Застосування методів штучного інтелекту в аналізі даних мобільних пристроїв для виявлення потенційно небезпечних осіб
| dc.citation.epage | 174 | |
| dc.citation.issue | 1 | |
| dc.citation.journalTitle | Комп'ютерні системи та мережі | |
| dc.citation.spage | 165 | |
| dc.citation.volume | 6 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Фединишин, Т. О. | |
| dc.contributor.author | Михайлова, О. О. | |
| dc.contributor.author | Fedynyshyn, T. | |
| dc.contributor.author | Mykhaylova, O. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-12-10T13:53:01Z | |
| dc.date.created | 2024-06-20 | |
| dc.date.issued | 2024-06-20 | |
| dc.description.abstract | У статті розглянуто методи ідентифікації потенційно небезпечних осіб (ПНО, також об’єкт оперативної зацікавленості або Person-Of-Interest) за даними мобільних пристроїв. Проблема є актуальною і не розв’язаною в діяльності правоохоронних, розвідувальних та інших органів, які провадять оперативно-розшукову діяльність, через велику кількість даних, що зберігаються на мобільних пристроях. З урахуванням складності й обсягу мобільних даних традиційні методи аналізу часто недостатньо ефективні. У статті пропонується використання штучного інтелекту (ШІ), зокрема машинне навчання та обробку природної мови, для покращення ефективності та швидкості аналізу даних мобільних пристроїв. Такий підхід спрямований на подолання обмежень ручного аналізу даних та покращення процесу ідентифікації ПНО в додержанні принципів криміналістичної достовірності. Основною метою роботи є дослідження та демонстрація ефективності застосування штучного інтелекту у процесі ідентифікації ПНО з використанням даних мобільних пристроїв. Дослідження пропонує підходи на основі штучного інтелекту, зокрема машинного навчання та обробки природної мови, які можуть значно підвищити ефективність, точність та глибину аналізу у мобільних форензичних дослідженнях, таким способом розв’язуючи проблеми обробки великих обсягів даних та складності сучасних цифрових доказів. У дослідженні, зокрема, продемонстровано, як машинне навчання може бути використане для пошуку ПНО в даних месенджераWhatsApp. Результат експерименту показує, що використання штучного інтелекту для розпізнавання облич може призводити до виникнення помилкових позитивних результатів, що означає, що людей не можна повністю замінити на поточному етапі еволюції штучного інтелекту. Водночас застосування глибокого навчання показало 88- відсоткову ефективність у розпізнаванні облич. Отримані результати підкреслюють трансформаційний потенціал штучного інтелекту в мобільній форензиці, виокремлюючи його здатність підвищувати точність та ефективність аналізу даних мобільних пристроїв. | |
| dc.description.abstract | The methods for identifying persons of interest (POI) based on mobile device data has been considered. The problem is relevant and unresolved in the activities of law enforcement, intelligence, and other agencies involved in operational search activities due to the large amount of data stored on mobile devices. Given the complexity and volume of mobile data, traditional analysis methods are often insufficiently effective. The authors propose use of artificial intelligence (AI), including machine learning and natural language processing, to improve the efficiency and speed of mobile device data analysis. This approach aims to overcome the limitations of manual data analysis and enhance the process of identifying POIs while adhering to the principles of forensic integrity. The research specifically demonstrates how machine learning can be utilized to search for persons of interest inWhatsApp messenger data. A method has been developed for decentralized control of adaptive data collection processes using the principle of equilibrium and reinforcement learning using the normalized exponential function method. The developed method allows for efficient operation of autonomous distributed systems in conditions of dynamic changes in the number of data collection processes and limited information interaction between them. The results of the experiment indicate that using artificial intelligence for facial recognition may result in false positive outcomes, implying that humans cannot be entirely replaced at the current stage of AI evolution. However, the application of deep learning showed an 88 % success rate in facial recognition. These findings underscore the transformative potential of artificial intelligence in mobile forensics, highlighting its capacity to enhance the accuracy and efficiency of data analysis in mobile devices. | |
| dc.format.extent | 165-174 | |
| dc.format.pages | 10 | |
| dc.identifier.citation | Фединишин Т. О. Застосування методів штучного інтелекту в аналізі даних мобільних пристроїв для виявлення потенційно небезпечних осіб / Т. О. Фединишин, О. О. Михайлова // Комп'ютерні системи та мережі. — Львів : Видавництво Львівської політехніки, 2024. — Том 6. — № 1. — С. 165–174. | |
| dc.identifier.citation2015 | Фединишин Т. О., Михайлова О. О. Застосування методів штучного інтелекту в аналізі даних мобільних пристроїв для виявлення потенційно небезпечних осіб // Комп'ютерні системи та мережі, Львів. 2024. Том 6. № 1. С. 165–174. | |
| dc.identifier.citationenAPA | Fedynyshyn, T., & Mykhaylova, O. (2024). Zastosuvannia metodiv shtuchnoho intelektu v analizi danykh mobilnykh prystroiv dlia vyiavlennia potentsiino nebezpechnykh osib [Artificial intelligence techniques application in the mobile device data analysis to identify person-of-interest]. Computer Systems and Networks, 6(1), 165-174. Lviv Politechnic Publishing House. [in Ukrainian]. | |
| dc.identifier.citationenCHICAGO | Fedynyshyn T., Mykhaylova O. (2024) Zastosuvannia metodiv shtuchnoho intelektu v analizi danykh mobilnykh prystroiv dlia vyiavlennia potentsiino nebezpechnykh osib [Artificial intelligence techniques application in the mobile device data analysis to identify person-of-interest]. Computer Systems and Networks (Lviv), vol. 6, no 1, pp. 165-174 [in Ukrainian]. | |
| dc.identifier.doi | DOI: https://doi.org/10.23939/csn2024.01.165 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/123946 | |
| dc.language.iso | uk | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Комп'ютерні системи та мережі, 1 (6), 2024 | |
| dc.relation.ispartof | Computer Systems and Networks, 1 (6), 2024 | |
| dc.relation.references | 1. Han H., Li J., Jain A. K., Shan S. and Chen X. Tattoo Image Search at Scale: Joint Detection and Compact Representation Learning in: IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 41, No. 10, pp. 2333–2348, 1 Oct. 2019, doi: 10.1109/TPAMI.2019.2891584 | |
| dc.relation.references | 2. Sanz-Urquijo B., Fosch-Villaronga E. & Lopez-Belloso M. The disconnect between the goals of trustworthy AI for law enforcement and the EU research agenda. AI Ethics 3, 1283–1294 (2023), https://doi.org/10.1007/s43681-022-00235-8 | |
| dc.relation.references | 3. Towards responsible ai innovation second interpol-unicri report on artificial intelligence for law enforcement,2020, Available at: https://www.interpol.int/content/download/15290/file/AI%20Report%20INTERPOL%20UNICRI.pdf (Accessed: 15 February 2024). | |
| dc.relation.references | 4. Sachoulidou A. Going beyond the “common suspects”: to be presumed innocent in the era of algorithms, big data and artificial intelligence. Artif Intell Law (2023). https://doi.org/10.1007/s10506-023-09347-w | |
| dc.relation.references | 5. Boger Nathaniel, Ozer Murat. Monitoring sewer systems to detect the eDNA of missing persons and persons of interest, Forensic Science International, Vol. 349, 2023, 111744, ISSN 0379-0738, https://doi.org/10.1016/j.forsciint.2023.111744 | |
| dc.relation.references | 6. Fedynyshyn T., Mykhaylova O., Opirskyy I., 2023. Method to detect suspicious individuals through mobile device data, doi: https://doi.org/10.18372/2225-5036.29.18075 | |
| dc.relation.references | 7. Forensic Data Analysis of Mobile Devices: A Primer | Kroll. Available at: https://www.kroll.com/en/insights/ publications/forensic-data-analysis-of-mobile-devices (Accessed: 15 February 2024). | |
| dc.relation.references | 8. Xiaoou Tang and Xiaogang Wang. Face sketch recognition, in: IEEE Transactions on Circuits and Systems for Video Technology, Vol. 14, No. 1, pp. 50–57, Jan. 2004, https://doi.org/10.1109/TCSVT.2003.818353 | |
| dc.relation.references | 9. Zafar U., GhafoorM., Zia T. et al. Face recognition with Bayesian convolutional networks for robust surveillance systems. J Image Video Proc. 2019, 10 (2019). https://doi.org/10.1186/s13640-019-0406-y | |
| dc.relation.references | 10. Awais M. et al. Real-Time Surveillance Through Face Recognition Using HOG and Feedforward Neural Networks, in: IEEE Access, Vol. 7, pp. 121236–121244, 2019, https://doi.org/10.1109/ACCESS.2019.2937810 | |
| dc.relation.references | 11. Melnyk R. A., Kvit R. I., Salo T. M. Face image profiles features extraction for recognition systems, 2021, doi: https://doi.org/10.36930/40310120 | |
| dc.relation.references | 12. Jose E. G. M., Haridas M. T. P. and Supriya M. H. Face Recognition based Surveillance System Using FaceNet and MTCNN on Jetson TX2, 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 2019, pp. 608–613, https://doi.org/10.1109/ICACCS.2019.8728466 | |
| dc.relation.references | 13. Chawla Dimple & Munesh Trivedi (Dr.) (2019). Face Recognition under Partial Occlusion for Security Surveillance Using Machine Learning. | |
| dc.relation.references | 14. IBM Design for AI, Fundamentals, 2022. Available at: https://www.ibm.com/design/ai/fundamentals/. (Accessed: 15 February 2024). | |
| dc.relation.references | 15. IBM, What is computer vision?, 2022. Available at: https://www.ibm.com/topics/computer-vision. (Accessed: 15 February 2024). | |
| dc.relation.references | 16. AWS What is Natural Language Processing (NLP)? 2024. Available at: https://aws.amazon.com/what-is/nlp/. (Accessed: 15 February 2024). | |
| dc.relation.references | 17. How Does Audio AI Work? (A guide for beginners), 2024. Available at: https://engineeryoursound.com/howdoes- audio-ai-work-a-guide-for-beginners/. (Accessed: 15 February 2024). | |
| dc.relation.references | 18. Expert system, 2024. Available at: https://en.wikipedia.org/wiki/Expert_system. (Accessed: 15 February 2024). | |
| dc.relation.references | 19. Lea Andrew S. (2023). Digitizing Diagnosis: Medicine, Minds, and Machines in Twentieth-Century America. Johns Hopkins University Press. pp. 1–256. ISBN 978-1421446813 | |
| dc.relation.references | 20. Adawadkar Amrin, Maria Khan, Kulkarni Nilima. Cyber-security and reinforcement learning – A brief survey, Engineering Applications of Artificial Intelligence, Vol. 114, 2022, 105116, ISSN 0952-1976, https://doi.org/10.1016/j.engappai.2022.105116 | |
| dc.relation.references | 21. Alsayaydeh Jamil Abedalrahim Jamil, Irianto, Azwan Aziz, Xin Chang Kai, Hossain A. K. M. Zakir and Herawan Safarudin Gazali. Face Recognition System Design and Implementation using Neural Networks. International Journal of Advanced Computer Science and Applications (IJACSA), 13(6), 2022.http://dx.doi.org/10.14569/IJACSA.2022.0130663 | |
| dc.relation.references | 22. Salimah U. et al. 2021 IOP Conf. Ser.: Mater. Sci. Eng. 1115 012023, https://doi.org/10.1088/1757-899X/1115/1/012023 | |
| dc.relation.references | 23. Sukardi Sukardi. (2022). Reconstruction of Financial Crime Investigation Methods in Law Enforcement in The Era of the Industrial Revolution 4.0. Unnes Law Journal. 8. 133–158. https://doi.org/10.15294/ulj.v8i1.53059. | |
| dc.relation.references | 24. Lagerwaard Pieter & Goede Marieke. (2023). In trust we share: The politics of financial intelligence sharing. Economy and Society. 52. 1–25. https://doi.org/10.1080/03085147.2023.2175451. | |
| dc.relation.references | 25. Rodrigues F. B., Giozza W. F., Albuquerque R. de Oliveira and Villalba L. J. García. Natural Language Processing Applied to Forensics Information Extraction With Transformers and Graph Visualization, in: IEEE Transactions on Computational Social Systems, https://doi.org/10.1109/TCSS.2022.3159677. | |
| dc.relation.references | 26. Studiawan H., Hasan M. F. and Pratomo B. A. Rule-based Entity Recognition for Forensic Timeline, 2023 Conference on Information Communications Technology and Society (ICTAS), Durban, South Africa, 2023, pp. 1–6, https://doi.org/10.1109/ICTAS56421.2023.10082742. | |
| dc.relation.references | 27. Gaby G. Dagher, Benjamin C. M. Fung. Subject-based semantic document clustering for digital forensic investigations, Data & Knowledge Engineering, Volume 86, 2013, P. 224–241, ISSN 0169-023X, https://doi.org/10.1016/j.datak.2013.03.005 | |
| dc.relation.references | 28. Shevchuk Denys, Harasymchuk Oleh, Partyka Andrii, Korshun Nataliia. Designing Secured Services for Authentication, Authorization, and Accounting of Users (short paper). CPITS II 2023: 217–225. | |
| dc.relation.references | 29. King Davis. dlib. Version 19.22, dlib.net, 2022. https://dlib.net. (Accessed: 15 February 2024). | |
| dc.relation.references | 30. Geitgey A. (2023). face_recognition (Version 1.3.0) [Software]. Available at: https://github.com/ageitgey/face_recognition. (Accessed: 15 February 2024). | |
| dc.relation.references | 31. Security Service of Ukraine, Wanted Persons, https://ssu.gov.ua/u-rozshuku. (Accessed: 15 February 2024). | |
| dc.relation.references | 32. Non-government Center for Research of Elements of Crimes against the National Security of Ukraine, Peace, Humanity, and the International Law Information for law enforcement authorities and special services about pro-Russian terrorists, separatists, mercenaries, war criminals, and murderers, https://myrotvorets.center/. (Accessed: 15 February2024). | |
| dc.relation.references | 33. WhatsApp | Secure and Reliable Free Private Messaging and Calling. Available at: https://www.whatsapp.com. (Accessed: 15 February 2024) | |
| dc.relation.references | 34. iMazing | iPhone, iPad & iPod Manager for Mac & PC. Available at: https://imazing.com. (Accessed: 15 February 2024). | |
| dc.relation.referencesen | 1. Han H., Li J., Jain A. K., Shan S. and Chen X. Tattoo Image Search at Scale: Joint Detection and Compact Representation Learning in: IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 41, No. 10, pp. 2333–2348, 1 Oct. 2019, doi: 10.1109/TPAMI.2019.2891584 | |
| dc.relation.referencesen | 2. Sanz-Urquijo B., Fosch-Villaronga E. & Lopez-Belloso M. The disconnect between the goals of trustworthy AI for law enforcement and the EU research agenda. AI Ethics 3, 1283–1294 (2023), https://doi.org/10.1007/s43681-022-00235-8 | |
| dc.relation.referencesen | 3. Towards responsible ai innovation second interpol-unicri report on artificial intelligence for law enforcement,2020, Available at: https://www.interpol.int/content/download/15290/file/AI%20Report%20INTERPOL%20UNICRI.pdf (Accessed: 15 February 2024). | |
| dc.relation.referencesen | 4. Sachoulidou A. Going beyond the "common suspects": to be presumed innocent in the era of algorithms, big data and artificial intelligence. Artif Intell Law (2023). https://doi.org/10.1007/s10506-023-09347-w | |
| dc.relation.referencesen | 5. Boger Nathaniel, Ozer Murat. Monitoring sewer systems to detect the eDNA of missing persons and persons of interest, Forensic Science International, Vol. 349, 2023, 111744, ISSN 0379-0738, https://doi.org/10.1016/j.forsciint.2023.111744 | |
| dc.relation.referencesen | 6. Fedynyshyn T., Mykhaylova O., Opirskyy I., 2023. Method to detect suspicious individuals through mobile device data, doi: https://doi.org/10.18372/2225-5036.29.18075 | |
| dc.relation.referencesen | 7. Forensic Data Analysis of Mobile Devices: A Primer | Kroll. Available at: https://www.kroll.com/en/insights/ publications/forensic-data-analysis-of-mobile-devices (Accessed: 15 February 2024). | |
| dc.relation.referencesen | 8. Xiaoou Tang and Xiaogang Wang. Face sketch recognition, in: IEEE Transactions on Circuits and Systems for Video Technology, Vol. 14, No. 1, pp. 50–57, Jan. 2004, https://doi.org/10.1109/TCSVT.2003.818353 | |
| dc.relation.referencesen | 9. Zafar U., GhafoorM., Zia T. et al. Face recognition with Bayesian convolutional networks for robust surveillance systems. J Image Video Proc. 2019, 10 (2019). https://doi.org/10.1186/s13640-019-0406-y | |
| dc.relation.referencesen | 10. Awais M. et al. Real-Time Surveillance Through Face Recognition Using HOG and Feedforward Neural Networks, in: IEEE Access, Vol. 7, pp. 121236–121244, 2019, https://doi.org/10.1109/ACCESS.2019.2937810 | |
| dc.relation.referencesen | 11. Melnyk R. A., Kvit R. I., Salo T. M. Face image profiles features extraction for recognition systems, 2021, doi: https://doi.org/10.36930/40310120 | |
| dc.relation.referencesen | 12. Jose E. G. M., Haridas M. T. P. and Supriya M. H. Face Recognition based Surveillance System Using FaceNet and MTCNN on Jetson TX2, 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 2019, pp. 608–613, https://doi.org/10.1109/ICACCS.2019.8728466 | |
| dc.relation.referencesen | 13. Chawla Dimple & Munesh Trivedi (Dr.) (2019). Face Recognition under Partial Occlusion for Security Surveillance Using Machine Learning. | |
| dc.relation.referencesen | 14. IBM Design for AI, Fundamentals, 2022. Available at: https://www.ibm.com/design/ai/fundamentals/. (Accessed: 15 February 2024). | |
| dc.relation.referencesen | 15. IBM, What is computer vision?, 2022. Available at: https://www.ibm.com/topics/computer-vision. (Accessed: 15 February 2024). | |
| dc.relation.referencesen | 16. AWS What is Natural Language Processing (NLP)? 2024. Available at: https://aws.amazon.com/what-is/nlp/. (Accessed: 15 February 2024). | |
| dc.relation.referencesen | 17. How Does Audio AI Work? (A guide for beginners), 2024. Available at: https://engineeryoursound.com/howdoes- audio-ai-work-a-guide-for-beginners/. (Accessed: 15 February 2024). | |
| dc.relation.referencesen | 18. Expert system, 2024. Available at: https://en.wikipedia.org/wiki/Expert_system. (Accessed: 15 February 2024). | |
| dc.relation.referencesen | 19. Lea Andrew S. (2023). Digitizing Diagnosis: Medicine, Minds, and Machines in Twentieth-Century America. Johns Hopkins University Press. pp. 1–256. ISBN 978-1421446813 | |
| dc.relation.referencesen | 20. Adawadkar Amrin, Maria Khan, Kulkarni Nilima. Cyber-security and reinforcement learning – A brief survey, Engineering Applications of Artificial Intelligence, Vol. 114, 2022, 105116, ISSN 0952-1976, https://doi.org/10.1016/j.engappai.2022.105116 | |
| dc.relation.referencesen | 21. Alsayaydeh Jamil Abedalrahim Jamil, Irianto, Azwan Aziz, Xin Chang Kai, Hossain A. K. M. Zakir and Herawan Safarudin Gazali. Face Recognition System Design and Implementation using Neural Networks. International Journal of Advanced Computer Science and Applications (IJACSA), 13(6), 2022.http://dx.doi.org/10.14569/IJACSA.2022.0130663 | |
| dc.relation.referencesen | 22. Salimah U. et al. 2021 IOP Conf. Ser., Mater. Sci. Eng. 1115 012023, https://doi.org/10.1088/1757-899X/1115/1/012023 | |
| dc.relation.referencesen | 23. Sukardi Sukardi. (2022). Reconstruction of Financial Crime Investigation Methods in Law Enforcement in The Era of the Industrial Revolution 4.0. Unnes Law Journal. 8. 133–158. https://doi.org/10.15294/ulj.v8i1.53059. | |
| dc.relation.referencesen | 24. Lagerwaard Pieter & Goede Marieke. (2023). In trust we share: The politics of financial intelligence sharing. Economy and Society. 52. 1–25. https://doi.org/10.1080/03085147.2023.2175451. | |
| dc.relation.referencesen | 25. Rodrigues F. B., Giozza W. F., Albuquerque R. de Oliveira and Villalba L. J. García. Natural Language Processing Applied to Forensics Information Extraction With Transformers and Graph Visualization, in: IEEE Transactions on Computational Social Systems, https://doi.org/10.1109/TCSS.2022.3159677. | |
| dc.relation.referencesen | 26. Studiawan H., Hasan M. F. and Pratomo B. A. Rule-based Entity Recognition for Forensic Timeline, 2023 Conference on Information Communications Technology and Society (ICTAS), Durban, South Africa, 2023, pp. 1–6, https://doi.org/10.1109/ICTAS56421.2023.10082742. | |
| dc.relation.referencesen | 27. Gaby G. Dagher, Benjamin C. M. Fung. Subject-based semantic document clustering for digital forensic investigations, Data & Knowledge Engineering, Volume 86, 2013, P. 224–241, ISSN 0169-023X, https://doi.org/10.1016/j.datak.2013.03.005 | |
| dc.relation.referencesen | 28. Shevchuk Denys, Harasymchuk Oleh, Partyka Andrii, Korshun Nataliia. Designing Secured Services for Authentication, Authorization, and Accounting of Users (short paper). CPITS II 2023: 217–225. | |
| dc.relation.referencesen | 29. King Davis. dlib. Version 19.22, dlib.net, 2022. https://dlib.net. (Accessed: 15 February 2024). | |
| dc.relation.referencesen | 30. Geitgey A. (2023). face_recognition (Version 1.3.0) [Software]. Available at: https://github.com/ageitgey/face_recognition. (Accessed: 15 February 2024). | |
| dc.relation.referencesen | 31. Security Service of Ukraine, Wanted Persons, https://ssu.gov.ua/u-rozshuku. (Accessed: 15 February 2024). | |
| dc.relation.referencesen | 32. Non-government Center for Research of Elements of Crimes against the National Security of Ukraine, Peace, Humanity, and the International Law Information for law enforcement authorities and special services about pro-Russian terrorists, separatists, mercenaries, war criminals, and murderers, https://myrotvorets.center/. (Accessed: 15 February2024). | |
| dc.relation.referencesen | 33. WhatsApp | Secure and Reliable Free Private Messaging and Calling. Available at: https://www.whatsapp.com. (Accessed: 15 February 2024) | |
| dc.relation.referencesen | 34. iMazing | iPhone, iPad & iPod Manager for Mac & PC. Available at: https://imazing.com. (Accessed: 15 February 2024). | |
| dc.relation.uri | https://doi.org/10.1007/s43681-022-00235-8 | |
| dc.relation.uri | https://www.interpol.int/content/download/15290/file/AI%20Report%20INTERPOL%20UNICRI.pdf | |
| dc.relation.uri | https://doi.org/10.1007/s10506-023-09347-w | |
| dc.relation.uri | https://doi.org/10.1016/j.forsciint.2023.111744 | |
| dc.relation.uri | https://doi.org/10.18372/2225-5036.29.18075 | |
| dc.relation.uri | https://www.kroll.com/en/insights/ | |
| dc.relation.uri | https://doi.org/10.1109/TCSVT.2003.818353 | |
| dc.relation.uri | https://doi.org/10.1186/s13640-019-0406-y | |
| dc.relation.uri | https://doi.org/10.1109/ACCESS.2019.2937810 | |
| dc.relation.uri | https://doi.org/10.36930/40310120 | |
| dc.relation.uri | https://doi.org/10.1109/ICACCS.2019.8728466 | |
| dc.relation.uri | https://www.ibm.com/design/ai/fundamentals/ | |
| dc.relation.uri | https://www.ibm.com/topics/computer-vision | |
| dc.relation.uri | https://aws.amazon.com/what-is/nlp/ | |
| dc.relation.uri | https://engineeryoursound.com/howdoes- | |
| dc.relation.uri | https://en.wikipedia.org/wiki/Expert_system | |
| dc.relation.uri | https://doi.org/10.1016/j.engappai.2022.105116 | |
| dc.relation.uri | http://dx.doi.org/10.14569/IJACSA.2022.0130663 | |
| dc.relation.uri | https://doi.org/10.1088/1757-899X/1115/1/012023 | |
| dc.relation.uri | https://doi.org/10.15294/ulj.v8i1.53059 | |
| dc.relation.uri | https://doi.org/10.1080/03085147.2023.2175451 | |
| dc.relation.uri | https://doi.org/10.1109/TCSS.2022.3159677 | |
| dc.relation.uri | https://doi.org/10.1109/ICTAS56421.2023.10082742 | |
| dc.relation.uri | https://doi.org/10.1016/j.datak.2013.03.005 | |
| dc.relation.uri | https://dlib.net | |
| dc.relation.uri | https://github.com/ageitgey/face_recognition | |
| dc.relation.uri | https://ssu.gov.ua/u-rozshuku | |
| dc.relation.uri | https://myrotvorets.center/ | |
| dc.relation.uri | https://www.whatsapp.com | |
| dc.relation.uri | https://imazing.com | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.rights.holder | © Фединишин Т. О., Михайлова О. О., 2024 | |
| dc.subject | штучний інтелект | |
| dc.subject | мобільний форензик | |
| dc.subject | криміналістичний аналіз даних | |
| dc.subject | ios | |
| dc.subject | ||
| dc.subject | artificial intelligence | |
| dc.subject | mobile forensics data analysis | |
| dc.subject | ios | |
| dc.subject | ||
| dc.subject.udc | 004.75 | |
| dc.subject.udc | 004.8 | |
| dc.title | Застосування методів штучного інтелекту в аналізі даних мобільних пристроїв для виявлення потенційно небезпечних осіб | |
| dc.title.alternative | Artificial intelligence techniques application in the mobile device data analysis to identify person-of-interest | |
| dc.type | Article |