Effect of Potassium Sulfate on the Portland Cement Pastes Setting Behavior
dc.citation.epage | 178 | |
dc.citation.issue | 1 | |
dc.citation.spage | 170 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Sanytsky, Myroslav | |
dc.contributor.author | Kropyvnytska, Tetiana | |
dc.contributor.author | Shyiko, Orest | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T10:29:36Z | |
dc.date.available | 2024-02-09T10:29:36Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Досліджено ефекти дії сульфатів калію на тужавіння цементного тіста. Встановлено, що основні елементи (Ca, Si, Al) розподіляються в складі клінкерних мінералів, тоді як атоми K та S концентруються локально в порах з утворенням водорозчинного арканіту K2SO4. Показано, що взаємодія K2SO4 та CaSO4.2H2O з утворенням сингеніту K2Ca(SO4)2.H2O спричиняє деструктивні явища в цементному тісті. | |
dc.description.abstract | The article deals with the effect of potassium sulfates on the setting behavior of cement pastes. It has been established that the main elements (Ca, Si, Al) are distributed in the composition of clinker minerals, while K and S atoms are concentrated locally in the pores with the formation of arcanite. It is shown that the interaction of K2SO4 and CaSO42H2O followed by the formation of syngenite K2Ca(SO4)2H2O causes destructive phenomena in cement pastes. | |
dc.format.extent | 170-178 | |
dc.format.pages | 9 | |
dc.identifier.citation | Sanytsky M. Effect of Potassium Sulfate on the Portland Cement Pastes Setting Behavior / Myroslav Sanytsky, Tetiana Kropyvnytska, Orest Shyiko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 170–178. | |
dc.identifier.citationen | Sanytsky M. Effect of Potassium Sulfate on the Portland Cement Pastes Setting Behavior / Myroslav Sanytsky, Tetiana Kropyvnytska, Orest Shyiko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 170–178. | |
dc.identifier.doi | doi.org/10.23939/chcht17.01.170 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61218 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (17), 2023 | |
dc.relation.references | [1] Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Ce-ments: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry. Cem. Concr. Res. 2018, 14, 2-26. https://doi.org/10.1016/j.cemconres.2018.03.015 | |
dc.relation.references | [2] Shi, G.; Bo, Q.; Provis, J. Recent Progress in Low-Carbon Binders. Cem. Concr. Res. 2019, 122, 227-250. https://doi.org/10.1016/j.cemconres.2019.05.009 | |
dc.relation.references | [3] Sanytsky, M.; Kropyvnytska, T.; Fischer, H.-B.; Kondratieva, N. Performance of Low Carbon Modified Composite Gypsum Binders with Increased Water Resistance. Chem. Chem. Technol. 2019, 13, 495-502. https://doi.org/10.23939/chcht13.04.495 | |
dc.relation.references | [4] Sanytsky, M.; Kropyvnytska, T.; Fic, S.; Ivashchyshyn, H. Sustainable Low-Carbon Binders and Concretes. E3S Web of Conferences 2020, 166, 06007. https://doi.org/10.1051/e3sconf/202016606007 | |
dc.relation.references | [5] Xu, Q.; Stark, J. Early Hydration of Ordinary Portland Cement with an Alkaline Shotcrete Accelerator. Adv. Cem. Res. 2005, 17, 1-8. https://doi.org/10.1680/adcr.17.1.1.58390 | |
dc.relation.references | [6] Scrivener, K.L.; Juilland, P.; Monteiro, P.J.M. Advances in Understanding Hydration of Portland Cement. Cem. Concr. Res. 2015, 78, 38-56. https://doi.org/10.1016/j.cemconres.2015.05.025 | |
dc.relation.references | [7] Ivashchyshyn, H.; Sanytsky, M.; Kropyvnytska, T.; Rusyn, B. Study of Low-Emission Multi-Component Cements with a High Content of Supplementary Cementitious Materials. East.-Eur. J. Enterp. Technol. 2019, 4, 39-47. https://doi.org/10.15587/1729-4061.2019.175472 | |
dc.relation.references | [8] Liu, B.; Shi, J.; Liang, H.; Jiang, J.; Yang, Y.; He, Z. Synergistic Enhancement of Mechanical Property of the High Replacement Low-Calcium Ultrafine Fly Ash Blended Cement Paste by Multiple Chemical Activators. J. Build. Eng. 2020, 32, 101520. https://doi.org/10.1016/j.jobe.2020.101520 | |
dc.relation.references | [9] Sanytsky, M.; Usherov-Marshak, A.; Kropyvnytska, T.; Heviuk, I. Performance of Multicomponent Portland Cements Containing Granulated Blast Furnace Slag, Zeolite, and Limestone. Cem. Wapno Beton 2020, 25, 416-427. https://doi.org/10.32047/CWB.2020.25.5.7 | |
dc.relation.references | [10] Kryvenko, P.; Runova, R.; Rudenko, I.; Skorik, V.; Omelchuk, V. Analysis of Plasticizer Effectiveness During Alkaline Cement Structure Formation. East.-Eur. J. Enterp. Technol. 2017, 4, 35-41. https://doi.org/10.15587/1729-4061.2017.106803 | |
dc.relation.references | [11] Kovalchuk, O.; Grabovchak, V.; Govdun, Y. Alkali Activated Cements Mix Design for Concretes Application in High Corrosive Conditions. MATEC Web of Conferences 2018, 230, 03007. https://doi.org/10.1051/matecconf/201823003007 | |
dc.relation.references | [12] Schneider, M. The Cement Industry on the Way to Low-Carbon Future. Cem. Concr. Res. 2019, 124, 105792. https://doi.org/10.1016/j.cemconres.2019.105792 | |
dc.relation.references | [13] Chatterjee, A.; Sui, T. Alternative Fuels – Effects on Clinker Process and Properties. Cem. Concr. Res. 2019, 123, 105777. https://doi.org/10.1016/j.cemconres.2019.105777 | |
dc.relation.references | [14] Kryvenko, P.; Sanytsky, M.; Kropyvnytska, T.; Kotiv, R. Deсorative Multi-Component Alkali Activated Cements for Resto-ration and Finishing Works. Adv. Mat. Res. 2014, 897, 45-48. https://doi.org/10.4028/www.scientific.net/AMR.897.45 | |
dc.relation.references | [15] Sobol, K.; Solodkyy, S.; Petrovska, N.; Belov, S.; Hunyak, O.; Hidei, V. Chemical Composition and Hydraulic Properties of Incinerated Wastepaper Sludge. Chem. Chem. Technol. 2020, 14, 538-544. https://doi.org/10.23939/chcht14.04.538 | |
dc.relation.references | [16] Kroviakov, S.; Volchuk, V.; Zavoloka, M.; Krizhanovsky, V. Search for Ranking Approaches of Expanded Clay Concrete Quality Criteria. Materials Science Forum 2019, 968, 20-25. https://doi.org/10.4028/www.scientific.net/MSF.968.20 | |
dc.relation.references | [17] Sant, G.; Kumar, A.; Patapy, C.; Le Saout, G.; Scrivener, K. The Influence of Sodium and Potassium Hydroxide on Volume Changes in Cementitious Materials. Cem. Concr. Res. 2012, 42, 1447-1455. https://doi.org/10.1016/j.cemconres.2012.08.012 | |
dc.relation.references | [18] Savchuk, Y.; Plugin, A.; Lyuty, L.; Pluhin, O.; Borziak, O. Study of Influence of the Alkaline Component on the Physico-Mechanical Properties of the Low Clinker and Clinkerless Waterproof Compositions. MATEC Web of Conferences 2018, 230, 03018. https://doi.org/10.1051/matecconf/201823003018 | |
dc.relation.references | [19] Li, N.; Shi, C.; Zhang, Z. Understanding the Roles of Activators Towards Setting and Hardening Control of Alkali-Activated Slag Cement. Compos. B. Eng. 2019, 171, 34-45. https://doi.org/10.1016/j.compositesb.2019.04.024 | |
dc.relation.references | [20] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14, 386-393. https://doi.org/10.23939/chcht14.03.386 | |
dc.relation.references | [21] Zajac, M.; Wieczorek, M.; Lothenbach, B.; Bullerjahn, F.; Schmidt, V.M.; Ben Haha, M. Effect of Alkali and Sulfate on Early Hydration of Portland Cements at High Water to Cement Ratio. Constr. Build. Mater. 2022, 345, 128283 https://doi.org/10.1016/j.conbuildmat.2022.128283 | |
dc.relation.references | [22] Mota, B.; Matschei, T.; Scrivener, K. The Influence of Sodium Salts and Gypsum on Alite Hydration. Cem. Concr. Res. 2015, 75, 53-65. https://doi.org/10.1016/j.cemconres.2015.04.015 | |
dc.relation.references | [23] Aggoun, S., Cheikh Zouaoui, M.; Chikh, N.; Duval, R. Effect of Some Admixtures on the Setting Time and Strength Evolution of Cement Pastes at Early Ages. Constr. Build. Mater. 2008, 22, 106-110. https://doi.org/10.1016/j.conbuildmat.2006.05.043 | |
dc.relation.references | [24] Ma, Y.; Qian, J. Influence of Alkali Sulfates in Clinker on the Hydration and Hardening of Portland Cement. Constr. Build. Mater. 2018, 180, 351-363. https://doi.org/10.1016/j.conbuildmat.2018.05.196 | |
dc.relation.references | [25] Sun, H.; Qian, J.; Xiong, Q.; Yang, S.; Niu, M.; Deng, L.; Huang, Y. Effects of Alkali Sulfates in Clinker on Hydration and Hardening Performance of Portland Cement. Adv. Cem. Res. 2018, 30, 172-184. https://doi.org/10.1680/jadcr.17.00030 | |
dc.relation.references | [26] Ma, Y.; Qian, J. Effect of Alkali Sulfates in Clinker on Hydration and Hardening Properties of Cement Incorporating SCMs. Adv. Cem. Res. 2022, Ahead of Print, pp. 1–37. https://doi.org/10.1680/jadcr.21.00110 | |
dc.relation.references | [27] Smaoui, N.; Bérubé, M.; Fournier, B.; Bissonnette, B.; Durand, B. Effects of Alkali Addition on the Mechanical Properties and Durability of Concrete. Cem. Concr. Res. 2005, 35, 203-212. https://doi.org/10.1016/j.cemconres.2004.05.007 | |
dc.relation.referencesen | [1] Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Ce-ments: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry. Cem. Concr. Res. 2018, 14, 2-26. https://doi.org/10.1016/j.cemconres.2018.03.015 | |
dc.relation.referencesen | [2] Shi, G.; Bo, Q.; Provis, J. Recent Progress in Low-Carbon Binders. Cem. Concr. Res. 2019, 122, 227-250. https://doi.org/10.1016/j.cemconres.2019.05.009 | |
dc.relation.referencesen | [3] Sanytsky, M.; Kropyvnytska, T.; Fischer, H.-B.; Kondratieva, N. Performance of Low Carbon Modified Composite Gypsum Binders with Increased Water Resistance. Chem. Chem. Technol. 2019, 13, 495-502. https://doi.org/10.23939/chcht13.04.495 | |
dc.relation.referencesen | [4] Sanytsky, M.; Kropyvnytska, T.; Fic, S.; Ivashchyshyn, H. Sustainable Low-Carbon Binders and Concretes. E3S Web of Conferences 2020, 166, 06007. https://doi.org/10.1051/e3sconf/202016606007 | |
dc.relation.referencesen | [5] Xu, Q.; Stark, J. Early Hydration of Ordinary Portland Cement with an Alkaline Shotcrete Accelerator. Adv. Cem. Res. 2005, 17, 1-8. https://doi.org/10.1680/adcr.17.1.1.58390 | |
dc.relation.referencesen | [6] Scrivener, K.L.; Juilland, P.; Monteiro, P.J.M. Advances in Understanding Hydration of Portland Cement. Cem. Concr. Res. 2015, 78, 38-56. https://doi.org/10.1016/j.cemconres.2015.05.025 | |
dc.relation.referencesen | [7] Ivashchyshyn, H.; Sanytsky, M.; Kropyvnytska, T.; Rusyn, B. Study of Low-Emission Multi-Component Cements with a High Content of Supplementary Cementitious Materials. East.-Eur. J. Enterp. Technol. 2019, 4, 39-47. https://doi.org/10.15587/1729-4061.2019.175472 | |
dc.relation.referencesen | [8] Liu, B.; Shi, J.; Liang, H.; Jiang, J.; Yang, Y.; He, Z. Synergistic Enhancement of Mechanical Property of the High Replacement Low-Calcium Ultrafine Fly Ash Blended Cement Paste by Multiple Chemical Activators. J. Build. Eng. 2020, 32, 101520. https://doi.org/10.1016/j.jobe.2020.101520 | |
dc.relation.referencesen | [9] Sanytsky, M.; Usherov-Marshak, A.; Kropyvnytska, T.; Heviuk, I. Performance of Multicomponent Portland Cements Containing Granulated Blast Furnace Slag, Zeolite, and Limestone. Cem. Wapno Beton 2020, 25, 416-427. https://doi.org/10.32047/CWB.2020.25.5.7 | |
dc.relation.referencesen | [10] Kryvenko, P.; Runova, R.; Rudenko, I.; Skorik, V.; Omelchuk, V. Analysis of Plasticizer Effectiveness During Alkaline Cement Structure Formation. East.-Eur. J. Enterp. Technol. 2017, 4, 35-41. https://doi.org/10.15587/1729-4061.2017.106803 | |
dc.relation.referencesen | [11] Kovalchuk, O.; Grabovchak, V.; Govdun, Y. Alkali Activated Cements Mix Design for Concretes Application in High Corrosive Conditions. MATEC Web of Conferences 2018, 230, 03007. https://doi.org/10.1051/matecconf/201823003007 | |
dc.relation.referencesen | [12] Schneider, M. The Cement Industry on the Way to Low-Carbon Future. Cem. Concr. Res. 2019, 124, 105792. https://doi.org/10.1016/j.cemconres.2019.105792 | |
dc.relation.referencesen | [13] Chatterjee, A.; Sui, T. Alternative Fuels – Effects on Clinker Process and Properties. Cem. Concr. Res. 2019, 123, 105777. https://doi.org/10.1016/j.cemconres.2019.105777 | |
dc.relation.referencesen | [14] Kryvenko, P.; Sanytsky, M.; Kropyvnytska, T.; Kotiv, R. Desorative Multi-Component Alkali Activated Cements for Resto-ration and Finishing Works. Adv. Mat. Res. 2014, 897, 45-48. https://doi.org/10.4028/www.scientific.net/AMR.897.45 | |
dc.relation.referencesen | [15] Sobol, K.; Solodkyy, S.; Petrovska, N.; Belov, S.; Hunyak, O.; Hidei, V. Chemical Composition and Hydraulic Properties of Incinerated Wastepaper Sludge. Chem. Chem. Technol. 2020, 14, 538-544. https://doi.org/10.23939/chcht14.04.538 | |
dc.relation.referencesen | [16] Kroviakov, S.; Volchuk, V.; Zavoloka, M.; Krizhanovsky, V. Search for Ranking Approaches of Expanded Clay Concrete Quality Criteria. Materials Science Forum 2019, 968, 20-25. https://doi.org/10.4028/www.scientific.net/MSF.968.20 | |
dc.relation.referencesen | [17] Sant, G.; Kumar, A.; Patapy, C.; Le Saout, G.; Scrivener, K. The Influence of Sodium and Potassium Hydroxide on Volume Changes in Cementitious Materials. Cem. Concr. Res. 2012, 42, 1447-1455. https://doi.org/10.1016/j.cemconres.2012.08.012 | |
dc.relation.referencesen | [18] Savchuk, Y.; Plugin, A.; Lyuty, L.; Pluhin, O.; Borziak, O. Study of Influence of the Alkaline Component on the Physico-Mechanical Properties of the Low Clinker and Clinkerless Waterproof Compositions. MATEC Web of Conferences 2018, 230, 03018. https://doi.org/10.1051/matecconf/201823003018 | |
dc.relation.referencesen | [19] Li, N.; Shi, C.; Zhang, Z. Understanding the Roles of Activators Towards Setting and Hardening Control of Alkali-Activated Slag Cement. Compos. B. Eng. 2019, 171, 34-45. https://doi.org/10.1016/j.compositesb.2019.04.024 | |
dc.relation.referencesen | [20] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14, 386-393. https://doi.org/10.23939/chcht14.03.386 | |
dc.relation.referencesen | [21] Zajac, M.; Wieczorek, M.; Lothenbach, B.; Bullerjahn, F.; Schmidt, V.M.; Ben Haha, M. Effect of Alkali and Sulfate on Early Hydration of Portland Cements at High Water to Cement Ratio. Constr. Build. Mater. 2022, 345, 128283 https://doi.org/10.1016/j.conbuildmat.2022.128283 | |
dc.relation.referencesen | [22] Mota, B.; Matschei, T.; Scrivener, K. The Influence of Sodium Salts and Gypsum on Alite Hydration. Cem. Concr. Res. 2015, 75, 53-65. https://doi.org/10.1016/j.cemconres.2015.04.015 | |
dc.relation.referencesen | [23] Aggoun, S., Cheikh Zouaoui, M.; Chikh, N.; Duval, R. Effect of Some Admixtures on the Setting Time and Strength Evolution of Cement Pastes at Early Ages. Constr. Build. Mater. 2008, 22, 106-110. https://doi.org/10.1016/j.conbuildmat.2006.05.043 | |
dc.relation.referencesen | [24] Ma, Y.; Qian, J. Influence of Alkali Sulfates in Clinker on the Hydration and Hardening of Portland Cement. Constr. Build. Mater. 2018, 180, 351-363. https://doi.org/10.1016/j.conbuildmat.2018.05.196 | |
dc.relation.referencesen | [25] Sun, H.; Qian, J.; Xiong, Q.; Yang, S.; Niu, M.; Deng, L.; Huang, Y. Effects of Alkali Sulfates in Clinker on Hydration and Hardening Performance of Portland Cement. Adv. Cem. Res. 2018, 30, 172-184. https://doi.org/10.1680/jadcr.17.00030 | |
dc.relation.referencesen | [26] Ma, Y.; Qian, J. Effect of Alkali Sulfates in Clinker on Hydration and Hardening Properties of Cement Incorporating SCMs. Adv. Cem. Res. 2022, Ahead of Print, pp. 1–37. https://doi.org/10.1680/jadcr.21.00110 | |
dc.relation.referencesen | [27] Smaoui, N.; Bérubé, M.; Fournier, B.; Bissonnette, B.; Durand, B. Effects of Alkali Addition on the Mechanical Properties and Durability of Concrete. Cem. Concr. Res. 2005, 35, 203-212. https://doi.org/10.1016/j.cemconres.2004.05.007 | |
dc.relation.uri | https://doi.org/10.1016/j.cemconres.2018.03.015 | |
dc.relation.uri | https://doi.org/10.1016/j.cemconres.2019.05.009 | |
dc.relation.uri | https://doi.org/10.23939/chcht13.04.495 | |
dc.relation.uri | https://doi.org/10.1051/e3sconf/202016606007 | |
dc.relation.uri | https://doi.org/10.1680/adcr.17.1.1.58390 | |
dc.relation.uri | https://doi.org/10.1016/j.cemconres.2015.05.025 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2019.175472 | |
dc.relation.uri | https://doi.org/10.1016/j.jobe.2020.101520 | |
dc.relation.uri | https://doi.org/10.32047/CWB.2020.25.5.7 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2017.106803 | |
dc.relation.uri | https://doi.org/10.1051/matecconf/201823003007 | |
dc.relation.uri | https://doi.org/10.1016/j.cemconres.2019.105792 | |
dc.relation.uri | https://doi.org/10.1016/j.cemconres.2019.105777 | |
dc.relation.uri | https://doi.org/10.4028/www.scientific.net/AMR.897.45 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.04.538 | |
dc.relation.uri | https://doi.org/10.4028/www.scientific.net/MSF.968.20 | |
dc.relation.uri | https://doi.org/10.1016/j.cemconres.2012.08.012 | |
dc.relation.uri | https://doi.org/10.1051/matecconf/201823003018 | |
dc.relation.uri | https://doi.org/10.1016/j.compositesb.2019.04.024 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.03.386 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2022.128283 | |
dc.relation.uri | https://doi.org/10.1016/j.cemconres.2015.04.015 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2006.05.043 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2018.05.196 | |
dc.relation.uri | https://doi.org/10.1680/jadcr.17.00030 | |
dc.relation.uri | https://doi.org/10.1680/jadcr.21.00110 | |
dc.relation.uri | https://doi.org/10.1016/j.cemconres.2004.05.007 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Sanytsky M., Kropyvnytska T., Shyiko O., 2023 | |
dc.subject | портландцементний клінкер | |
dc.subject | двоводний гіпс | |
dc.subject | арканіт | |
dc.subject | сингеніт | |
dc.subject | терміни тужавіння | |
dc.subject | Portland cement clinker | |
dc.subject | calcium sulfate dihydrate | |
dc.subject | arcanite | |
dc.subject | syngenite | |
dc.subject | setting behavior | |
dc.title | Effect of Potassium Sulfate on the Portland Cement Pastes Setting Behavior | |
dc.title.alternative | Вплив сульфатів калію на процеси тужавіння портландцементного тіста | |
dc.type | Article |
Files
License bundle
1 - 1 of 1