Hydrogels in Biomedicine: Granular Controlled Release Systems Based on 2-Hydroxyethyl Methacrylate Copolymers. A Review

dc.citation.epage156
dc.citation.issue2
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage143
dc.citation.volume18
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorSemenyuk, Nataliya
dc.contributor.authorDudok, Galyna
dc.contributor.authorSkorokhoda, Volodymyr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:47:53Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractПроаналізовано й узагальнено останні досягнення в галузі створення полімерних систем для пристроїв контрольованого вивільнення речовин у середовище дії на основі гідрогелевих матеріалів. Представлено можливі напрями доставки ліків, зокрема за допомогою гранульних гідрогелів, які працюють за принципом сорбція лікарського засобу вивільнення його в організмі. Проаналізовано дослідження закономірностей синтезу, структури, властивостей і перспектив застосування гранульних гідрогелів на основі 2-гідроксіетилметакрилату та його кополімерів, зокрема з полівінілпіролідоном, як систем контрольованого вивільнення речовин, зокрема ліків.
dc.description.abstractThe article analyzes and summarizes the latest achievements in the field of polymer systems for controlled release devices based on hydrogel materials. Possible directions of drug delivery are presented, including the use of granular hydrogels, which work on the principle of drug sorption − release in the body. The research on the synthesis regularities, structure, properties, and prospects for the use of granular hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and its copolymers, in particular with polyvinylpyrrolidone (PVP), as systems for the controlled release of substances, in particular, drugs, is analyzed.
dc.format.extent143-156
dc.format.pages14
dc.identifier.citationSemenyuk N. Hydrogels in Biomedicine: Granular Controlled Release Systems Based on 2-Hydroxyethyl Methacrylate Copolymers. A Review / Nataliya Semenyuk, Galyna Dudok, Volodymyr Skorokhoda // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 143–156.
dc.identifier.citationenSemenyuk N. Hydrogels in Biomedicine: Granular Controlled Release Systems Based on 2-Hydroxyethyl Methacrylate Copolymers. A Review / Nataliya Semenyuk, Galyna Dudok, Volodymyr Skorokhoda // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 143–156.
dc.identifier.doidoi.org/10.23939/chcht18.02.143
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111794
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 2 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 2 (18), 2024
dc.relation.references[1] Campbell, S.; Smeets, N. Drug Delivery: Polymers in the Development of Controlled Release Systems. In Functional Polymers. Polymers and Polymeric Composites: A Reference Series; Springer, Cham., 2019; pp 1–29. https://doi.org/10.1007/978-3-319-92067-2_20-1
dc.relation.references[2] Giammona, G.; Craparo, E.F. Polymer-Based Systems for Controlled Release and Targeting of Drugs. Polymer 2019, 11, 2066. https://doi.org/10.3390/polym11122066
dc.relation.references[3] Suberlyak, O.; Skorokhoda, V.; Semenyuk, N.; Lukan, G.; Chopyk, N. Microspheric Hydrogel Polymers as Effective Drug Delivery Systems. Czasopismo techniczne 2006, 6-M, 463–466. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BGPK-1801-6825?q=bwmeta1.element.baztech-volume-1897-6328-cz
dc.relation.references[4] Benoit, D.S.W.; Overby, C.T.; Sims Jr, K.R.; Ackun-Farmmer, M.A. 2.5.12 - Drug delivery systems; Biomaterials Science. In Biomaterials Science; Eds. Academic Press, 2020; pp 1237–1266. https://doi.org/10.1016/B978-0-12-816137-1.00078-7
dc.relation.references[5] Sánchez, A.; Mejía, S.P.; Orozco, J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020, 25, 3760. https://doi.org/10.3390/molecules25163760
dc.relation.references[6] Miladi K.; Ibraheem D.; Iqbal M.; Sfar S.; Fessi H.; Elaissari A. Particles from Preformed Polymers as Carriers for Drug Delivery. EXCLI J. 2014, 13, 28–57. https://doi.org/10.17877/DE290R-15560
dc.relation.references[7] Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. https://doi.org/10.3390/gels9070523
dc.relation.references[8] Suberlyak, O.; Skorokhoda, V. Hydrogels Based on Polyvinylpyrrolidone Copolymers. In Hydrogels; Haider, S.; Haider, A., Eds.; IntechOpen; London, 2018; pp 136–214. https://doi.org/10.5772/intechopen.72082
dc.relation.references[9] Zhang, W.; Chen, S.; Jiang, W.; Zhang, Q.; Liu, N.; Wang, Z.; Li, Z.; Zhang, D. Double-Network Hydrogels for Biomaterials: Structure-Property Relationships and Drug Delivery. Eur. Polym. J. 2023, 185, 111807. https://doi.org/10.1016/j.eurpolymj.2022.111807
dc.relation.references[10] Drury, J.L.; Mooney, D.J. Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications. Biomater. 2003, 24, 4337–4351. https://doi.org/10.1016/s0142-9612(03)00340-5
dc.relation.references[11] Lin, C.; Anseth, K. PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharm. Res. 2009, 26, 631–643. https://doi.org/10.1007/s11095-008-9801-2
dc.relation.references[12] Slaughter, B.V.; Khurshid, S.S.; Omar, Z.F.; Khademhosseini, A.; Peppas, N.A. Hydrogels in Regenerative Medicine. J. Adv. Mater. 2009, 21, 3307–3329. https://doi.org/10.1002/adma.200802106
dc.relation.references[13] Thi, T.T.H.; Laney M.; Zhang, H.; Martinez, F.; Lee, Y.; Jang, Y. C. Designing Biofunctional Hydrogels for Stem Cell Biology and Regenerative Medicine Applications. J. Ind. Eng. Chem. 2024, 129, 69–104. https://doi.org/10.1016/j.jiec.2023.08.042
dc.relation.references[14] Toh, W.S.; Loh, X.J. Advances in Hydrogel Delivery Systems for Tissue Regeneration. Mater. Sci. Eng. C 2014, 45, 690–697. https://doi.org/10.1016/j.msec.2014.04.026
dc.relation.references[15] Ji, D.Y.; Kuo, T.F.; Wu, H.D.; Yang, J.C.; Lee, S.Y. A Novel Injectable Chitosan/Polyglutamate Polyelectrolyte Complex Hydrogel with Hydroxyapatite for Soft-Tissue Augmentation. Carbohydr. Polym. 2012, 89, 1123–1130. https://doi.org/10.1016/j.carbpol.2012.03.083
dc.relation.references[16] Liu, X.; Liu, J.; Lin, S.; Zhao, X. Hydrogel Machines. Mater. Today 2020, 36, 102–124. https://doi.org/10.1016/j.mattod.2019.12.026
dc.relation.references[17] Mahinroosta, M.; Farsangi, Z. J.; Allahverdi, A.; Shakoori, Z. Hydrogels as Intelligent Materials: A Brief Review of Synthesis, Properties and Applications. Mater. Today Chem. 2018, 8, 42–55. https://doi.org/10.1016/j.mtchem.2018.02.004
dc.relation.references[18] Mehta P.; Sharma, M.; Devi, M. Hydrogels: An Overview of its Classifications, Properties, and Applications. J. Mech. Behav. Biomed. Mater. 2023, 147, 106145. https://doi.org/10.1016/j.jmbbm.2023.106145
dc.relation.references[19] Varaprasad, K.; Raghavendra, G. M.; Jayaramudu, T.; Yallapu, M. M.; Sadiku, R. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Mater. Sci. Eng.: C 2017, 79, 958–971. https://doi.org/10.1016/j.msec.2017.05.096
dc.relation.references[20] Kapate N.; Clegg J. R.; Mitragotri S. Non-Spherical Micro- and Nanoparticles for Drug Delivery: Progress over 15 Years. Adv. Drug Deliv. Rev. 2021, 177, 113807. https://doi.org/10.1016/j.addr.2021.05.017
dc.relation.references[21] Wang, L.; Li, L.; Sun, Y.; Ding, J.; Li, J.; Duan, X.; Li, Y.; Junyaprasert, V.B.; Mao, S. In vitro and in vivo Evaluation of Chitosan Graft Glyceryl Monooleate as Peroral Delivery Carrier of Enoxaparin. Int. J. Pharm. 2014, 471, 391–399. https://doi.org/10.1016/j.ijpharm.2014.05.050
dc.relation.references[22] Motlekar, N.A.; Youan, B.B.C. The Quest for Non-Invasive Delivery of Bioactive Macromolecules: A Focus on Heparins. J. Control Release 2006, 113, 91–101. https://doi.org/10.1016/j.jconrel.2006.04.008
dc.relation.references[23] Lai, W. F.; He, Z. D. Design and Fabrication of Hydrogel-Based Nanoparticulate Systems for in vivo Drug Delivery. J. Control Release 2016, 243, 269–82. https://doi.org/10.1016/j.jconrel.2016.10.013
dc.relation.references[24] Akgöl, S.; Öztürk, N.; Denizli, A. New Generation Polymeric Nanospheres for Catalase Immobilization. J. Appl. Polym. Sci. 2009, 114, 962–970. https://doi.org/10.1002/app.29790
dc.relation.references[25] Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Sci. Pharm. 2019, 87, 20. https://doi.org/10.3390/scipharm87030020
dc.relation.references[26] Zhang, Y.; Huang, Y. Rational Design of Smart Hydrogels for Biomedical Applications. Front. Chem. 2021, 8, 6156565. https://doi.org/10.3389/fchem.2020.615665
dc.relation.references[27] Brooks, B.W. Suspension Polymerization Processes. Chem. Eng. Technol. 2010, 33, 1737–1744. https://doi.org/10.1002/ceat.201000210
dc.relation.references[28] Kesharwani, P.; Bisht, A.; Alexander, A.; Dave, V.; Sharma, S. Biomedical Applications of Hydrogels in Drug Delivery System: An Update. J. Drug Deliv. Sci. Technol. 2021, 66, 102914. https://doi.org/10.1016/j.jddst.2021.102914
dc.relation.references[29] Gelli, R.; Mugnaini, G.; Bolognesi, T.; Bonini, M. Cross-Linked Porous Gelatin Microparticles with Tunable Shape, Size and Porosity. Langmuir 2021, 37, 12781–12789. https://doi.org/10.1021/acs.langmuir.1c01508
dc.relation.references[30] Quadrado, R.F.N.; Fajardo, A.R. Microparticles Based on Carboxymethyl Starch/Chitosan Polyelectrolyte Complex as Vehicles for Drug Delivery Systems. Arab. J. Chem. 2020, 13, 2183–2194. https://doi.org/10.1016/j.arabjc.2018.04.004
dc.relation.references[31] Goyal, P. K.; Khurana, S.; Mittal, A. Hydrogel-Bound Cytotoxic Drug Delivery System for Breast Cancer. Health Sci. Rev. 2023, 9, 100140. https://doi.org/10.1016/j.hsr.2023.100140
dc.relation.references[32] Holcapkova, P.; Hrabalikova, M.; Stoplova, P.; Sedlarik, V. Core-Shell PLA-PVA Porous Microparticles as Carriers for Bacteriocin Nisin. J. Microencapsul. 2017, 34, 243–249. https://doi.org/10.1080/02652048.2017.1324919
dc.relation.references[33] Peterson, T.E.; Gigliobianco, G.; Sherborne, C.; Green, N.H.; Dugan, J.M.; MacNeil, S.; Reilly, G.C.; Claeyssens, F. Porous Microspheres Support Mesemchymal Progenitor Cell Ingrowth and Stimulate Angiogenesis. APL Bioeng. 2018,2, 026103. https://doi.org/10.1063/1.5008556
dc.relation.references[34] Ray, P.; Maity, M.; Barik, H.; Sahoo, G. S.; Hasnain, M. S.; Hoda, M. N.; Nayak, A. K. Chapter 3 - Alginate-Based Hydrogels for Drug Delivery Applications. In Alginates in Drug Delivery; Academic Press, 2020; pp 41–70. https://doi.org/10.1016/B978-0-12-817640-5.00003-0
dc.relation.references[35] Ai, Y.; Lin, Zh.; Zhao, W.; Cui, M.; Qi, W.; Huang, R.; Su, R. Nanocellulose-Based Hydrogels for Drug Delivery. J. Mater. Chem. B 2023, 30, 7004–7023. https://doi.org/10.1039/D3TB00478C
dc.relation.references[36] Park, J.; Lim, Y.; Baik, J.J.; Jeong, J.; An, S.; Jeong, S.I.; Gwon, H.; & Khil, M.S. Preparation and Evaluation of β-Glucan Hydrogel Prepared by the Radiation Technique for Drug Carrier Applications. Int. J. Biol. Macromol. 2018, 118, 333–339. https://doi.org/10.1016/j.ijbiomac.2018.06.068
dc.relation.references[37] Chen, L.; Deng, X.; Tian, L.; Xie,J.; Xiang, Y.; Liang, X.; Jiang, L.; Jiang, L. Preparation and Properties of Chitosan/Dialdehyde Sodium Alginate/Dopamine Magnetic Drug-Delivery Hydrogels. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 13273. https://doi.org/10.1016/j.colsurfa.2023.132739
dc.relation.references[38] Auriemma, G.; Russo, P.; Del Gaudio, P.; García-González, C.A.; Landín, M.; Aquino, R.P. Technologies and Formulation Design of Polysaccharide-Based Hydrogels for Drug Delivery. Molecules 2020, 25, 3156. https://doi.org/10.3390/molecules25143156
dc.relation.references[39] Drăgan, E.S.; Cocarta, A.I.; Gierszewska, M. Designing Novel Macroporous Composite Hydrogels Based on Methacrylic Acid Copolymers and Chitosan and in vitro Assessment of Lysozyme Controlled Delivery. Colloids Surf. B 2016, 139, 33–41. https://doi.org/10.1016/j.colsurfb.2015.12.011
dc.relation.references[40] Jing, Z.; Zhang, G.; Sun, X.F.; Shi, X.; Sun, W. Preparation and Adsorption Properties of a Novel Superabsorbent Based on Multiwalled Carbon Nanotubes–Xylan Composite and Poly(Methacrylic Acid) for Methylene Blue from Aqueous Solution. Polym. Compos. 2014, 35, 1516. https://doi.org/10.1002/pc.22805
dc.relation.references[41] Wang, Y.; Yuan, Z.C.; Chen, D.J. Thermo- and pH-sensitive Behavior of Hydrogels Based on Oligo (Ethylene Glycol) Methacrylates and Acrylic Acid. J Mater Sci. 2012, 47, 1280–1288. https://doi.org/10.1007/s10853-011-5901-1
dc.relation.references[42] Chen, Y.; Sun, P. pH-Sensitive Polyampholyte Microgels of Poly(Acrylic Acid-co-Vinylamine) as Injectable Hydrogel for Controlled Drug Release. Polymers 2019, 11, 285. https://doi.org/10.3390/polym11020285
dc.relation.references[43] Tomar, N.; Tomar, M.; Nagaich, U. pHEMA Hydrogels: Devices for Ocular Drug Delivery. Int. J. Health Allied Sci. 2012, 1, 224–230. https://www.ijhas.in/text.asp?2012/1/4/224/107844
dc.relation.references[44] Goyal, P.; Dhar, R.; Sagiri, S.; Uvanesh, K.; Senthilguru, K.; Shankar, G.; Samal, A.; Pramanik, K.; Banerjee, I.; Ray, S.S.; et al. Synthesis and Characterization of Novel Dual Environment-Responsive Hydrogels of Hydroxyethyl Methacrylate and Methyl Cellulose. Des. Monomers Polym. 2015, 18, 367–377. https://doi.org/10.1080/15685551.2015.1012626
dc.relation.references[45] Musgrave, C.; Fang, F. Contact Lens Materials: A Materials Science Perspective. Materials 2019, 12, 261. https://doi.org/10.3390/ma12020261
dc.relation.references[46] Ferreira, L.; Vidal, M.; Gil, M.H. Evaluation of Poly(2-Hydroxyethyl Methacrylate) Gels as Drug Delivery Systems at Different pH Values. Int. J. Pharm. 2000, 194, 169–180.https://doi.org/10.1016/S0378-5173(99)00375-0
dc.relation.references[47] Saini, R.K.; Bagri, L.P.; Bajpai, A.K. Poly (2-hydroxyethyl methacrylate) (PHEMA) Based Nanoparticles for Drug Delivery Applications: A review. Nano Sci. and Nano Technol.: An Indian J. 2014, 8, 416–427. https://doi.org/10.1007/978-1-61779-953-2_26
dc.relation.references[48] Passos, M.F.; Carvalho, N.M.S.; Rodrigues, A.A.; Bavaresco, V.P.; Jardini, A.L.; Maciel, M.R.W.; Filho, R.M. PHEMA Hydrogels Obtained by Infrared Radiation for Cartilage Tissue Engineering. Int. J. Chem. Eng. 2019, 2019, 1–9. https://doi.org/10.1155/2019/4249581
dc.relation.references[49] Zare, M.; Bigham, A.; Zare, M.; Luo, H.; Rezvani Ghomi, E.; Ramakrishna, S. pHEMA: An Overview for Biomedical Applications. Int. J. Mol. Sci. 2021, 22, 6376. https://doi.org/10.3390/ijms22126376
dc.relation.references[50] Horak, D.; Lednicky, F.; Bleha, M. Effect of Inert Components on the Porous Structure of 2-Hydroxyethyl Methacrylate-Ethylene Dimethacrylate Copolymers. Polymer 1996, 37, 4243–4249. https://doi.org/10.1016/0032-3861(96)00259-5
dc.relation.references[51] Paljevac, M.; Krajnc, P.; Hanková, L.; Holub, L.; Droumaguet, B. L.; Grande, D.; Jeřábek, K. Two-Step Syneretic Formation of Highly Porous Morphology during Copolymerization of Hydroxyethyl Methacrylate and Ethylene Glycol Dimethylacrylate. Mater. Today Commun. 2016, 7, 16–21. https://doi.org/10.1016/j.mtcomm.2016.02.004
dc.relation.references[52] Reyes, P.; Edeleva, M.; D’hooge, D.R.; Cardon, L.; Cornillie, P. Combining Chromatographic, Rheological, and Mechanical Analysis to Study the Manufacturing Potential of Acrylic Blends into Polyacrylic Casts. Materials 2021, 14, 6939. https://doi.org/10.3390/ma14226939
dc.relation.references[53] Xiao, J.; Lu, Q.; Cong, H.; Shen, Y.; Yu, B. Microporous Poly(Glycidyl Methacrylate-co-Ethylene Glycol Dimethyl Acrylate) Microspheres: Synthesis, Functionalization and Applications. Polym. Chem. 2021, 12, 6050–6070. https://doi.org/10.1039/d1py00834j
dc.relation.references[54] Kierys, A.; Grochowicz, M.; Kosik, P. The release of Ibuprofen Sodium Salt from Permanently Porous Poly(Hydroxyethyl Methacrylate-co-trimethylolpropane Trimethacrylate) Resins. Microporous Mesoporous Mater. 2015, 217, 133–140. https://doi.org/10.1016/j.micromeso.2015.06.009
dc.relation.references[55] Svec, F.; Labsky, J.; Lanyova, L.; Hradil, J.; Pokorny, S.; Kalal, J. Reactive polymers. The Synthesis of 2-Hydroxypropylene Dimethacrylate in a Mixture with Glycidyl Methacrylate and their Copolymerization to a Macroporous Product. Angew. Makromol. Chem. 1980, 90, 47–55. https://doi.org/10.1002/apmc.1980.050900105
dc.relation.references[56] Horak, D.; Labsky, J. A Novel Hydrophilic Crosslinker in Preparation of Hydrophilic Sorbents. React. Polym. 1997, 32, 277–280. https://doi.org/10.1016/S1381-5148(97)00010-2
dc.relation.references[57] Kotha, A.; Raman, R.; Ponrathnam, S.; Kumar, K.; Shewale, J. Beaded Reactive Polymers. 3. Effect of Triacrylates as Crosslinkers on the Physical Properties of Glycidyl Methacrylate Copolymers and Immobilization of penicillin G acylase. Appl. Biochem. Biotechnol. 1998, 74, 191–203. https://doi.org/10.1007/BF02825965
dc.relation.references[58] Norhayati, A.; Mohammad Zuhaili, Y.; Rabiatuladawiah, M. Synthesis and Characterization of poly(HEMA-co-EGDMA-co-VBC) by Modified Suspension Polymerization: Effects of Polymerization Parameters Reaction on Chemical and Thermal Properties of Polymer. Mater. Today: Proc. 2018, 5, 22010–22019. https://doi.org/10.1016/j.matpr.2018.07.062
dc.relation.references[59] Jayakrishnan, A.; Thanoo, B. C. Suspension Polymerization of 2-Hydroxyethyl Methacrylate in the Presence of Polymeric Diluents: A Novel Route to Spherical Highly Porous Beads for Biomedical Applications. J. Biomed. Mater. Res. 1990, 24, 913–927. https://doi.org/10.1002/jbm.820240709
dc.relation.references[60] Madkour, M.; Bumajdad, A.; & Al-Sagheer, F. To what extent do polymeric stabilizers affect nanoparticles characteristics? Adv. Colloid Interface Sci. 2019, 270, 38–53. https://doi.org/10.1016/j.cis.2019.05.004
dc.relation.references[61] Horak, D.; Pelzbauer, Z.; Svec F., Kalal, J. Reactive Polymers. 3. The Influence of the Suspension Stabilizer on the Morphology of a Suspension Polymer. J. Appl. Polym. Sci. 1981, 26, 3205–3211. https://doi.org/10.1002/app.1981.070261002
dc.relation.references[62] Rienda, J. M. Release of Gentamicin Sulphate from a Modified Commercial Bone Cement. Effect of (2-Hydroxyethyl Methacrylate) Comonomer and poly(N-vinyl-2-pyrrolidone) Additive on Release Mechanism and Kinetics. Biomater. 2002, 23, 3787–3797. https://doi.org/10.1016/s0142-9612(02)00028-5
dc.relation.references[63] Puig, J E.; Mendizabal, E. Suspension Polymerization. In Polymeric Materials Encyclopedia; CRC Press, New York, 1996; pp 8215–8220. https://doi.org/10.1201/9780367811686
dc.relation.references[64] Vatankhah, Z.; Dehghani, E.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. One-Step Fabrication of Low Cytotoxic Anisotropic Poly(2-Hydroxyethyl Methacrylate-co-Methacrylic Acid) Particles for Efficient Release of DOX. J Drug Deliv Sci Tec. 2019, 54, 101332. https://doi.org/10.1016/j.jddst.2019.101332
dc.relation.references[65] Raoufinia, R.; Mota, A.; Keyhanvar, N.; Safari, F.; Shamekhi, S.; Abdolalizadeh, J. Overview of Albumin and Its Purification Methods. Adv. Pharm. Bull. 2016, 6, 495–507. https://doi.org/10.15171/apb.2016.063
dc.relation.references[66] Horák, D.; Hlídková, H.; Kit, Y.; Antonyuk, V.; Myronovsky, S.; Stoika, R. Magnetic Poly(2-Hydroxyethyl Methacrylate) Microspheres for Affinity Purification of Monospecific anti-p46 kDa/Myo1C Antibodies for Early Diagnosis of Multiple Sclerosis Patients. Biosci. Rep. 2017, 37, BSR20160526. https://doi.org/10.1042/BSR20160526
dc.relation.references[67] Kayhan, C.T.; Ural, F.Z.; Koruyucu, M.; Salman, Y.; Uygun, M.; Uygun, D.A.; Akgöl, S.; Denizli, A. DNA Isolation by Galactoacrylate-Based nano-poly(HEMA- co -Gal-OPA) Nanopolymers. J. Biomater. Sci. Polym. Ed. 2017, 28, 1469–1479. https://doi.org/10.1080/09205063.2017.1330587
dc.relation.references[68] Roointan, A.; Farzanfar, J.; Samani, S.M.; Behzad-Behbahani, A.; Farjadian, F. Smart pH Responsive Drug Delivery System Based on Poly(HEMA-co-DMAEMA) Nanohydrogel. Int. J. Pharm. 2018, 552, 301–311. https://doi.org/10.1016/j.ijpharm.2018.10.001
dc.relation.references[69] Yu, B.; Song, N.; Hu, H.; Chen, G.; Shen, Y.; Cong, H. A Degradable Triple Temperature-, pH-, and Redox-Responsive Drug System for Cancer Chemotherapy. J Biomed Mater Res A 2018, 106, 3203–3210. https://doi.org/10.1002/jbm.a.36515
dc.relation.references[70] Rapado, M.; Peniche, C. Synthesis and Characterization of pH and Temperature Responsive Poly(2-Hydroxyethyl Methacrylate-co-Acrylamide) Hydrogels. Polímeros 2015, 25, 547–555. https://doi.org/10.1590/0104-1428.2097
dc.relation.references[71] Parilti, R.; Castañon, A.; Lansalot, M.; D'Agosto, F.; Jérôme, Ch.; Howdle, S. M. Hydrocarbon Based Stabilisers for the Synthesis of Cross-Linked Poly(2-Hydroxyethyl Methacrylate) Particles in Supercritical Carbon Dioxide. Polym. Chem. 2019, 10, 5760–5770. https://doi.org/10.1039/C9PY00998A
dc.relation.references[72] Horak, D.; Svec, F.; Gumargalieva, K.Z.; Adamyan, A.A.; Skuba. N.D.; Titova, M.I.; Trostenyuk, N.V. Hydrogels in Endovascular Embolization. I. Spherical Particles of Poly(2-Hydroxyethyl Methacrylate) and their Medico-Biological Properties. Biomaterials 1986, 7, 188–192. https://doi.org/10.1016/0142-9612(86)90100-6
dc.relation.references[73] Horák, D.; Metalová, M.; Švec, F.; Drobník, J.; Kálal, J.; Borovička, M.; Adamyan, A.A.; Voronkova, O.S.; Gumargalieva, K.Z. Hydrogels in Endovascular Embolization. III. Radiopaque Spherical Particles, their Preparation and Properties. Biomaterials 1987, 8, 142–145. https://doi.org/10.1016/0142-9612(87)901049
dc.relation.references[74] Gugoasa, A.I.; Racovita, S.; Vasiliu, S.; Popa, M. Grafted Microparticles Based on Glycidyl Methacrylate, Hydroxyethyl Methacrylate and Sodium Hyaluronate: Synthesis, Characterization, Adsorption and Release Studies of Metronidazole. Polymers 2022, 14, 4151. https://doi.org/10.3390/polym14194151
dc.relation.references[75] Nart, Z.; Kayaman-Apohan, N. Preparation, Characterization and Drug Release Behavior of Poly(Acrylic Acid–co-2-Hydroxyethyl Methacrylate-co-2-Acrylamido-2-Methyl-1-Propanesulfonic Acid) Microgels. J. Polym. Res. 2011, 18, 869–874. https://doi.org/10.1007/s10965-010-9483-4
dc.relation.references[76] Bardakci, F.; Kusat, K.; Adnan, M.; Badraoui, R.; Alam, M.J.; Alreshidi, M.M.; Siddiqui, A.J.; Sachidanandan, M.; Akgöl, S. Novel Polymeric Nanomaterial Based on Poly(Hydroxyethyl Methacrylate-Methacryloylamidophenylalanine) for Hypertension Treatment: Properties and Drug Release Characteristics. Polymers 2022, 14, 5038. https://doi.org/10.3390/polym14225038
dc.relation.references[77] Seeli, S.; Prabaharan, M. Guar Gum Oleate-graft-poly(methacrylic Acid) Hydrogel as a Colon-Specific Controlled Drug Delivery Carrier. Carbohydr. Polym. 2017, 158, 51–57. https://doi.org/10.1016/j.carbpol.2016.11.092
dc.relation.references[78] Bajpai A.; Gupta MK, Bajpai J. The Biocompatibility and Water Uptake Behavior of Superparamagnetic Poly (2-Hydroxyethylmethacrylate) Magnetite Nanocomposites as Possible Nanocarriers for Magnetically Mediated Drug Delivery System. J Polym. Res. 2014, 21, 518. https://doi.org/10.1007/s10965-014-0518-0
dc.relation.references[79] Chouhan, R.; Bajpai, A. An in vitro Release Study of 5-Fluoro-uracil (5-FU) from Swellable Poly-(2-Hydroxyethyl Methacrylate) (PHEMA) Nanoparticles. J. Mater. Sci. Mater. Med. 2009, 20, 1103–1114. https://doi.org/10.1007/s10856-008-3677-x
dc.relation.references[80] Pradeepkumar, P.; Subbiah, A.; Rajan, M. Synthesis of Bio-Degradable Poly (2-Hydroxyethyl Methacrylate) Using Natural Deep Eutectic Solvents for Sustainable Cancer Drug Delivery. SN Appl. Sci. 2019, 1, 568. https://doi.org/10.1007/s42452-019-0591-4
dc.relation.references[81] Kumar, S.S.D.; Surianarayanan, M.; Vijayaraghavan, R.; Mandal, A.B.; MacFarlane, D.R. Curcumin loaded Poly (2- Hydroxyethyl Methacrylate) Nanoparticles from Gelled Ionic Liquid - In vitro Cytotoxicity and Anti-Cancer Activity in SKOV-3 Cells. Eur. J. Pharm. Sci. 2014, 51, 34–44. https://doi.org/10.1016/j.ejps.2013.08.036
dc.relation.references[82] Guo, J.; Hong, H.; Chen, G.; Shi, S.; Nayak, T.R.; Theuer, C.P.; Barnhart, T.E.; Cai, W.; Gong, S. Theranostic Unimolecular Micelles Based on Brush-Shaped Amphiphilic Block Copolymers for Tumor-Targeted Drug Delivery and Positron Emission Tomography Imaging. ACS Appl. Mater. Interfaces 2014, 6, 21769–21779. https://doi.org/10.1021/am5002585
dc.relation.references[83] Aeinehvand, R.; Zahedi, P.; Kashani-Rahimi, S.; Fallah-Darrehchi, M.; Shamsi, M. Synthesis of Poly(2-hydroxyethyl methacrylate)-based Molecularly Imprinted Polymer Nanoparticles Containing Timolol Maleate: Morphological, Thermal, and Drug Release Along With Cell Biocompatibility Studies. Polym. Adv. Technol. 2017, 28, 828–841. https://doi.org/10.1002/pat.3986
dc.relation.references[84] Horak, D.; Semenyuk, N.; Lednicky, F. Effect of the Reaction Parameters on the Particle Size in the Dispersion Polymerization of 2-Hydroxyethyl and Glycidyl Methacrylate in the Presence of a Ferrofluid. J. Polym. Sci. A Polym. Chem. 2003, 41, 1848–1863. https://doi.org/10.1002/pola.10728
dc.relation.references[85] Suberlyak, O.; Skorokhoda, V.; Semenyuk, N.; Melnyk, Y. Biomedical materials based on polyvinylpyrrolidone (co)polymers; Lviv Polytechnic Publishing House, 2015. https://vlp.com.ua/node/13933
dc.relation.references[86] Buhler, V. Kollidon: Polyvinylpyrrolidone Excipients for the Pharmaceuticals; Ludwigshafen, Germany: BASF, 2008.
dc.relation.references[87] Melnyk, Y.; Stetsyshyn, Y.; Skorokhoda, V.; Nastishin, Y., Polyvinylpyrrolidone-graft-poly(2-hydroxyethylmethacrylate) Hydrogel Membranes for Encapsulated Forms of Drugs. J. Polym. Res. 2020, 27, 354. https://doi.org/10.1007/s10965-020-02335-7
dc.relation.references[88] Grytsenko, O.; Dulebova, L.; Suberlyak, O.; Spišák, E.; Gajdoš, I. Features of Structure and Properties of PHEMA-gr-PVP Block Copolymers, Obtained in the Presence of Fe2+. Materials 2020, 13, 1–15. https://doi.org/10.3390/ma13204580
dc.relation.references[89] Skorokhoda, V.; Dziaman, I.; Dudok, G.; Bratychak, M.; Semenyuk, N. The Ultrasonic Effect On Obtaining And Properties Of Osteoplastic Porous Composites. Chem.Chem.Technol. 2019, 13, 429–435. https://doi.org/10.23939/chcht13.04.429
dc.relation.references[90] Skorokhoda, V.; Semenyuk, N.; Dziaman, I.; Levytska, Kh.; Dudok, G. The Influence of the Nature of a Calcium-Containing Filler on the Preparation and Properties of Osteoplastic Porous Composites. Voprosy Khimii i Khim. Tekhnologii 2018, 2, 101–108.
dc.relation.references[91] Skorokhoda, V.; Melnyk, Y.; Semenyuk, N.; Ortynska, N.; Suberlyak, O. Film hydrogels on the basis of polyvinylpyrrolidone copolymers with regulated sorption-desorption characteristics. Chem. Chem.Technol. 2017, 11, 171–174. https://doi.org/10.23939/chcht11.02.171
dc.relation.references[92] Skorokhoda, V.; Melnyk, Y.; Shalata, V.; Skorokhoda, T.; Suberlyak, O. An investigation of obtaining patterns, structure and diffusion properties of biomedical purpose hydrogel membranes. East.Eur.J. Enterp. Technol. 2017, 1(6, 85), 50–55. https://doi.org/10.15587/1729-4061.2017.92368
dc.relation.references[93] Skorokhoda, V.; Semenyuk, N.; Dziaman, I.; Suberlyak, O. Mineral Filled Porous Composites Based On Polyvinylpyrrolidone Copolymers with Bactericidal Properties. Chem.Chem.Technol. 2016, 10, 187–192. https://doi.org/10.23939/chcht10.02.187
dc.relation.references[94] Suberlyak, O.V.; Melnyk, Y.Y.; Skorokhoda, V.I. Regularities of preparation and properties of hydrogel membranes. Mater. Sci. 2015, 50, 889–896. https://doi.org/10.1007/s11003-015-9798-8
dc.relation.references[95] Skorokhoda, V.; Melnyk, Y.; Semenyuk, N.; Suberlyak, O. Obtaining peculiarities and properties of polyvinylpyrrolidone сopolymers with hydrophobic vinyl monomers. Chem.Chem.Technol. 2015, 9, 55–59. https://doi.org/10.23939/chcht09.01.055
dc.relation.references[96] Semenyuk, N.; Kostiv, U.; Suberlyak, O.; Skorokhoda, V. Peculiarities of filled porous hydrogels production and properties. Chem.Chem.Technol. 2013, 7, 95–99. https://doi.org/10.23939/chcht07.01.095
dc.relation.references[97] Skorokhoda, V.; Melnyk, Y.; Semenyuk, N.; Suberlyak, O. Structure controlled formation and properties of highly hydrophilic membranes based on polyvinylpyrrolidone copolymers. Chem.Chem.Technol. 2012, 6, 301–305. https://doi.org/10.23939/chcht06.03.301
dc.relation.references[98] Skorokhoda, V.J.; Semenyuk, N.B.; Dudok, G.D.; Kysil, H.V. Silver-containing Osteoplastic Nanocomposites Based on Polyvinylpyrrolidone Copolymers. Voprosy Khimii i Khim. Tekhnologii 2022, 3, 67–73. http://dx.doi.org/10.32434/0321-4095-2022-142-3-67-73
dc.relation.references[99] Skorokhoda, V.; Semenyuk, N.; Suberlyak, O. Technological Aspects of Obtaining Spherical Granules of Copolymers of Hydroxyethyl Methacrylate with Polyvinylpyrrolidone. Voprosy Khimii i Khim. Tekhnologii 2004, 3, 88–91.
dc.relation.references[100] Suberlyak, O.; Semenyuk, N.; Skorokhoda, V. Peculiarities of Obtaining HEMA Granular Copolymers from PVP. Khim. Prom. Ukr. 2002, 3, 30–34.
dc.relation.references[101] Semenyuk, N.; Dudok, G.; Suberlyak, O.; Skorokhoda, V. The Suspension Polymerization Regularities of Glycidyl Methacrylate in Presence of Polyvinylpyrrolidone. Voprosy Khimii i Khim. Tekhnologii 2011, 2, 54–59.
dc.relation.references[102] Skorokhoda, V.; Semenyuk, N.; Lukan, G.; Suberlyak, O. The Influence of Technological Parameters on the Regularities of Synthesis of Polyvinylpirrolidone Hydrophilic Granular Copolymers. Voprosy Khimii i Khim. Tekhnologii 2006, 3, 67–71.
dc.relation.references[103] Semenyuk, N.; Dudok, G.; Chopyk, N.; Skorokhoda, V. Kinetic Features of Dispersion Polymerization of HEMA Compositions with PVP. Visnyk Nats. Univ. “Lvivska Politechnika” 2010, 667, 456–459.
dc.relation.references[104]. Suberlyak, O.; Gudzera, S.; Skorokhoda, V. Peculiarities of HEMA Polymerization in Polar Solvents in the Presence of PVP. Dopovidi AN URSR 1986, 7, 49–51.
dc.relation.references[105] Skorokhoda, V.; Semenyuk, N.; Melnyk, J.; Suberlyak, O. Hydrogels Penetration and Sorption Properties in the Substances Release Controlled Processes. Chem.Chem.Technol. 2009, 3, 117–121. https://doi.org/10.23939/chcht03.02.117
dc.relation.references[106] Semenyuk, N.; Kohut, О.; Chernygevych, І.; Neboga, G.; Skorokhoda, V. The Features of Obtaining of Spherical Hydrogels for Drug Delivery Systems. Visnyk Nats. Univ. “Lvivska Politechnika” 2015, 812, 404–408. http://nbuv.gov.ua/UJRN/VNULPX_2015_812_71
dc.relation.referencesen[1] Campbell, S.; Smeets, N. Drug Delivery: Polymers in the Development of Controlled Release Systems. In Functional Polymers. Polymers and Polymeric Composites: A Reference Series; Springer, Cham., 2019; pp 1–29. https://doi.org/10.1007/978-3-319-92067-2_20-1
dc.relation.referencesen[2] Giammona, G.; Craparo, E.F. Polymer-Based Systems for Controlled Release and Targeting of Drugs. Polymer 2019, 11, 2066. https://doi.org/10.3390/polym11122066
dc.relation.referencesen[3] Suberlyak, O.; Skorokhoda, V.; Semenyuk, N.; Lukan, G.; Chopyk, N. Microspheric Hydrogel Polymers as Effective Drug Delivery Systems. Czasopismo techniczne 2006, 6-M, 463–466. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BGPK-1801-6825?q=bwmeta1.element.baztech-volume-1897-6328-cz
dc.relation.referencesen[4] Benoit, D.S.W.; Overby, C.T.; Sims Jr, K.R.; Ackun-Farmmer, M.A. 2.5.12 - Drug delivery systems; Biomaterials Science. In Biomaterials Science; Eds. Academic Press, 2020; pp 1237–1266. https://doi.org/10.1016/B978-0-12-816137-1.00078-7
dc.relation.referencesen[5] Sánchez, A.; Mejía, S.P.; Orozco, J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020, 25, 3760. https://doi.org/10.3390/molecules25163760
dc.relation.referencesen[6] Miladi K.; Ibraheem D.; Iqbal M.; Sfar S.; Fessi H.; Elaissari A. Particles from Preformed Polymers as Carriers for Drug Delivery. EXCLI J. 2014, 13, 28–57. https://doi.org/10.17877/DE290R-15560
dc.relation.referencesen[7] Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. https://doi.org/10.3390/gels9070523
dc.relation.referencesen[8] Suberlyak, O.; Skorokhoda, V. Hydrogels Based on Polyvinylpyrrolidone Copolymers. In Hydrogels; Haider, S.; Haider, A., Eds.; IntechOpen; London, 2018; pp 136–214. https://doi.org/10.5772/intechopen.72082
dc.relation.referencesen[9] Zhang, W.; Chen, S.; Jiang, W.; Zhang, Q.; Liu, N.; Wang, Z.; Li, Z.; Zhang, D. Double-Network Hydrogels for Biomaterials: Structure-Property Relationships and Drug Delivery. Eur. Polym. J. 2023, 185, 111807. https://doi.org/10.1016/j.eurpolymj.2022.111807
dc.relation.referencesen[10] Drury, J.L.; Mooney, D.J. Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications. Biomater. 2003, 24, 4337–4351. https://doi.org/10.1016/s0142-9612(03)00340-5
dc.relation.referencesen[11] Lin, C.; Anseth, K. PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharm. Res. 2009, 26, 631–643. https://doi.org/10.1007/s11095-008-9801-2
dc.relation.referencesen[12] Slaughter, B.V.; Khurshid, S.S.; Omar, Z.F.; Khademhosseini, A.; Peppas, N.A. Hydrogels in Regenerative Medicine. J. Adv. Mater. 2009, 21, 3307–3329. https://doi.org/10.1002/adma.200802106
dc.relation.referencesen[13] Thi, T.T.H.; Laney M.; Zhang, H.; Martinez, F.; Lee, Y.; Jang, Y. C. Designing Biofunctional Hydrogels for Stem Cell Biology and Regenerative Medicine Applications. J. Ind. Eng. Chem. 2024, 129, 69–104. https://doi.org/10.1016/j.jiec.2023.08.042
dc.relation.referencesen[14] Toh, W.S.; Loh, X.J. Advances in Hydrogel Delivery Systems for Tissue Regeneration. Mater. Sci. Eng. P. 2014, 45, 690–697. https://doi.org/10.1016/j.msec.2014.04.026
dc.relation.referencesen[15] Ji, D.Y.; Kuo, T.F.; Wu, H.D.; Yang, J.C.; Lee, S.Y. A Novel Injectable Chitosan/Polyglutamate Polyelectrolyte Complex Hydrogel with Hydroxyapatite for Soft-Tissue Augmentation. Carbohydr. Polym. 2012, 89, 1123–1130. https://doi.org/10.1016/j.carbpol.2012.03.083
dc.relation.referencesen[16] Liu, X.; Liu, J.; Lin, S.; Zhao, X. Hydrogel Machines. Mater. Today 2020, 36, 102–124. https://doi.org/10.1016/j.mattod.2019.12.026
dc.relation.referencesen[17] Mahinroosta, M.; Farsangi, Z. J.; Allahverdi, A.; Shakoori, Z. Hydrogels as Intelligent Materials: A Brief Review of Synthesis, Properties and Applications. Mater. Today Chem. 2018, 8, 42–55. https://doi.org/10.1016/j.mtchem.2018.02.004
dc.relation.referencesen[18] Mehta P.; Sharma, M.; Devi, M. Hydrogels: An Overview of its Classifications, Properties, and Applications. J. Mech. Behav. Biomed. Mater. 2023, 147, 106145. https://doi.org/10.1016/j.jmbbm.2023.106145
dc.relation.referencesen[19] Varaprasad, K.; Raghavendra, G. M.; Jayaramudu, T.; Yallapu, M. M.; Sadiku, R. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Mater. Sci. Eng., P. 2017, 79, 958–971. https://doi.org/10.1016/j.msec.2017.05.096
dc.relation.referencesen[20] Kapate N.; Clegg J. R.; Mitragotri S. Non-Spherical Micro- and Nanoparticles for Drug Delivery: Progress over 15 Years. Adv. Drug Deliv. Rev. 2021, 177, 113807. https://doi.org/10.1016/j.addr.2021.05.017
dc.relation.referencesen[21] Wang, L.; Li, L.; Sun, Y.; Ding, J.; Li, J.; Duan, X.; Li, Y.; Junyaprasert, V.B.; Mao, S. In vitro and in vivo Evaluation of Chitosan Graft Glyceryl Monooleate as Peroral Delivery Carrier of Enoxaparin. Int. J. Pharm. 2014, 471, 391–399. https://doi.org/10.1016/j.ijpharm.2014.05.050
dc.relation.referencesen[22] Motlekar, N.A.; Youan, B.B.C. The Quest for Non-Invasive Delivery of Bioactive Macromolecules: A Focus on Heparins. J. Control Release 2006, 113, 91–101. https://doi.org/10.1016/j.jconrel.2006.04.008
dc.relation.referencesen[23] Lai, W. F.; He, Z. D. Design and Fabrication of Hydrogel-Based Nanoparticulate Systems for in vivo Drug Delivery. J. Control Release 2016, 243, 269–82. https://doi.org/10.1016/j.jconrel.2016.10.013
dc.relation.referencesen[24] Akgöl, S.; Öztürk, N.; Denizli, A. New Generation Polymeric Nanospheres for Catalase Immobilization. J. Appl. Polym. Sci. 2009, 114, 962–970. https://doi.org/10.1002/app.29790
dc.relation.referencesen[25] Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Sci. Pharm. 2019, 87, 20. https://doi.org/10.3390/scipharm87030020
dc.relation.referencesen[26] Zhang, Y.; Huang, Y. Rational Design of Smart Hydrogels for Biomedical Applications. Front. Chem. 2021, 8, 6156565. https://doi.org/10.3389/fchem.2020.615665
dc.relation.referencesen[27] Brooks, B.W. Suspension Polymerization Processes. Chem. Eng. Technol. 2010, 33, 1737–1744. https://doi.org/10.1002/ceat.201000210
dc.relation.referencesen[28] Kesharwani, P.; Bisht, A.; Alexander, A.; Dave, V.; Sharma, S. Biomedical Applications of Hydrogels in Drug Delivery System: An Update. J. Drug Deliv. Sci. Technol. 2021, 66, 102914. https://doi.org/10.1016/j.jddst.2021.102914
dc.relation.referencesen[29] Gelli, R.; Mugnaini, G.; Bolognesi, T.; Bonini, M. Cross-Linked Porous Gelatin Microparticles with Tunable Shape, Size and Porosity. Langmuir 2021, 37, 12781–12789. https://doi.org/10.1021/acs.langmuir.1c01508
dc.relation.referencesen[30] Quadrado, R.F.N.; Fajardo, A.R. Microparticles Based on Carboxymethyl Starch/Chitosan Polyelectrolyte Complex as Vehicles for Drug Delivery Systems. Arab. J. Chem. 2020, 13, 2183–2194. https://doi.org/10.1016/j.arabjc.2018.04.004
dc.relation.referencesen[31] Goyal, P. K.; Khurana, S.; Mittal, A. Hydrogel-Bound Cytotoxic Drug Delivery System for Breast Cancer. Health Sci. Rev. 2023, 9, 100140. https://doi.org/10.1016/j.hsr.2023.100140
dc.relation.referencesen[32] Holcapkova, P.; Hrabalikova, M.; Stoplova, P.; Sedlarik, V. Core-Shell PLA-PVA Porous Microparticles as Carriers for Bacteriocin Nisin. J. Microencapsul. 2017, 34, 243–249. https://doi.org/10.1080/02652048.2017.1324919
dc.relation.referencesen[33] Peterson, T.E.; Gigliobianco, G.; Sherborne, C.; Green, N.H.; Dugan, J.M.; MacNeil, S.; Reilly, G.C.; Claeyssens, F. Porous Microspheres Support Mesemchymal Progenitor Cell Ingrowth and Stimulate Angiogenesis. APL Bioeng. 2018,2, 026103. https://doi.org/10.1063/1.5008556
dc.relation.referencesen[34] Ray, P.; Maity, M.; Barik, H.; Sahoo, G. S.; Hasnain, M. S.; Hoda, M. N.; Nayak, A. K. Chapter 3 - Alginate-Based Hydrogels for Drug Delivery Applications. In Alginates in Drug Delivery; Academic Press, 2020; pp 41–70. https://doi.org/10.1016/B978-0-12-817640-5.00003-0
dc.relation.referencesen[35] Ai, Y.; Lin, Zh.; Zhao, W.; Cui, M.; Qi, W.; Huang, R.; Su, R. Nanocellulose-Based Hydrogels for Drug Delivery. J. Mater. Chem. B 2023, 30, 7004–7023. https://doi.org/10.1039/D3TB00478C
dc.relation.referencesen[36] Park, J.; Lim, Y.; Baik, J.J.; Jeong, J.; An, S.; Jeong, S.I.; Gwon, H.; & Khil, M.S. Preparation and Evaluation of b-Glucan Hydrogel Prepared by the Radiation Technique for Drug Carrier Applications. Int. J. Biol. Macromol. 2018, 118, 333–339. https://doi.org/10.1016/j.ijbiomac.2018.06.068
dc.relation.referencesen[37] Chen, L.; Deng, X.; Tian, L.; Xie,J.; Xiang, Y.; Liang, X.; Jiang, L.; Jiang, L. Preparation and Properties of Chitosan/Dialdehyde Sodium Alginate/Dopamine Magnetic Drug-Delivery Hydrogels. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 13273. https://doi.org/10.1016/j.colsurfa.2023.132739
dc.relation.referencesen[38] Auriemma, G.; Russo, P.; Del Gaudio, P.; García-González, C.A.; Landín, M.; Aquino, R.P. Technologies and Formulation Design of Polysaccharide-Based Hydrogels for Drug Delivery. Molecules 2020, 25, 3156. https://doi.org/10.3390/molecules25143156
dc.relation.referencesen[39] Drăgan, E.S.; Cocarta, A.I.; Gierszewska, M. Designing Novel Macroporous Composite Hydrogels Based on Methacrylic Acid Copolymers and Chitosan and in vitro Assessment of Lysozyme Controlled Delivery. Colloids Surf. B 2016, 139, 33–41. https://doi.org/10.1016/j.colsurfb.2015.12.011
dc.relation.referencesen[40] Jing, Z.; Zhang, G.; Sun, X.F.; Shi, X.; Sun, W. Preparation and Adsorption Properties of a Novel Superabsorbent Based on Multiwalled Carbon Nanotubes–Xylan Composite and Poly(Methacrylic Acid) for Methylene Blue from Aqueous Solution. Polym. Compos. 2014, 35, 1516. https://doi.org/10.1002/pc.22805
dc.relation.referencesen[41] Wang, Y.; Yuan, Z.C.; Chen, D.J. Thermo- and pH-sensitive Behavior of Hydrogels Based on Oligo (Ethylene Glycol) Methacrylates and Acrylic Acid. J Mater Sci. 2012, 47, 1280–1288. https://doi.org/10.1007/s10853-011-5901-1
dc.relation.referencesen[42] Chen, Y.; Sun, P. pH-Sensitive Polyampholyte Microgels of Poly(Acrylic Acid-co-Vinylamine) as Injectable Hydrogel for Controlled Drug Release. Polymers 2019, 11, 285. https://doi.org/10.3390/polym11020285
dc.relation.referencesen[43] Tomar, N.; Tomar, M.; Nagaich, U. pHEMA Hydrogels: Devices for Ocular Drug Delivery. Int. J. Health Allied Sci. 2012, 1, 224–230. https://www.ijhas.in/text.asp?2012/1/4/224/107844
dc.relation.referencesen[44] Goyal, P.; Dhar, R.; Sagiri, S.; Uvanesh, K.; Senthilguru, K.; Shankar, G.; Samal, A.; Pramanik, K.; Banerjee, I.; Ray, S.S.; et al. Synthesis and Characterization of Novel Dual Environment-Responsive Hydrogels of Hydroxyethyl Methacrylate and Methyl Cellulose. Des. Monomers Polym. 2015, 18, 367–377. https://doi.org/10.1080/15685551.2015.1012626
dc.relation.referencesen[45] Musgrave, C.; Fang, F. Contact Lens Materials: A Materials Science Perspective. Materials 2019, 12, 261. https://doi.org/10.3390/ma12020261
dc.relation.referencesen[46] Ferreira, L.; Vidal, M.; Gil, M.H. Evaluation of Poly(2-Hydroxyethyl Methacrylate) Gels as Drug Delivery Systems at Different pH Values. Int. J. Pharm. 2000, 194, 169–180.https://doi.org/10.1016/S0378-5173(99)00375-0
dc.relation.referencesen[47] Saini, R.K.; Bagri, L.P.; Bajpai, A.K. Poly (2-hydroxyethyl methacrylate) (PHEMA) Based Nanoparticles for Drug Delivery Applications: A review. Nano Sci. and Nano Technol., An Indian J. 2014, 8, 416–427. https://doi.org/10.1007/978-1-61779-953-2_26
dc.relation.referencesen[48] Passos, M.F.; Carvalho, N.M.S.; Rodrigues, A.A.; Bavaresco, V.P.; Jardini, A.L.; Maciel, M.R.W.; Filho, R.M. PHEMA Hydrogels Obtained by Infrared Radiation for Cartilage Tissue Engineering. Int. J. Chem. Eng. 2019, 2019, 1–9. https://doi.org/10.1155/2019/4249581
dc.relation.referencesen[49] Zare, M.; Bigham, A.; Zare, M.; Luo, H.; Rezvani Ghomi, E.; Ramakrishna, S. pHEMA: An Overview for Biomedical Applications. Int. J. Mol. Sci. 2021, 22, 6376. https://doi.org/10.3390/ijms22126376
dc.relation.referencesen[50] Horak, D.; Lednicky, F.; Bleha, M. Effect of Inert Components on the Porous Structure of 2-Hydroxyethyl Methacrylate-Ethylene Dimethacrylate Copolymers. Polymer 1996, 37, 4243–4249. https://doi.org/10.1016/0032-3861(96)00259-5
dc.relation.referencesen[51] Paljevac, M.; Krajnc, P.; Hanková, L.; Holub, L.; Droumaguet, B. L.; Grande, D.; Jeřábek, K. Two-Step Syneretic Formation of Highly Porous Morphology during Copolymerization of Hydroxyethyl Methacrylate and Ethylene Glycol Dimethylacrylate. Mater. Today Commun. 2016, 7, 16–21. https://doi.org/10.1016/j.mtcomm.2016.02.004
dc.relation.referencesen[52] Reyes, P.; Edeleva, M.; D’hooge, D.R.; Cardon, L.; Cornillie, P. Combining Chromatographic, Rheological, and Mechanical Analysis to Study the Manufacturing Potential of Acrylic Blends into Polyacrylic Casts. Materials 2021, 14, 6939. https://doi.org/10.3390/ma14226939
dc.relation.referencesen[53] Xiao, J.; Lu, Q.; Cong, H.; Shen, Y.; Yu, B. Microporous Poly(Glycidyl Methacrylate-co-Ethylene Glycol Dimethyl Acrylate) Microspheres: Synthesis, Functionalization and Applications. Polym. Chem. 2021, 12, 6050–6070. https://doi.org/10.1039/d1py00834j
dc.relation.referencesen[54] Kierys, A.; Grochowicz, M.; Kosik, P. The release of Ibuprofen Sodium Salt from Permanently Porous Poly(Hydroxyethyl Methacrylate-co-trimethylolpropane Trimethacrylate) Resins. Microporous Mesoporous Mater. 2015, 217, 133–140. https://doi.org/10.1016/j.micromeso.2015.06.009
dc.relation.referencesen[55] Svec, F.; Labsky, J.; Lanyova, L.; Hradil, J.; Pokorny, S.; Kalal, J. Reactive polymers. The Synthesis of 2-Hydroxypropylene Dimethacrylate in a Mixture with Glycidyl Methacrylate and their Copolymerization to a Macroporous Product. Angew. Makromol. Chem. 1980, 90, 47–55. https://doi.org/10.1002/apmc.1980.050900105
dc.relation.referencesen[56] Horak, D.; Labsky, J. A Novel Hydrophilic Crosslinker in Preparation of Hydrophilic Sorbents. React. Polym. 1997, 32, 277–280. https://doi.org/10.1016/S1381-5148(97)00010-2
dc.relation.referencesen[57] Kotha, A.; Raman, R.; Ponrathnam, S.; Kumar, K.; Shewale, J. Beaded Reactive Polymers. 3. Effect of Triacrylates as Crosslinkers on the Physical Properties of Glycidyl Methacrylate Copolymers and Immobilization of penicillin G acylase. Appl. Biochem. Biotechnol. 1998, 74, 191–203. https://doi.org/10.1007/BF02825965
dc.relation.referencesen[58] Norhayati, A.; Mohammad Zuhaili, Y.; Rabiatuladawiah, M. Synthesis and Characterization of poly(HEMA-co-EGDMA-co-VBC) by Modified Suspension Polymerization: Effects of Polymerization Parameters Reaction on Chemical and Thermal Properties of Polymer. Mater. Today: Proc. 2018, 5, 22010–22019. https://doi.org/10.1016/j.matpr.2018.07.062
dc.relation.referencesen[59] Jayakrishnan, A.; Thanoo, B. C. Suspension Polymerization of 2-Hydroxyethyl Methacrylate in the Presence of Polymeric Diluents: A Novel Route to Spherical Highly Porous Beads for Biomedical Applications. J. Biomed. Mater. Res. 1990, 24, 913–927. https://doi.org/10.1002/jbm.820240709
dc.relation.referencesen[60] Madkour, M.; Bumajdad, A.; & Al-Sagheer, F. To what extent do polymeric stabilizers affect nanoparticles characteristics? Adv. Colloid Interface Sci. 2019, 270, 38–53. https://doi.org/10.1016/j.cis.2019.05.004
dc.relation.referencesen[61] Horak, D.; Pelzbauer, Z.; Svec F., Kalal, J. Reactive Polymers. 3. The Influence of the Suspension Stabilizer on the Morphology of a Suspension Polymer. J. Appl. Polym. Sci. 1981, 26, 3205–3211. https://doi.org/10.1002/app.1981.070261002
dc.relation.referencesen[62] Rienda, J. M. Release of Gentamicin Sulphate from a Modified Commercial Bone Cement. Effect of (2-Hydroxyethyl Methacrylate) Comonomer and poly(N-vinyl-2-pyrrolidone) Additive on Release Mechanism and Kinetics. Biomater. 2002, 23, 3787–3797. https://doi.org/10.1016/s0142-9612(02)00028-5
dc.relation.referencesen[63] Puig, J E.; Mendizabal, E. Suspension Polymerization. In Polymeric Materials Encyclopedia; CRC Press, New York, 1996; pp 8215–8220. https://doi.org/10.1201/9780367811686
dc.relation.referencesen[64] Vatankhah, Z.; Dehghani, E.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. One-Step Fabrication of Low Cytotoxic Anisotropic Poly(2-Hydroxyethyl Methacrylate-co-Methacrylic Acid) Particles for Efficient Release of DOX. J Drug Deliv Sci Tec. 2019, 54, 101332. https://doi.org/10.1016/j.jddst.2019.101332
dc.relation.referencesen[65] Raoufinia, R.; Mota, A.; Keyhanvar, N.; Safari, F.; Shamekhi, S.; Abdolalizadeh, J. Overview of Albumin and Its Purification Methods. Adv. Pharm. Bull. 2016, 6, 495–507. https://doi.org/10.15171/apb.2016.063
dc.relation.referencesen[66] Horák, D.; Hlídková, H.; Kit, Y.; Antonyuk, V.; Myronovsky, S.; Stoika, R. Magnetic Poly(2-Hydroxyethyl Methacrylate) Microspheres for Affinity Purification of Monospecific anti-p46 kDa/Myo1C Antibodies for Early Diagnosis of Multiple Sclerosis Patients. Biosci. Rep. 2017, 37, BSR20160526. https://doi.org/10.1042/BSR20160526
dc.relation.referencesen[67] Kayhan, C.T.; Ural, F.Z.; Koruyucu, M.; Salman, Y.; Uygun, M.; Uygun, D.A.; Akgöl, S.; Denizli, A. DNA Isolation by Galactoacrylate-Based nano-poly(HEMA- co -Gal-OPA) Nanopolymers. J. Biomater. Sci. Polym. Ed. 2017, 28, 1469–1479. https://doi.org/10.1080/09205063.2017.1330587
dc.relation.referencesen[68] Roointan, A.; Farzanfar, J.; Samani, S.M.; Behzad-Behbahani, A.; Farjadian, F. Smart pH Responsive Drug Delivery System Based on Poly(HEMA-co-DMAEMA) Nanohydrogel. Int. J. Pharm. 2018, 552, 301–311. https://doi.org/10.1016/j.ijpharm.2018.10.001
dc.relation.referencesen[69] Yu, B.; Song, N.; Hu, H.; Chen, G.; Shen, Y.; Cong, H. A Degradable Triple Temperature-, pH-, and Redox-Responsive Drug System for Cancer Chemotherapy. J Biomed Mater Res A 2018, 106, 3203–3210. https://doi.org/10.1002/jbm.a.36515
dc.relation.referencesen[70] Rapado, M.; Peniche, C. Synthesis and Characterization of pH and Temperature Responsive Poly(2-Hydroxyethyl Methacrylate-co-Acrylamide) Hydrogels. Polímeros 2015, 25, 547–555. https://doi.org/10.1590/0104-1428.2097
dc.relation.referencesen[71] Parilti, R.; Castañon, A.; Lansalot, M.; D'Agosto, F.; Jérôme, Ch.; Howdle, S. M. Hydrocarbon Based Stabilisers for the Synthesis of Cross-Linked Poly(2-Hydroxyethyl Methacrylate) Particles in Supercritical Carbon Dioxide. Polym. Chem. 2019, 10, 5760–5770. https://doi.org/10.1039/P.9PY00998A
dc.relation.referencesen[72] Horak, D.; Svec, F.; Gumargalieva, K.Z.; Adamyan, A.A.; Skuba. N.D.; Titova, M.I.; Trostenyuk, N.V. Hydrogels in Endovascular Embolization. I. Spherical Particles of Poly(2-Hydroxyethyl Methacrylate) and their Medico-Biological Properties. Biomaterials 1986, 7, 188–192. https://doi.org/10.1016/0142-9612(86)90100-6
dc.relation.referencesen[73] Horák, D.; Metalová, M.; Švec, F.; Drobník, J.; Kálal, J.; Borovička, M.; Adamyan, A.A.; Voronkova, O.S.; Gumargalieva, K.Z. Hydrogels in Endovascular Embolization. III. Radiopaque Spherical Particles, their Preparation and Properties. Biomaterials 1987, 8, 142–145. https://doi.org/10.1016/0142-9612(87)901049
dc.relation.referencesen[74] Gugoasa, A.I.; Racovita, S.; Vasiliu, S.; Popa, M. Grafted Microparticles Based on Glycidyl Methacrylate, Hydroxyethyl Methacrylate and Sodium Hyaluronate: Synthesis, Characterization, Adsorption and Release Studies of Metronidazole. Polymers 2022, 14, 4151. https://doi.org/10.3390/polym14194151
dc.relation.referencesen[75] Nart, Z.; Kayaman-Apohan, N. Preparation, Characterization and Drug Release Behavior of Poly(Acrylic Acid–co-2-Hydroxyethyl Methacrylate-co-2-Acrylamido-2-Methyl-1-Propanesulfonic Acid) Microgels. J. Polym. Res. 2011, 18, 869–874. https://doi.org/10.1007/s10965-010-9483-4
dc.relation.referencesen[76] Bardakci, F.; Kusat, K.; Adnan, M.; Badraoui, R.; Alam, M.J.; Alreshidi, M.M.; Siddiqui, A.J.; Sachidanandan, M.; Akgöl, S. Novel Polymeric Nanomaterial Based on Poly(Hydroxyethyl Methacrylate-Methacryloylamidophenylalanine) for Hypertension Treatment: Properties and Drug Release Characteristics. Polymers 2022, 14, 5038. https://doi.org/10.3390/polym14225038
dc.relation.referencesen[77] Seeli, S.; Prabaharan, M. Guar Gum Oleate-graft-poly(methacrylic Acid) Hydrogel as a Colon-Specific Controlled Drug Delivery Carrier. Carbohydr. Polym. 2017, 158, 51–57. https://doi.org/10.1016/j.carbpol.2016.11.092
dc.relation.referencesen[78] Bajpai A.; Gupta MK, Bajpai J. The Biocompatibility and Water Uptake Behavior of Superparamagnetic Poly (2-Hydroxyethylmethacrylate) Magnetite Nanocomposites as Possible Nanocarriers for Magnetically Mediated Drug Delivery System. J Polym. Res. 2014, 21, 518. https://doi.org/10.1007/s10965-014-0518-0
dc.relation.referencesen[79] Chouhan, R.; Bajpai, A. An in vitro Release Study of 5-Fluoro-uracil (5-FU) from Swellable Poly-(2-Hydroxyethyl Methacrylate) (PHEMA) Nanoparticles. J. Mater. Sci. Mater. Med. 2009, 20, 1103–1114. https://doi.org/10.1007/s10856-008-3677-x
dc.relation.referencesen[80] Pradeepkumar, P.; Subbiah, A.; Rajan, M. Synthesis of Bio-Degradable Poly (2-Hydroxyethyl Methacrylate) Using Natural Deep Eutectic Solvents for Sustainable Cancer Drug Delivery. SN Appl. Sci. 2019, 1, 568. https://doi.org/10.1007/s42452-019-0591-4
dc.relation.referencesen[81] Kumar, S.S.D.; Surianarayanan, M.; Vijayaraghavan, R.; Mandal, A.B.; MacFarlane, D.R. Curcumin loaded Poly (2- Hydroxyethyl Methacrylate) Nanoparticles from Gelled Ionic Liquid - In vitro Cytotoxicity and Anti-Cancer Activity in SKOV-3 Cells. Eur. J. Pharm. Sci. 2014, 51, 34–44. https://doi.org/10.1016/j.ejps.2013.08.036
dc.relation.referencesen[82] Guo, J.; Hong, H.; Chen, G.; Shi, S.; Nayak, T.R.; Theuer, C.P.; Barnhart, T.E.; Cai, W.; Gong, S. Theranostic Unimolecular Micelles Based on Brush-Shaped Amphiphilic Block Copolymers for Tumor-Targeted Drug Delivery and Positron Emission Tomography Imaging. ACS Appl. Mater. Interfaces 2014, 6, 21769–21779. https://doi.org/10.1021/am5002585
dc.relation.referencesen[83] Aeinehvand, R.; Zahedi, P.; Kashani-Rahimi, S.; Fallah-Darrehchi, M.; Shamsi, M. Synthesis of Poly(2-hydroxyethyl methacrylate)-based Molecularly Imprinted Polymer Nanoparticles Containing Timolol Maleate: Morphological, Thermal, and Drug Release Along With Cell Biocompatibility Studies. Polym. Adv. Technol. 2017, 28, 828–841. https://doi.org/10.1002/pat.3986
dc.relation.referencesen[84] Horak, D.; Semenyuk, N.; Lednicky, F. Effect of the Reaction Parameters on the Particle Size in the Dispersion Polymerization of 2-Hydroxyethyl and Glycidyl Methacrylate in the Presence of a Ferrofluid. J. Polym. Sci. A Polym. Chem. 2003, 41, 1848–1863. https://doi.org/10.1002/pola.10728
dc.relation.referencesen[85] Suberlyak, O.; Skorokhoda, V.; Semenyuk, N.; Melnyk, Y. Biomedical materials based on polyvinylpyrrolidone (co)polymers; Lviv Polytechnic Publishing House, 2015. https://vlp.com.ua/node/13933
dc.relation.referencesen[86] Buhler, V. Kollidon: Polyvinylpyrrolidone Excipients for the Pharmaceuticals; Ludwigshafen, Germany: BASF, 2008.
dc.relation.referencesen[87] Melnyk, Y.; Stetsyshyn, Y.; Skorokhoda, V.; Nastishin, Y., Polyvinylpyrrolidone-graft-poly(2-hydroxyethylmethacrylate) Hydrogel Membranes for Encapsulated Forms of Drugs. J. Polym. Res. 2020, 27, 354. https://doi.org/10.1007/s10965-020-02335-7
dc.relation.referencesen[88] Grytsenko, O.; Dulebova, L.; Suberlyak, O.; Spišák, E.; Gajdoš, I. Features of Structure and Properties of PHEMA-gr-PVP Block Copolymers, Obtained in the Presence of Fe2+. Materials 2020, 13, 1–15. https://doi.org/10.3390/ma13204580
dc.relation.referencesen[89] Skorokhoda, V.; Dziaman, I.; Dudok, G.; Bratychak, M.; Semenyuk, N. The Ultrasonic Effect On Obtaining And Properties Of Osteoplastic Porous Composites. Chem.Chem.Technol. 2019, 13, 429–435. https://doi.org/10.23939/chcht13.04.429
dc.relation.referencesen[90] Skorokhoda, V.; Semenyuk, N.; Dziaman, I.; Levytska, Kh.; Dudok, G. The Influence of the Nature of a Calcium-Containing Filler on the Preparation and Properties of Osteoplastic Porous Composites. Voprosy Khimii i Khim. Tekhnologii 2018, 2, 101–108.
dc.relation.referencesen[91] Skorokhoda, V.; Melnyk, Y.; Semenyuk, N.; Ortynska, N.; Suberlyak, O. Film hydrogels on the basis of polyvinylpyrrolidone copolymers with regulated sorption-desorption characteristics. Chem. Chem.Technol. 2017, 11, 171–174. https://doi.org/10.23939/chcht11.02.171
dc.relation.referencesen[92] Skorokhoda, V.; Melnyk, Y.; Shalata, V.; Skorokhoda, T.; Suberlyak, O. An investigation of obtaining patterns, structure and diffusion properties of biomedical purpose hydrogel membranes. East.Eur.J. Enterp. Technol. 2017, 1(6, 85), 50–55. https://doi.org/10.15587/1729-4061.2017.92368
dc.relation.referencesen[93] Skorokhoda, V.; Semenyuk, N.; Dziaman, I.; Suberlyak, O. Mineral Filled Porous Composites Based On Polyvinylpyrrolidone Copolymers with Bactericidal Properties. Chem.Chem.Technol. 2016, 10, 187–192. https://doi.org/10.23939/chcht10.02.187
dc.relation.referencesen[94] Suberlyak, O.V.; Melnyk, Y.Y.; Skorokhoda, V.I. Regularities of preparation and properties of hydrogel membranes. Mater. Sci. 2015, 50, 889–896. https://doi.org/10.1007/s11003-015-9798-8
dc.relation.referencesen[95] Skorokhoda, V.; Melnyk, Y.; Semenyuk, N.; Suberlyak, O. Obtaining peculiarities and properties of polyvinylpyrrolidone sopolymers with hydrophobic vinyl monomers. Chem.Chem.Technol. 2015, 9, 55–59. https://doi.org/10.23939/chcht09.01.055
dc.relation.referencesen[96] Semenyuk, N.; Kostiv, U.; Suberlyak, O.; Skorokhoda, V. Peculiarities of filled porous hydrogels production and properties. Chem.Chem.Technol. 2013, 7, 95–99. https://doi.org/10.23939/chcht07.01.095
dc.relation.referencesen[97] Skorokhoda, V.; Melnyk, Y.; Semenyuk, N.; Suberlyak, O. Structure controlled formation and properties of highly hydrophilic membranes based on polyvinylpyrrolidone copolymers. Chem.Chem.Technol. 2012, 6, 301–305. https://doi.org/10.23939/chcht06.03.301
dc.relation.referencesen[98] Skorokhoda, V.J.; Semenyuk, N.B.; Dudok, G.D.; Kysil, H.V. Silver-containing Osteoplastic Nanocomposites Based on Polyvinylpyrrolidone Copolymers. Voprosy Khimii i Khim. Tekhnologii 2022, 3, 67–73. http://dx.doi.org/10.32434/0321-4095-2022-142-3-67-73
dc.relation.referencesen[99] Skorokhoda, V.; Semenyuk, N.; Suberlyak, O. Technological Aspects of Obtaining Spherical Granules of Copolymers of Hydroxyethyl Methacrylate with Polyvinylpyrrolidone. Voprosy Khimii i Khim. Tekhnologii 2004, 3, 88–91.
dc.relation.referencesen[100] Suberlyak, O.; Semenyuk, N.; Skorokhoda, V. Peculiarities of Obtaining HEMA Granular Copolymers from PVP. Khim. Prom. Ukr. 2002, 3, 30–34.
dc.relation.referencesen[101] Semenyuk, N.; Dudok, G.; Suberlyak, O.; Skorokhoda, V. The Suspension Polymerization Regularities of Glycidyl Methacrylate in Presence of Polyvinylpyrrolidone. Voprosy Khimii i Khim. Tekhnologii 2011, 2, 54–59.
dc.relation.referencesen[102] Skorokhoda, V.; Semenyuk, N.; Lukan, G.; Suberlyak, O. The Influence of Technological Parameters on the Regularities of Synthesis of Polyvinylpirrolidone Hydrophilic Granular Copolymers. Voprosy Khimii i Khim. Tekhnologii 2006, 3, 67–71.
dc.relation.referencesen[103] Semenyuk, N.; Dudok, G.; Chopyk, N.; Skorokhoda, V. Kinetic Features of Dispersion Polymerization of HEMA Compositions with PVP. Visnyk Nats. Univ. "Lvivska Politechnika" 2010, 667, 456–459.
dc.relation.referencesen[104]. Suberlyak, O.; Gudzera, S.; Skorokhoda, V. Peculiarities of HEMA Polymerization in Polar Solvents in the Presence of PVP. Dopovidi AN URSR 1986, 7, 49–51.
dc.relation.referencesen[105] Skorokhoda, V.; Semenyuk, N.; Melnyk, J.; Suberlyak, O. Hydrogels Penetration and Sorption Properties in the Substances Release Controlled Processes. Chem.Chem.Technol. 2009, 3, 117–121. https://doi.org/10.23939/chcht03.02.117
dc.relation.referencesen[106] Semenyuk, N.; Kohut, O.; Chernygevych, I.; Neboga, G.; Skorokhoda, V. The Features of Obtaining of Spherical Hydrogels for Drug Delivery Systems. Visnyk Nats. Univ. "Lvivska Politechnika" 2015, 812, 404–408. http://nbuv.gov.ua/UJRN/VNULPX_2015_812_71
dc.relation.urihttps://doi.org/10.1007/978-3-319-92067-2_20-1
dc.relation.urihttps://doi.org/10.3390/polym11122066
dc.relation.urihttps://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BGPK-1801-6825?q=bwmeta1.element.baztech-volume-1897-6328-cz
dc.relation.urihttps://doi.org/10.1016/B978-0-12-816137-1.00078-7
dc.relation.urihttps://doi.org/10.3390/molecules25163760
dc.relation.urihttps://doi.org/10.17877/DE290R-15560
dc.relation.urihttps://doi.org/10.3390/gels9070523
dc.relation.urihttps://doi.org/10.5772/intechopen.72082
dc.relation.urihttps://doi.org/10.1016/j.eurpolymj.2022.111807
dc.relation.urihttps://doi.org/10.1016/s0142-9612(03)00340-5
dc.relation.urihttps://doi.org/10.1007/s11095-008-9801-2
dc.relation.urihttps://doi.org/10.1002/adma.200802106
dc.relation.urihttps://doi.org/10.1016/j.jiec.2023.08.042
dc.relation.urihttps://doi.org/10.1016/j.msec.2014.04.026
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2012.03.083
dc.relation.urihttps://doi.org/10.1016/j.mattod.2019.12.026
dc.relation.urihttps://doi.org/10.1016/j.mtchem.2018.02.004
dc.relation.urihttps://doi.org/10.1016/j.jmbbm.2023.106145
dc.relation.urihttps://doi.org/10.1016/j.msec.2017.05.096
dc.relation.urihttps://doi.org/10.1016/j.addr.2021.05.017
dc.relation.urihttps://doi.org/10.1016/j.ijpharm.2014.05.050
dc.relation.urihttps://doi.org/10.1016/j.jconrel.2006.04.008
dc.relation.urihttps://doi.org/10.1016/j.jconrel.2016.10.013
dc.relation.urihttps://doi.org/10.1002/app.29790
dc.relation.urihttps://doi.org/10.3390/scipharm87030020
dc.relation.urihttps://doi.org/10.3389/fchem.2020.615665
dc.relation.urihttps://doi.org/10.1002/ceat.201000210
dc.relation.urihttps://doi.org/10.1016/j.jddst.2021.102914
dc.relation.urihttps://doi.org/10.1021/acs.langmuir.1c01508
dc.relation.urihttps://doi.org/10.1016/j.arabjc.2018.04.004
dc.relation.urihttps://doi.org/10.1016/j.hsr.2023.100140
dc.relation.urihttps://doi.org/10.1080/02652048.2017.1324919
dc.relation.urihttps://doi.org/10.1063/1.5008556
dc.relation.urihttps://doi.org/10.1016/B978-0-12-817640-5.00003-0
dc.relation.urihttps://doi.org/10.1039/D3TB00478C
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2018.06.068
dc.relation.urihttps://doi.org/10.1016/j.colsurfa.2023.132739
dc.relation.urihttps://doi.org/10.3390/molecules25143156
dc.relation.urihttps://doi.org/10.1016/j.colsurfb.2015.12.011
dc.relation.urihttps://doi.org/10.1002/pc.22805
dc.relation.urihttps://doi.org/10.1007/s10853-011-5901-1
dc.relation.urihttps://doi.org/10.3390/polym11020285
dc.relation.urihttps://www.ijhas.in/text.asp?2012/1/4/224/107844
dc.relation.urihttps://doi.org/10.1080/15685551.2015.1012626
dc.relation.urihttps://doi.org/10.3390/ma12020261
dc.relation.urihttps://doi.org/10.1016/S0378-5173(99)00375-0
dc.relation.urihttps://doi.org/10.1007/978-1-61779-953-2_26
dc.relation.urihttps://doi.org/10.1155/2019/4249581
dc.relation.urihttps://doi.org/10.3390/ijms22126376
dc.relation.urihttps://doi.org/10.1016/0032-3861(96)00259-5
dc.relation.urihttps://doi.org/10.1016/j.mtcomm.2016.02.004
dc.relation.urihttps://doi.org/10.3390/ma14226939
dc.relation.urihttps://doi.org/10.1039/d1py00834j
dc.relation.urihttps://doi.org/10.1016/j.micromeso.2015.06.009
dc.relation.urihttps://doi.org/10.1002/apmc.1980.050900105
dc.relation.urihttps://doi.org/10.1016/S1381-5148(97)00010-2
dc.relation.urihttps://doi.org/10.1007/BF02825965
dc.relation.urihttps://doi.org/10.1016/j.matpr.2018.07.062
dc.relation.urihttps://doi.org/10.1002/jbm.820240709
dc.relation.urihttps://doi.org/10.1016/j.cis.2019.05.004
dc.relation.urihttps://doi.org/10.1002/app.1981.070261002
dc.relation.urihttps://doi.org/10.1016/s0142-9612(02)00028-5
dc.relation.urihttps://doi.org/10.1201/9780367811686
dc.relation.urihttps://doi.org/10.1016/j.jddst.2019.101332
dc.relation.urihttps://doi.org/10.15171/apb.2016.063
dc.relation.urihttps://doi.org/10.1042/BSR20160526
dc.relation.urihttps://doi.org/10.1080/09205063.2017.1330587
dc.relation.urihttps://doi.org/10.1016/j.ijpharm.2018.10.001
dc.relation.urihttps://doi.org/10.1002/jbm.a.36515
dc.relation.urihttps://doi.org/10.1590/0104-1428.2097
dc.relation.urihttps://doi.org/10.1039/C9PY00998A
dc.relation.urihttps://doi.org/10.1016/0142-9612(86)90100-6
dc.relation.urihttps://doi.org/10.1016/0142-9612(87)901049
dc.relation.urihttps://doi.org/10.3390/polym14194151
dc.relation.urihttps://doi.org/10.1007/s10965-010-9483-4
dc.relation.urihttps://doi.org/10.3390/polym14225038
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2016.11.092
dc.relation.urihttps://doi.org/10.1007/s10965-014-0518-0
dc.relation.urihttps://doi.org/10.1007/s10856-008-3677-x
dc.relation.urihttps://doi.org/10.1007/s42452-019-0591-4
dc.relation.urihttps://doi.org/10.1016/j.ejps.2013.08.036
dc.relation.urihttps://doi.org/10.1021/am5002585
dc.relation.urihttps://doi.org/10.1002/pat.3986
dc.relation.urihttps://doi.org/10.1002/pola.10728
dc.relation.urihttps://vlp.com.ua/node/13933
dc.relation.urihttps://doi.org/10.1007/s10965-020-02335-7
dc.relation.urihttps://doi.org/10.3390/ma13204580
dc.relation.urihttps://doi.org/10.23939/chcht13.04.429
dc.relation.urihttps://doi.org/10.23939/chcht11.02.171
dc.relation.urihttps://doi.org/10.15587/1729-4061.2017.92368
dc.relation.urihttps://doi.org/10.23939/chcht10.02.187
dc.relation.urihttps://doi.org/10.1007/s11003-015-9798-8
dc.relation.urihttps://doi.org/10.23939/chcht09.01.055
dc.relation.urihttps://doi.org/10.23939/chcht07.01.095
dc.relation.urihttps://doi.org/10.23939/chcht06.03.301
dc.relation.urihttp://dx.doi.org/10.32434/0321-4095-2022-142-3-67-73
dc.relation.urihttps://doi.org/10.23939/chcht03.02.117
dc.relation.urihttp://nbuv.gov.ua/UJRN/VNULPX_2015_812_71
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Semenyuk N., Dudok G., Skorokhoda V., 2024
dc.subjectпролонгатори ліків
dc.subjectгідрогелі
dc.subjectгранульні кополімери
dc.subject2-гідроксіетилметакрилат
dc.subjectсуспензійна полімеризація
dc.subjectполівінілпіролідон
dc.subjectdrug prolongers
dc.subjecthydrogels
dc.subjectgranular copolymers
dc.subjectHEMA
dc.subjectsuspension polymerization
dc.subjectpolyvinylpyrrolidone
dc.titleHydrogels in Biomedicine: Granular Controlled Release Systems Based on 2-Hydroxyethyl Methacrylate Copolymers. A Review
dc.title.alternativeГідрогелі в біомедицині: гранульні системи контрольованого вивільнення на основі (КО)полімерів 2-гідроксіетилметакрилату. Огляд
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n2_Semenyuk_N-Hydrogels_in_Biomedicine_143-156.pdf
Size:
855.88 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n2_Semenyuk_N-Hydrogels_in_Biomedicine_143-156__COVER.png
Size:
1.44 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: