Effect of Potassium Sulfate on the Portland Cement Pastes Setting Behavior

dc.citation.epage178
dc.citation.issue1
dc.citation.spage170
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorSanytsky, Myroslav
dc.contributor.authorKropyvnytska, Tetiana
dc.contributor.authorShyiko, Orest
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T10:29:36Z
dc.date.available2024-02-09T10:29:36Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractДосліджено ефекти дії сульфатів калію на тужавіння цементного тіста. Встановлено, що основні елементи (Ca, Si, Al) розподіляються в складі клінкерних мінералів, тоді як атоми K та S концентруються локально в порах з утворенням водорозчинного арканіту K2SO4. Показано, що взаємодія K2SO4 та CaSO4.2H2O з утворенням сингеніту K2Ca(SO4)2.H2O спричиняє деструктивні явища в цементному тісті.
dc.description.abstractThe article deals with the effect of potassium sulfates on the setting behavior of cement pastes. It has been established that the main elements (Ca, Si, Al) are distributed in the composition of clinker minerals, while K and S atoms are concentrated locally in the pores with the formation of arcanite. It is shown that the interaction of K2SO4 and CaSO42H2O followed by the formation of syngenite K2Ca(SO4)2H2O causes destructive phenomena in cement pastes.
dc.format.extent170-178
dc.format.pages9
dc.identifier.citationSanytsky M. Effect of Potassium Sulfate on the Portland Cement Pastes Setting Behavior / Myroslav Sanytsky, Tetiana Kropyvnytska, Orest Shyiko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 170–178.
dc.identifier.citationenSanytsky M. Effect of Potassium Sulfate on the Portland Cement Pastes Setting Behavior / Myroslav Sanytsky, Tetiana Kropyvnytska, Orest Shyiko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 170–178.
dc.identifier.doidoi.org/10.23939/chcht17.01.170
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61218
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (17), 2023
dc.relation.references[1] Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Ce-ments: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry. Cem. Concr. Res. 2018, 14, 2-26. https://doi.org/10.1016/j.cemconres.2018.03.015
dc.relation.references[2] Shi, G.; Bo, Q.; Provis, J. Recent Progress in Low-Carbon Binders. Cem. Concr. Res. 2019, 122, 227-250. https://doi.org/10.1016/j.cemconres.2019.05.009
dc.relation.references[3] Sanytsky, M.; Kropyvnytska, T.; Fischer, H.-B.; Kondratieva, N. Performance of Low Carbon Modified Composite Gypsum Binders with Increased Water Resistance. Chem. Chem. Technol. 2019, 13, 495-502. https://doi.org/10.23939/chcht13.04.495
dc.relation.references[4] Sanytsky, M.; Kropyvnytska, T.; Fic, S.; Ivashchyshyn, H. Sustainable Low-Carbon Binders and Concretes. E3S Web of Conferences 2020, 166, 06007. https://doi.org/10.1051/e3sconf/202016606007
dc.relation.references[5] Xu, Q.; Stark, J. Early Hydration of Ordinary Portland Cement with an Alkaline Shotcrete Accelerator. Adv. Cem. Res. 2005, 17, 1-8. https://doi.org/10.1680/adcr.17.1.1.58390
dc.relation.references[6] Scrivener, K.L.; Juilland, P.; Monteiro, P.J.M. Advances in Understanding Hydration of Portland Cement. Cem. Concr. Res. 2015, 78, 38-56. https://doi.org/10.1016/j.cemconres.2015.05.025
dc.relation.references[7] Ivashchyshyn, H.; Sanytsky, M.; Kropyvnytska, T.; Rusyn, B. Study of Low-Emission Multi-Component Cements with a High Content of Supplementary Cementitious Materials. East.-Eur. J. Enterp. Technol. 2019, 4, 39-47. https://doi.org/10.15587/1729-4061.2019.175472
dc.relation.references[8] Liu, B.; Shi, J.; Liang, H.; Jiang, J.; Yang, Y.; He, Z. Synergistic Enhancement of Mechanical Property of the High Replacement Low-Calcium Ultrafine Fly Ash Blended Cement Paste by Multiple Chemical Activators. J. Build. Eng. 2020, 32, 101520. https://doi.org/10.1016/j.jobe.2020.101520
dc.relation.references[9] Sanytsky, M.; Usherov-Marshak, A.; Kropyvnytska, T.; Heviuk, I. Performance of Multicomponent Portland Cements Containing Granulated Blast Furnace Slag, Zeolite, and Limestone. Cem. Wapno Beton 2020, 25, 416-427. https://doi.org/10.32047/CWB.2020.25.5.7
dc.relation.references[10] Kryvenko, P.; Runova, R.; Rudenko, I.; Skorik, V.; Omelchuk, V. Analysis of Plasticizer Effectiveness During Alkaline Cement Structure Formation. East.-Eur. J. Enterp. Technol. 2017, 4, 35-41. https://doi.org/10.15587/1729-4061.2017.106803
dc.relation.references[11] Kovalchuk, O.; Grabovchak, V.; Govdun, Y. Alkali Activated Cements Mix Design for Concretes Application in High Corrosive Conditions. MATEC Web of Conferences 2018, 230, 03007. https://doi.org/10.1051/matecconf/201823003007
dc.relation.references[12] Schneider, M. The Cement Industry on the Way to Low-Carbon Future. Cem. Concr. Res. 2019, 124, 105792. https://doi.org/10.1016/j.cemconres.2019.105792
dc.relation.references[13] Chatterjee, A.; Sui, T. Alternative Fuels – Effects on Clinker Process and Properties. Cem. Concr. Res. 2019, 123, 105777. https://doi.org/10.1016/j.cemconres.2019.105777
dc.relation.references[14] Kryvenko, P.; Sanytsky, M.; Kropyvnytska, T.; Kotiv, R. Deсorative Multi-Component Alkali Activated Cements for Resto-ration and Finishing Works. Adv. Mat. Res. 2014, 897, 45-48. https://doi.org/10.4028/www.scientific.net/AMR.897.45
dc.relation.references[15] Sobol, K.; Solodkyy, S.; Petrovska, N.; Belov, S.; Hunyak, O.; Hidei, V. Chemical Composition and Hydraulic Properties of Incinerated Wastepaper Sludge. Chem. Chem. Technol. 2020, 14, 538-544. https://doi.org/10.23939/chcht14.04.538
dc.relation.references[16] Kroviakov, S.; Volchuk, V.; Zavoloka, M.; Krizhanovsky, V. Search for Ranking Approaches of Expanded Clay Concrete Quality Criteria. Materials Science Forum 2019, 968, 20-25. https://doi.org/10.4028/www.scientific.net/MSF.968.20
dc.relation.references[17] Sant, G.; Kumar, A.; Patapy, C.; Le Saout, G.; Scrivener, K. The Influence of Sodium and Potassium Hydroxide on Volume Changes in Cementitious Materials. Cem. Concr. Res. 2012, 42, 1447-1455. https://doi.org/10.1016/j.cemconres.2012.08.012
dc.relation.references[18] Savchuk, Y.; Plugin, A.; Lyuty, L.; Pluhin, O.; Borziak, O. Study of Influence of the Alkaline Component on the Physico-Mechanical Properties of the Low Clinker and Clinkerless Waterproof Compositions. MATEC Web of Conferences 2018, 230, 03018. https://doi.org/10.1051/matecconf/201823003018
dc.relation.references[19] Li, N.; Shi, C.; Zhang, Z. Understanding the Roles of Activators Towards Setting and Hardening Control of Alkali-Activated Slag Cement. Compos. B. Eng. 2019, 171, 34-45. https://doi.org/10.1016/j.compositesb.2019.04.024
dc.relation.references[20] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14, 386-393. https://doi.org/10.23939/chcht14.03.386
dc.relation.references[21] Zajac, M.; Wieczorek, M.; Lothenbach, B.; Bullerjahn, F.; Schmidt, V.M.; Ben Haha, M. Effect of Alkali and Sulfate on Early Hydration of Portland Cements at High Water to Cement Ratio. Constr. Build. Mater. 2022, 345, 128283 https://doi.org/10.1016/j.conbuildmat.2022.128283
dc.relation.references[22] Mota, B.; Matschei, T.; Scrivener, K. The Influence of Sodium Salts and Gypsum on Alite Hydration. Cem. Concr. Res. 2015, 75, 53-65. https://doi.org/10.1016/j.cemconres.2015.04.015
dc.relation.references[23] Aggoun, S., Cheikh Zouaoui, M.; Chikh, N.; Duval, R. Effect of Some Admixtures on the Setting Time and Strength Evolution of Cement Pastes at Early Ages. Constr. Build. Mater. 2008, 22, 106-110. https://doi.org/10.1016/j.conbuildmat.2006.05.043
dc.relation.references[24] Ma, Y.; Qian, J. Influence of Alkali Sulfates in Clinker on the Hydration and Hardening of Portland Cement. Constr. Build. Mater. 2018, 180, 351-363. https://doi.org/10.1016/j.conbuildmat.2018.05.196
dc.relation.references[25] Sun, H.; Qian, J.; Xiong, Q.; Yang, S.; Niu, M.; Deng, L.; Huang, Y. Effects of Alkali Sulfates in Clinker on Hydration and Hardening Performance of Portland Cement. Adv. Cem. Res. 2018, 30, 172-184. https://doi.org/10.1680/jadcr.17.00030
dc.relation.references[26] Ma, Y.; Qian, J. Effect of Alkali Sulfates in Clinker on Hydration and Hardening Properties of Cement Incorporating SCMs. Adv. Cem. Res. 2022, Ahead of Print, pp. 1–37. https://doi.org/10.1680/jadcr.21.00110
dc.relation.references[27] Smaoui, N.; Bérubé, M.; Fournier, B.; Bissonnette, B.; Durand, B. Effects of Alkali Addition on the Mechanical Properties and Durability of Concrete. Cem. Concr. Res. 2005, 35, 203-212. https://doi.org/10.1016/j.cemconres.2004.05.007
dc.relation.referencesen[1] Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Ce-ments: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry. Cem. Concr. Res. 2018, 14, 2-26. https://doi.org/10.1016/j.cemconres.2018.03.015
dc.relation.referencesen[2] Shi, G.; Bo, Q.; Provis, J. Recent Progress in Low-Carbon Binders. Cem. Concr. Res. 2019, 122, 227-250. https://doi.org/10.1016/j.cemconres.2019.05.009
dc.relation.referencesen[3] Sanytsky, M.; Kropyvnytska, T.; Fischer, H.-B.; Kondratieva, N. Performance of Low Carbon Modified Composite Gypsum Binders with Increased Water Resistance. Chem. Chem. Technol. 2019, 13, 495-502. https://doi.org/10.23939/chcht13.04.495
dc.relation.referencesen[4] Sanytsky, M.; Kropyvnytska, T.; Fic, S.; Ivashchyshyn, H. Sustainable Low-Carbon Binders and Concretes. E3S Web of Conferences 2020, 166, 06007. https://doi.org/10.1051/e3sconf/202016606007
dc.relation.referencesen[5] Xu, Q.; Stark, J. Early Hydration of Ordinary Portland Cement with an Alkaline Shotcrete Accelerator. Adv. Cem. Res. 2005, 17, 1-8. https://doi.org/10.1680/adcr.17.1.1.58390
dc.relation.referencesen[6] Scrivener, K.L.; Juilland, P.; Monteiro, P.J.M. Advances in Understanding Hydration of Portland Cement. Cem. Concr. Res. 2015, 78, 38-56. https://doi.org/10.1016/j.cemconres.2015.05.025
dc.relation.referencesen[7] Ivashchyshyn, H.; Sanytsky, M.; Kropyvnytska, T.; Rusyn, B. Study of Low-Emission Multi-Component Cements with a High Content of Supplementary Cementitious Materials. East.-Eur. J. Enterp. Technol. 2019, 4, 39-47. https://doi.org/10.15587/1729-4061.2019.175472
dc.relation.referencesen[8] Liu, B.; Shi, J.; Liang, H.; Jiang, J.; Yang, Y.; He, Z. Synergistic Enhancement of Mechanical Property of the High Replacement Low-Calcium Ultrafine Fly Ash Blended Cement Paste by Multiple Chemical Activators. J. Build. Eng. 2020, 32, 101520. https://doi.org/10.1016/j.jobe.2020.101520
dc.relation.referencesen[9] Sanytsky, M.; Usherov-Marshak, A.; Kropyvnytska, T.; Heviuk, I. Performance of Multicomponent Portland Cements Containing Granulated Blast Furnace Slag, Zeolite, and Limestone. Cem. Wapno Beton 2020, 25, 416-427. https://doi.org/10.32047/CWB.2020.25.5.7
dc.relation.referencesen[10] Kryvenko, P.; Runova, R.; Rudenko, I.; Skorik, V.; Omelchuk, V. Analysis of Plasticizer Effectiveness During Alkaline Cement Structure Formation. East.-Eur. J. Enterp. Technol. 2017, 4, 35-41. https://doi.org/10.15587/1729-4061.2017.106803
dc.relation.referencesen[11] Kovalchuk, O.; Grabovchak, V.; Govdun, Y. Alkali Activated Cements Mix Design for Concretes Application in High Corrosive Conditions. MATEC Web of Conferences 2018, 230, 03007. https://doi.org/10.1051/matecconf/201823003007
dc.relation.referencesen[12] Schneider, M. The Cement Industry on the Way to Low-Carbon Future. Cem. Concr. Res. 2019, 124, 105792. https://doi.org/10.1016/j.cemconres.2019.105792
dc.relation.referencesen[13] Chatterjee, A.; Sui, T. Alternative Fuels – Effects on Clinker Process and Properties. Cem. Concr. Res. 2019, 123, 105777. https://doi.org/10.1016/j.cemconres.2019.105777
dc.relation.referencesen[14] Kryvenko, P.; Sanytsky, M.; Kropyvnytska, T.; Kotiv, R. Desorative Multi-Component Alkali Activated Cements for Resto-ration and Finishing Works. Adv. Mat. Res. 2014, 897, 45-48. https://doi.org/10.4028/www.scientific.net/AMR.897.45
dc.relation.referencesen[15] Sobol, K.; Solodkyy, S.; Petrovska, N.; Belov, S.; Hunyak, O.; Hidei, V. Chemical Composition and Hydraulic Properties of Incinerated Wastepaper Sludge. Chem. Chem. Technol. 2020, 14, 538-544. https://doi.org/10.23939/chcht14.04.538
dc.relation.referencesen[16] Kroviakov, S.; Volchuk, V.; Zavoloka, M.; Krizhanovsky, V. Search for Ranking Approaches of Expanded Clay Concrete Quality Criteria. Materials Science Forum 2019, 968, 20-25. https://doi.org/10.4028/www.scientific.net/MSF.968.20
dc.relation.referencesen[17] Sant, G.; Kumar, A.; Patapy, C.; Le Saout, G.; Scrivener, K. The Influence of Sodium and Potassium Hydroxide on Volume Changes in Cementitious Materials. Cem. Concr. Res. 2012, 42, 1447-1455. https://doi.org/10.1016/j.cemconres.2012.08.012
dc.relation.referencesen[18] Savchuk, Y.; Plugin, A.; Lyuty, L.; Pluhin, O.; Borziak, O. Study of Influence of the Alkaline Component on the Physico-Mechanical Properties of the Low Clinker and Clinkerless Waterproof Compositions. MATEC Web of Conferences 2018, 230, 03018. https://doi.org/10.1051/matecconf/201823003018
dc.relation.referencesen[19] Li, N.; Shi, C.; Zhang, Z. Understanding the Roles of Activators Towards Setting and Hardening Control of Alkali-Activated Slag Cement. Compos. B. Eng. 2019, 171, 34-45. https://doi.org/10.1016/j.compositesb.2019.04.024
dc.relation.referencesen[20] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14, 386-393. https://doi.org/10.23939/chcht14.03.386
dc.relation.referencesen[21] Zajac, M.; Wieczorek, M.; Lothenbach, B.; Bullerjahn, F.; Schmidt, V.M.; Ben Haha, M. Effect of Alkali and Sulfate on Early Hydration of Portland Cements at High Water to Cement Ratio. Constr. Build. Mater. 2022, 345, 128283 https://doi.org/10.1016/j.conbuildmat.2022.128283
dc.relation.referencesen[22] Mota, B.; Matschei, T.; Scrivener, K. The Influence of Sodium Salts and Gypsum on Alite Hydration. Cem. Concr. Res. 2015, 75, 53-65. https://doi.org/10.1016/j.cemconres.2015.04.015
dc.relation.referencesen[23] Aggoun, S., Cheikh Zouaoui, M.; Chikh, N.; Duval, R. Effect of Some Admixtures on the Setting Time and Strength Evolution of Cement Pastes at Early Ages. Constr. Build. Mater. 2008, 22, 106-110. https://doi.org/10.1016/j.conbuildmat.2006.05.043
dc.relation.referencesen[24] Ma, Y.; Qian, J. Influence of Alkali Sulfates in Clinker on the Hydration and Hardening of Portland Cement. Constr. Build. Mater. 2018, 180, 351-363. https://doi.org/10.1016/j.conbuildmat.2018.05.196
dc.relation.referencesen[25] Sun, H.; Qian, J.; Xiong, Q.; Yang, S.; Niu, M.; Deng, L.; Huang, Y. Effects of Alkali Sulfates in Clinker on Hydration and Hardening Performance of Portland Cement. Adv. Cem. Res. 2018, 30, 172-184. https://doi.org/10.1680/jadcr.17.00030
dc.relation.referencesen[26] Ma, Y.; Qian, J. Effect of Alkali Sulfates in Clinker on Hydration and Hardening Properties of Cement Incorporating SCMs. Adv. Cem. Res. 2022, Ahead of Print, pp. 1–37. https://doi.org/10.1680/jadcr.21.00110
dc.relation.referencesen[27] Smaoui, N.; Bérubé, M.; Fournier, B.; Bissonnette, B.; Durand, B. Effects of Alkali Addition on the Mechanical Properties and Durability of Concrete. Cem. Concr. Res. 2005, 35, 203-212. https://doi.org/10.1016/j.cemconres.2004.05.007
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2018.03.015
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2019.05.009
dc.relation.urihttps://doi.org/10.23939/chcht13.04.495
dc.relation.urihttps://doi.org/10.1051/e3sconf/202016606007
dc.relation.urihttps://doi.org/10.1680/adcr.17.1.1.58390
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2015.05.025
dc.relation.urihttps://doi.org/10.15587/1729-4061.2019.175472
dc.relation.urihttps://doi.org/10.1016/j.jobe.2020.101520
dc.relation.urihttps://doi.org/10.32047/CWB.2020.25.5.7
dc.relation.urihttps://doi.org/10.15587/1729-4061.2017.106803
dc.relation.urihttps://doi.org/10.1051/matecconf/201823003007
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2019.105792
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2019.105777
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMR.897.45
dc.relation.urihttps://doi.org/10.23939/chcht14.04.538
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/MSF.968.20
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2012.08.012
dc.relation.urihttps://doi.org/10.1051/matecconf/201823003018
dc.relation.urihttps://doi.org/10.1016/j.compositesb.2019.04.024
dc.relation.urihttps://doi.org/10.23939/chcht14.03.386
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2022.128283
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2015.04.015
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2006.05.043
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2018.05.196
dc.relation.urihttps://doi.org/10.1680/jadcr.17.00030
dc.relation.urihttps://doi.org/10.1680/jadcr.21.00110
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2004.05.007
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Sanytsky M., Kropyvnytska T., Shyiko O., 2023
dc.subjectпортландцементний клінкер
dc.subjectдвоводний гіпс
dc.subjectарканіт
dc.subjectсингеніт
dc.subjectтерміни тужавіння
dc.subjectPortland cement clinker
dc.subjectcalcium sulfate dihydrate
dc.subjectarcanite
dc.subjectsyngenite
dc.subjectsetting behavior
dc.titleEffect of Potassium Sulfate on the Portland Cement Pastes Setting Behavior
dc.title.alternativeВплив сульфатів калію на процеси тужавіння портландцементного тіста
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n1_Sanytsky_M-Effect_of_Potassium_Sulfate_170-178.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n1_Sanytsky_M-Effect_of_Potassium_Sulfate_170-178__COVER.png
Size:
557.92 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: