функціоналізованим поліпропіленовим мікроволокном

dc.citation.epage238
dc.citation.issue1
dc.citation.spage232
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorНосова, Н. Г.
dc.contributor.authorМайкович, О. В.
dc.contributor.authorБорденюк, О. Ю.
dc.contributor.authorЯковів, М. В.
dc.contributor.authorВарваренко, С. М.
dc.contributor.authorNosova, N.
dc.contributor.authorMaikovych, O.
dc.contributor.authorBordeniuk, O.
dc.contributor.authorYakoviv, M.
dc.contributor.authorVarvarenko, S.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2021-01-28T11:24:18Z
dc.date.available2021-01-28T11:24:18Z
dc.date.created2020-02-24
dc.date.issued2020-02-24
dc.description.abstractПодано метод модифікування поліпропіленових планарних поверхонь та мікроволокон через ковалентне прищеплення наношару поліакрилової кислоти за вільно-радикальним механізмом. Після прищеплення наношарів гідрофобна поверхня поліпропілену набуває гідрофільних властивостей, що підтверджено зміною вільної поверхневої енергії на планарних поверхнях і зміною величини водоутримання мікроволокнами до та після модифікування. У разі використання для армування альгінат-желатинового гідрогелю модифікованих мікроволокон (1 % в гідрогелі) досягається значне (на 100 %) підвищення його механічних властивостей.
dc.description.abstractIn this paper the method of modification of polypropylene planar surfaces and microfibers through covalent grafting of a polyacrylic acid nanolayer by a free radical mechanismis presented. After grafting of the nanolayers, the hydrophobic surface of the polypropylene acquires hydrophilic properties. These changes are confirmed by the alteration of the free surface energy on the planar surfaces and by the increase of retentioned water by the microfibers before and after modification. Reinforcing of the alginate-gelatin hydrogel by modified microfibers (1% in the hydrogel) allows to achieve a significant (100 %) increase of its mechanical properties.
dc.format.extent232-238
dc.format.pages7
dc.identifier.citationАрмування альгінат-желатинового гідрогелю функціоналізованим поліпропіленовим мікроволокном / Н. Г. Носова, О. В. Майкович, О. Ю. Борденюк, М. В. Яковів, С. М. Варваренко // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 232–238.
dc.identifier.citationenReinforcement of alginate-gelatin hydrogel using functionalized polypropylene microfiber / N. Nosova, O. Maikovych, O. Bordeniuk, M. Yakoviv, S. Varvarenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 232–238.
dc.identifier.doidoi.org/10.23939/ctas2020.01.232
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56091
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (3), 2020
dc.relation.references1. Koehler, J., Brandl, F. P., & Goepferich, A. M. (2018). Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal, 100, 1–11. doi: 10.1016/j.eurpolymj.2017.12.046
dc.relation.references2. Hennink, W., & Nostrum, C. V. (2012). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64, 223–236. doi: 10.1016/j.addr.2012.09.009
dc.relation.references3. Alaei, J., Boroojerdi, S. H., Rabiei, Z. (2005). Application of hydrogels in drying operation. Petrol Coal,47(3), 32–37.
dc.relation.references4. Boateng, J., Burgos-Amador, R., Okeke, O., & Pawar, H. (2015). Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing. International Journal of Biological Macromolecules, 79, 63–71. doi: 10. 1016/ j.ijbiomac.2015.04.048
dc.relation.references5. Oyen, M. L. (2013). Mechanical characterisation of hydrogel materials. International Materials Reviews, 59(1), 44–59. doi: 10.1179/1743280413y. 0000000022
dc.relation.references6. Khan, A., Othman, M. B. H., Razak, K. A., & Akil, H. M. (2013). Synthesis and physicochemical investigation of chitosan-PMAA-based dual-responsive hydrogels. Journal of Polymer Research, 20(10). doi: 10.1007/s10965-013-0273-7
dc.relation.references7. Peppas, N. A., Huang, Y., Torres-Lugo,M.,Ward, J. H., & Zhang, J. (2000). Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology. Annual Review of Biomedical Engineering, 2(1), 9–29. doi: 10.1146/annurev.bioeng.2.1.9
dc.relation.references8. Schoener, C. A., Hutson, H. N., & Peppas, N. A. (2012). pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics. Journal of Biomedical Materials Research Part A, 101A(8), 2229–2236. doi: 10.1002/ jbm.a. 34532
dc.relation.references9. Uyama, Y., Kato, K., & Ikada, Y. (n.d.). Surface Modification of Polymers by Grafting. Grafting/Characterization Techniques/Kinetic Modeling Advances in Polymer Science, 1–39. doi: 10.1007/3-540-69685-7_1
dc.relation.references10. Tirrell, M., Kokkoli, E., & Biesalski, M. (2002). The role of surface science in bioengineered materials. Surface Science, 500(1-3), 61–83. doi: 10.1016/s0039-6028(01)01548-5
dc.relation.references11. Reznickova, A., Kvitek, O., Kolarova, K., Smejkalova, Z., & Svorcik, V. (2017). Cell adhesion and proliferation on poly(tetrafluoroethylene) with plasma–metal and plasma–metal–carbon interfaces. Japanese Journal of Applied Physics, 56(6S1). doi: 10.7567/jjap.56.06gg03
dc.relation.references12. Granados, E., Martinez-Calderon, M., Gomez, M., Rodriguez, A., & Olaizola, S. M. (2017). Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS). Optics Express, 25(13), 15330. doi: 10.1364/oe.25.015330
dc.relation.references13. Varvarenko, S., Voronov, A., Samaryk, V., Tarnavchyk, I., Roiter, Y., Minko, S., … Voronov, S. (2011). Polyolefin surface activation by grafting of functional polyperoxide. Reactive and Functional Polymers, 71(2), 210–218. doi: 10.1016/ j.reactfunctpolym. 2010.11.028
dc.relation.references14. Nosova, N., Roiter, Y., Samaryk, V., Varvarenko, S., Stetsyshyn, Y., Minko, S., … Voronov, S. (2004). Polypropylene surface peroxidation with heterofunctional polyperoxides. Macromolecular Symposia, 210(1), 339–348. doi: 10.1002/masy.20045063
dc.relation.references15. Samaryk, V., Tarnavchyk, I., Voronov, A., Varvarenko, S., Nosova, N., Kohut, A., & Voronov, S. (2009). A New Acrylamide-Based Peroxide Monomer: Synthesis and Copolymerization with Octyl Methacrylate. Macromolecules, 42(17), 6495–6500. doi: 10.1021/ma901211s
dc.relation.references16. Samaryk, V., Voronov, A., Tarnavchyk, I., Varvarenko, S., Nosova, N., Budishevskaya, O., Kohut, A., Voronov S. (2012) Formation of Coatings with Tailored Properties on Polyperoxide-Modified Polymeric Surfaces. Progress in Organic Coatings, 74(4), 687–696. doi.org/10.1016/j.porgcoat.2011.07.015
dc.relation.references17. Van Krevelen, D. V. (1976). Svoystva i khimicheskoye stroyeniye polimerov. Moscov: Khimiya.
dc.relation.references18. Hogt, A. H., Meijer, J., & Jelenič, J. (1997). Modification of polypropylene by organic peroxides. Reactive Modifiers for Polymers, 84–132. doi: 10.1007/978-94-009-1449-0_2
dc.relation.referencesen1. Koehler, J., Brandl, F. P., & Goepferich, A. M. (2018). Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal, 100, 1–11. doi: 10.1016/j.eurpolymj.2017.12.046
dc.relation.referencesen2. Hennink, W., & Nostrum, C. V. (2012). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64, 223–236. doi: 10.1016/j.addr.2012.09.009
dc.relation.referencesen3. Alaei, J., Boroojerdi, S. H., Rabiei, Z. (2005). Application of hydrogels in drying operation. Petrol Coal,47(3), 32–37.
dc.relation.referencesen4. Boateng, J., Burgos-Amador, R., Okeke, O., & Pawar, H. (2015). Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing. International Journal of Biological Macromolecules, 79, 63–71. doi: 10. 1016/ j.ijbiomac.2015.04.048
dc.relation.referencesen5. Oyen, M. L. (2013). Mechanical characterisation of hydrogel materials. International Materials Reviews, 59(1), 44–59. doi: 10.1179/1743280413y. 0000000022
dc.relation.referencesen6. Khan, A., Othman, M. B. H., Razak, K. A., & Akil, H. M. (2013). Synthesis and physicochemical investigation of chitosan-PMAA-based dual-responsive hydrogels. Journal of Polymer Research, 20(10). doi: 10.1007/s10965-013-0273-7
dc.relation.referencesen7. Peppas, N. A., Huang, Y., Torres-Lugo,M.,Ward, J. H., & Zhang, J. (2000). Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology. Annual Review of Biomedical Engineering, 2(1), 9–29. doi: 10.1146/annurev.bioeng.2.1.9
dc.relation.referencesen8. Schoener, C. A., Hutson, H. N., & Peppas, N. A. (2012). pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics. Journal of Biomedical Materials Research Part A, 101A(8), 2229–2236. doi: 10.1002/ jbm.a. 34532
dc.relation.referencesen9. Uyama, Y., Kato, K., & Ikada, Y. (n.d.). Surface Modification of Polymers by Grafting. Grafting/Characterization Techniques/Kinetic Modeling Advances in Polymer Science, 1–39. doi: 10.1007/3-540-69685-7_1
dc.relation.referencesen10. Tirrell, M., Kokkoli, E., & Biesalski, M. (2002). The role of surface science in bioengineered materials. Surface Science, 500(1-3), 61–83. doi: 10.1016/s0039-6028(01)01548-5
dc.relation.referencesen11. Reznickova, A., Kvitek, O., Kolarova, K., Smejkalova, Z., & Svorcik, V. (2017). Cell adhesion and proliferation on poly(tetrafluoroethylene) with plasma–metal and plasma–metal–carbon interfaces. Japanese Journal of Applied Physics, 56(6S1). doi: 10.7567/jjap.56.06gg03
dc.relation.referencesen12. Granados, E., Martinez-Calderon, M., Gomez, M., Rodriguez, A., & Olaizola, S. M. (2017). Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS). Optics Express, 25(13), 15330. doi: 10.1364/oe.25.015330
dc.relation.referencesen13. Varvarenko, S., Voronov, A., Samaryk, V., Tarnavchyk, I., Roiter, Y., Minko, S., … Voronov, S. (2011). Polyolefin surface activation by grafting of functional polyperoxide. Reactive and Functional Polymers, 71(2), 210–218. doi: 10.1016/ j.reactfunctpolym. 2010.11.028
dc.relation.referencesen14. Nosova, N., Roiter, Y., Samaryk, V., Varvarenko, S., Stetsyshyn, Y., Minko, S., … Voronov, S. (2004). Polypropylene surface peroxidation with heterofunctional polyperoxides. Macromolecular Symposia, 210(1), 339–348. doi: 10.1002/masy.20045063
dc.relation.referencesen15. Samaryk, V., Tarnavchyk, I., Voronov, A., Varvarenko, S., Nosova, N., Kohut, A., & Voronov, S. (2009). A New Acrylamide-Based Peroxide Monomer: Synthesis and Copolymerization with Octyl Methacrylate. Macromolecules, 42(17), 6495–6500. doi: 10.1021/ma901211s
dc.relation.referencesen16. Samaryk, V., Voronov, A., Tarnavchyk, I., Varvarenko, S., Nosova, N., Budishevskaya, O., Kohut, A., Voronov S. (2012) Formation of Coatings with Tailored Properties on Polyperoxide-Modified Polymeric Surfaces. Progress in Organic Coatings, 74(4), 687–696. doi.org/10.1016/j.porgcoat.2011.07.015
dc.relation.referencesen17. Van Krevelen, D. V. (1976). Svoystva i khimicheskoye stroyeniye polimerov. Moscov: Khimiya.
dc.relation.referencesen18. Hogt, A. H., Meijer, J., & Jelenič, J. (1997). Modification of polypropylene by organic peroxides. Reactive Modifiers for Polymers, 84–132. doi: 10.1007/978-94-009-1449-0_2
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectполіпропілен
dc.subjectмікроволокно
dc.subjectакрилова кислота
dc.subjectнаношар
dc.subjectполіпероксид
dc.subjectpolypropylene
dc.subjectmicrofiber
dc.subjectacrylic acid
dc.subjectnanolayer
dc.subjectpolyperoxide
dc.titleАрмування альгінат-желатинового гідрогелю функціоналізованим поліпропіленовим мікроволокном
dc.title.alternativeReinforcement of alginate-gelatin hydrogel using functionalized polypropylene microfiber
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v3n1_Nosova_N-Reinforcement_of_alginate_232-238.pdf
Size:
957.46 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v3n1_Nosova_N-Reinforcement_of_alginate_232-238__COVER.png
Size:
465.05 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.11 KB
Format:
Plain Text
Description: