Characterization, Antioxidant Activity, and In Silico Molecular Docking of Chitosan from Snail Shell Waste by Ultrasonic Technique

dc.citation.epage132
dc.citation.issue1
dc.citation.spage126
dc.contributor.affiliationUniversity of Brawijaya
dc.contributor.affiliationAcademy Pharmacy of Surabaya
dc.contributor.authorUmarudin
dc.contributor.authorRahayu, Sri
dc.contributor.authorWidyarti, Sri
dc.contributor.authorWarsito
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T10:29:32Z
dc.date.available2024-02-09T10:29:32Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractРавлики поширені в Індонезії, особливо в Кедірі, але черепашки равлика не мають комерційної цінності. У цій роботі описано характеристику й in vitro оцінку біоактивності хітозану з відходів черепашок равликів (хітозан-SSW), отриманого за допомогою ультразвукової методики, та проаналізовано потенціал хітозану як інгібітора рецепторів вільних радикалів за допомогою методу молекулярного докінгу in silico. Мета дослідження властивостей хітозану-SSW – аналіз вмісту води, білка та функціональних груп, а також молекулярної маси, розміру частинок, морфології, оцінки антиоксидантної активностімолекулярного докінгу in silico. Встановлено, що хітозан-SSW, отриманий за допомогою ультразвукової обробки, мав високий ступінь деацетилювання (DD) і високу молекулярну масу (MW). Встановлено характеристики хітозану-SSW: вміст води 0,43 %, вміст білка 1,59 %, молекулярна маса 2198 кДа, значення ступеня деацетилювання 79,50 %. Важливо, що хітозан-SSW мав високу антиоксидантну активність для потенційного зменшення вільних радикалів DPPH зі значенням IC50 2,44мкг/мл. Передбачається, що хітозан має потенціал як інгібітор ліпоксигенази, CYP2C9 і NADPH-оксидази.
dc.description.abstractSnails are often found in Indonesia, especially at Kediri, but the snail shell has no commercial value. This research report describes the characterization and antioxidant activity of chitosan from snail shell waste (chitosan-SSW) by ultrasonic technique and analyzes the potential of chitosan as an inhibitor of receptors of free radicals using an in silico molecular docking method. Characterization of chitosan-SSW was performed to analyze the content of water, protein, and functional groups as well as molecular weight, particle size, mor-phology, antioxidant activity, and in silico molecular docking. We found that chitosan-SSW with ultrasonic treatment had a high degree of deacetylation (DD) and high molecular weight (MW). The characteristic of chitosan-SSW was found to be as follows: water content of 0.43 %, protein content of 1.59 %, molecular weight of 2.198 kDa, and deacetylation degree value of 79.50 %. Importantly, chitosan-SSW had high antioxidant activity to potentially reduce free radical of DPPH with IC50 value of 2.44 µg/mL. Chitosan is predicted to have the potential as an inhibitor of lipoxygenase, CYP2C9, and NADPH-oxidase.
dc.format.extent126-132
dc.format.pages7
dc.identifier.citationCharacterization, Antioxidant Activity, and In Silico Molecular Docking of Chitosan from Snail Shell Waste by Ultrasonic Technique / Umarudin, Sri Rahayu, Sri Widyarti, Warsito // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 126–132.
dc.identifier.citationenCharacterization, Antioxidant Activity, and In Silico Molecular Docking of Chitosan from Snail Shell Waste by Ultrasonic Technique / Umarudin, Sri Rahayu, Sri Widyarti, Warsito // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 126–132.
dc.identifier.doidoi.org/10.23939/chcht17.01.126
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61212
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (17), 2023
dc.relation.references[1] Bedoić, R.; Ćosić, B.; Duić, N. Technical Potential and Geographic Distribution of Agricultural Residues, Co-Products and By-Products in the European Union. Sci. Total Environ. 2018, 686, 568-579. https://doi.org/10.1016/j.scitotenv.2019.05.219
dc.relation.references[2] Vanitha, C.; Kuppusamy, M.R.; Sridhar, T.M.; Sureshkumar, R.; Mahalakshmi, N. Synthesis Characterization of Nano-Hydroxy Apatite From White Snail Shells and Removal of Methylene Blue. Int. J. Innov. Res. Adv. Eng. 2017, 4, 2014-2018.
dc.relation.references[3] Oyekunle, D.T; Omoleye, J. A. Effect of Particle Sizes on the Kinetics of Demineralization of Snail Shell for Chitin Synthesis Using Acetic Acid. Heliyon 2019, 5, 1-7. https://doi.org/10.1016/j.heliyon.2019.e02828
dc.relation.references[4] Oyekunle, D.T; Omoleye, J. Extraction, Characterization and Kinetics of Demineralised of Chitin Produced From Snail Shells of Different Particle Sizes Using 1.2M HCL. Int. J. Mech. Eng. Technol. 2019, 10, 2010-2020.
dc.relation.references[5] Xu, R.; Mao, J.; Penh, N.; Luo, X.; Chang, C. Chitin/clay Microspheres with Hierarchical Architecture for Highly Efficient Removal of Organic Dyes. Carbohydr. Polym. 2018, 188, 143-150. https://doi.org/10.1016/j.carbpol.2018.01.073
dc.relation.references[6] Popadyuk, N.; Zholobko, O.; Donchak, V.; Harhay, K.; Budishevska, O.; Voronov, A.; Kohut, A.; Voronov, S. Ionically and Covalently Crosslinked Hydrogel Particles Based on Chitosan and Poly (ethylene glycol). Chem. Chem. Technol. 2014, 8, 171-176. https://doi.org/10.23939/chcht08.02.171
dc.relation.references[7] Bazunova, M.; Sharafutdinova, L.; Bazunova, A.; Lazdin, R.; Elinson, M.; Kulish, E. Biocompatible Gel-like Forms of Drugs on the Basis of Solutions of Polysaccharide Chitosan with Alcohols. Chem. Chem. Technol. 2018, 12, 43-46. https://doi.org/10.23939/chcht12.01.043
dc.relation.references[8] Neha, K.; Anitha, R.; Subashini, R.; Natarajan, A.; Sridha. T. M. Synthesis and Characterization of Chitosan/Potato Peel Powder-Based Hydrogel and its in vitro Antimicrobial Activity. J. Appl. Pharm. Sci. 2019, 9, 66-71. https://doi.org/10.7324/JAPS.2019.90909
dc.relation.references[9] Solomko, N.; Budishevska, O.; Voronov, S. Peroxide Chitosan Derivatives and their Application. Chem. Chem. Technol. 2007, 1, 137-147. https://doi.org/10.23939/chcht01.03.137
dc.relation.references[10] Umarudin; Rahayu, S.; Warsito.; Widyarti, S. Molecular Characterization, Antioxidant, And Toxicity Activity Of Chitosan Isolated From Lissahatina Fulica Shell Waste Using Hot Plate Magnetic Stirrer Technique. Rasayan J. Chem. 2022, 15, 2299-2303. http://doi.org/10.31788/RJC.2022.1547050
dc.relation.references[11] Umarudin; Widyarti, S.; Warsito; Rahayu, S. Effect of Lissachatina Fulica Chitosan on the Antioxidant and Lipid Profile of Hypercholesterolemic Male Wistar Rats. J. Pharm. Pharmacogn. Res. 2022, 10, 995-1005. https://doi.org/10.56499/jppres22.1468_10.6.995
dc.relation.references[12] Sharma, K.; Somavarapu, S.; Colombani, A.; Govind, N.; Taylor, K. M.G. Crosslinked Chitosan Nanoparticle Formulations for Delivery from Pressurized Metered Dose Inhalers. Eur. J. Pharm. Biopharm. 2012, 81, 74-81. https://doi.org/10.1016/j.ejpb.2011.12.014
dc.relation.references[13] Carocho, M; Ferreira, I.C.F.R. A review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013, 51, 15-25. https://doi.org/10.1016/j.fct.2012.09.021
dc.relation.references[14] Kancheva, V. D. Phenolic Antioxidants–Radical-Scavenging and Chain-Breaking Activity: A Comparative Study. Eur. J. Lipid Sci. Technol. 2009, 111, 1072-1089. https://doi.org/10.1002/ejlt.200900005
dc.relation.references[15] Yuliana, A.; Pradeckta, L.S.; Savitri, E.; Handaratri, A.R.; Sumarno. The Effect of Sonication on the Characteristic of Chitosan. Proceeding of International Conference on Chemical and Material Engineering 2012, 1-5.
dc.relation.references[16] Albu, S.; Joyce, E; Paniwnyk, L; Lorimer, J.P.; Mason, T.J. Potential for the Use of Ultrasound in the Extraction of Antioxidants from Rosmarinus Officinalis for the Food and Pharmaceutical Industry. Ultrason. Sonochem. 2004, 11, 261-265. https://doi.org/10.1016/j.ultsonch.2004.01.015
dc.relation.references[17] Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chinese Med. 2018, 13, 20. https://doi.org/10.1186/s13020-018-0177-x
dc.relation.references[18] AOAC. Official Methods of Analysis, 18th edn. Washington, DC: Association of Official Analytical Chemists, 2007. https://doi.org/10.1007/BF02670789
dc.relation.references[19] Xuan Du, D.; Xuan Vuong, B. Study on Preparation of Water-Soluble Chitosan with Varying Molecular Weights and Its Antioxidant Activity. Adv. Mater. Sci. Eng. 2019, 2019, 8781013. https://doi.org/10.1155/2019/8781013
dc.relation.references[20] Journot, C.M.A.; Nicolle, L.; Lavanchy, Y.; Gerber-Lamaire, S. Selection of Water-Soluble Chitosan by Microwave-Assisted Degradation and pH-Controlled Precipitation. Polymers 2020, 12, 1274. https://doi.org/10.3390/polym12061274
dc.relation.references[21] Hsu, C.-Y.; Chan, Y.-P.; Chang, J. Antioxidant Activity of Extract from Polygonum cuspidatum. Biol. Res. 2007, 40, 12-21. https://doi:10.4067/S0716-97602007000100002
dc.relation.references[22] Wafiroh, S.; Wathoniyyah, M.; Abdulloh, A.; Rahardjo, Y.; Fahmi, M. A. Application of Glutaraldehyde-Crosslinked Chitosan Membranes from Shrimp Shellwaste on Production of Biodiesel from Calophyllum Inophyllum Oil. Chem. Chem. Technol. 2017, 11, 65-70. https://doi.org/10.23939/chcht11.01.065
dc.relation.references[23] Oyekunle, D. T; Omoleye, J. A. E. New Process for Synthesizing Chitosan from Snail Shells. J. Phys. Conf. Ser. 2019, 1299, 012089. https://doi.org/:10.1088/1742-6596/1299/1/012089
dc.relation.references[24] [EFSA] European Food Safety Authority. Scientific Opinion on the Safety of Chitinglucan as a Novel Food Ingredient. EFSA J. 2011, 9, 2137. https://doi.org/:10.2903/j.efsa.2011.2137
dc.relation.references[25] Ningrum, S.R.; Sinaga, S.M.; Harahap, U. Isolation of Chitosan from Cuttlefish Bones. Int. J. Sci. Technol. Manag. 2022, 3, 785-788. https://doi.org/10.46729/ijstm.v3i3.523
dc.relation.references[26] Yuan, Y.; Wan, Z.-L.; Yin, S.-W.; Teng, Z.; Yang, X.-Q.; Qi, J.-R.; Wang, X.-Y. Formation and Dynamic Interfacial Adsorption-of Glycinin/Chitosan Soluble Complex at Acidic pH: Relationship to Mixed Emulsion Stability. Food Hydrocoll. 2013, 31, 85-93. https://doi.org/10.1016/j.foodhyd.2012.10.003
dc.relation.references[27] Kusumaningsih, T.; Masykur, A.; Arief, U. Synthesis of hitosan from the Chitin Of Escargot (Achatina fulica). Biofarmasi Journal of Natural Product Biochemistry 2004, 2, 64-68. http://dx.doi.org/10.13057/biofar/f020204
dc.relation.references[28] Waryani, S.W.; Silvia, R.; Hanum, F. Utilization of Chitosan from The Shells of Snail (Achatina fulica) as a Preservative of Plush Fish (Rastrelliger sp) and Catfish (Clarias batrachus). Jurnal Teknik Kimia 2014, 3, 51-57. https://doi.org/10.32734/jtk.v3i4.1656
dc.relation.references[29] Hossain, M.S; Iqbal, A. Production and Characterization of Chitosan from Shrimp Waste. J. Bangladesh Agric. Univ. 2014, 12, 153-160. https://doi.org/10.3329/jbau.v12i1.21405
dc.relation.references[30] Srinivasan, H.; Kanayairam, V.; Ravichandran, R. Chitin and Chitosan Preparation from Shrimp Shells Penaeus Monodon and its Human Ovarian Cancer Cell Line, PA-1. Int. J. Biol. Macromol. 2018, 107, 662-667. https://doi.org/10.1016/j.ijbiomac.2017.09.035
dc.relation.references[31] Xuan Du, D.; Xuan Vuong, B. Study on Preparation of Water-Soluble Chitosan with Varying Molecular Weights and Its Antioxidant Activity. Adv. Mater. Sci. Eng. 2018, 1-8. https://doi.org/10.1155/2019/8781013
dc.relation.references[32] Zhang, H.; Li, Y.; Zhang, X; Liu, B.; Zhao, H.; Chen, D. Directly Determining the Molecular Weight of Chitosan with Atomic Force Microscopy. Front Nanosci. Nanotech. 2016, 185, 57-63. https://doi.org/10.15761/FNN.1000121
dc.relation.references[33] Lu, C.; Li, H.; Li, C.; Chen, B.; Shen, Y. Chemical Composition and Radical Scavenging Activity of Amygdalus pedunculata Pall Leaves Essential Oil. Food Chem. Toxicol. 2018, 19, 368-374. https://doi.org/10.1016/j.fct.2018.02.012
dc.relation.references[34] Ma, Y.-L.; Zhu, D.-Y.; Thakur, K.; Wang, C.-H.; Wang, H.; Ren, Y.-F.; Zhang, J.-G.; Wei, Z.-J. Antioxidant and Antibacterial Evaluation of Polysaccharides Sequentially Extracted from Onion (Allium cepa L.). Int. J. Biol. Macromol. 2018, 111, 92-101. https://doi.org/10.1016/j.ijbiomac.2017.12.154
dc.relation.references[35] Prakakash, P.; Neelu, G. Therapeutic Uses of Ocimum Santum Linn (Tulsi) with a Note on Eugenol and its Pharmacological Ac-tions: A Short Review. Indian J. Physiol. Pharmacol. 2005, 49, 125-131.
dc.relation.references[36] Jafari, H.; Bernaerts, K. V.; Dodi. G.; Shavandi. A. Chitooligosaccharides for Wound Healing Biomaterials Engineer-ing. Mater. Sci. Eng. C 2020, 117, 111266. https://doi:10.1016/j.msec.2020.111266
dc.relation.references[37] Ngo, D.-H.; Kim, S.-K. Chapter Two – Antioxidant Effects Of Chitin, Chitosan, and their Derivatives. Adv. Food Nutr. Res. 2014, 73, 15-31. https://doi:10.1016/b978-0-12-800268-1.00002-0
dc.relation.references[38] Rahayu, S.; Prasetyawan, S.; Suprihatin, T.; Ciptadi, G. In-silico study of Marselia crenata compounds as activator Keap1/Nrf2 pathway in ovarian function. IOP Conf. Ser.: Earth Environ. Sci. 2021, 743, 012056. https://doi.org/10.1088/1755-1315/743/1/012056
dc.relation.referencesen[1] Bedoić, R.; Ćosić, B.; Duić, N. Technical Potential and Geographic Distribution of Agricultural Residues, Co-Products and By-Products in the European Union. Sci. Total Environ. 2018, 686, 568-579. https://doi.org/10.1016/j.scitotenv.2019.05.219
dc.relation.referencesen[2] Vanitha, C.; Kuppusamy, M.R.; Sridhar, T.M.; Sureshkumar, R.; Mahalakshmi, N. Synthesis Characterization of Nano-Hydroxy Apatite From White Snail Shells and Removal of Methylene Blue. Int. J. Innov. Res. Adv. Eng. 2017, 4, 2014-2018.
dc.relation.referencesen[3] Oyekunle, D.T; Omoleye, J. A. Effect of Particle Sizes on the Kinetics of Demineralization of Snail Shell for Chitin Synthesis Using Acetic Acid. Heliyon 2019, 5, 1-7. https://doi.org/10.1016/j.heliyon.2019.e02828
dc.relation.referencesen[4] Oyekunle, D.T; Omoleye, J. Extraction, Characterization and Kinetics of Demineralised of Chitin Produced From Snail Shells of Different Particle Sizes Using 1.2M HCL. Int. J. Mech. Eng. Technol. 2019, 10, 2010-2020.
dc.relation.referencesen[5] Xu, R.; Mao, J.; Penh, N.; Luo, X.; Chang, C. Chitin/clay Microspheres with Hierarchical Architecture for Highly Efficient Removal of Organic Dyes. Carbohydr. Polym. 2018, 188, 143-150. https://doi.org/10.1016/j.carbpol.2018.01.073
dc.relation.referencesen[6] Popadyuk, N.; Zholobko, O.; Donchak, V.; Harhay, K.; Budishevska, O.; Voronov, A.; Kohut, A.; Voronov, S. Ionically and Covalently Crosslinked Hydrogel Particles Based on Chitosan and Poly (ethylene glycol). Chem. Chem. Technol. 2014, 8, 171-176. https://doi.org/10.23939/chcht08.02.171
dc.relation.referencesen[7] Bazunova, M.; Sharafutdinova, L.; Bazunova, A.; Lazdin, R.; Elinson, M.; Kulish, E. Biocompatible Gel-like Forms of Drugs on the Basis of Solutions of Polysaccharide Chitosan with Alcohols. Chem. Chem. Technol. 2018, 12, 43-46. https://doi.org/10.23939/chcht12.01.043
dc.relation.referencesen[8] Neha, K.; Anitha, R.; Subashini, R.; Natarajan, A.; Sridha. T. M. Synthesis and Characterization of Chitosan/Potato Peel Powder-Based Hydrogel and its in vitro Antimicrobial Activity. J. Appl. Pharm. Sci. 2019, 9, 66-71. https://doi.org/10.7324/JAPS.2019.90909
dc.relation.referencesen[9] Solomko, N.; Budishevska, O.; Voronov, S. Peroxide Chitosan Derivatives and their Application. Chem. Chem. Technol. 2007, 1, 137-147. https://doi.org/10.23939/chcht01.03.137
dc.relation.referencesen[10] Umarudin; Rahayu, S.; Warsito.; Widyarti, S. Molecular Characterization, Antioxidant, And Toxicity Activity Of Chitosan Isolated From Lissahatina Fulica Shell Waste Using Hot Plate Magnetic Stirrer Technique. Rasayan J. Chem. 2022, 15, 2299-2303. http://doi.org/10.31788/RJC.2022.1547050
dc.relation.referencesen[11] Umarudin; Widyarti, S.; Warsito; Rahayu, S. Effect of Lissachatina Fulica Chitosan on the Antioxidant and Lipid Profile of Hypercholesterolemic Male Wistar Rats. J. Pharm. Pharmacogn. Res. 2022, 10, 995-1005. https://doi.org/10.56499/jppres22.1468_10.6.995
dc.relation.referencesen[12] Sharma, K.; Somavarapu, S.; Colombani, A.; Govind, N.; Taylor, K. M.G. Crosslinked Chitosan Nanoparticle Formulations for Delivery from Pressurized Metered Dose Inhalers. Eur. J. Pharm. Biopharm. 2012, 81, 74-81. https://doi.org/10.1016/j.ejpb.2011.12.014
dc.relation.referencesen[13] Carocho, M; Ferreira, I.C.F.R. A review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013, 51, 15-25. https://doi.org/10.1016/j.fct.2012.09.021
dc.relation.referencesen[14] Kancheva, V. D. Phenolic Antioxidants–Radical-Scavenging and Chain-Breaking Activity: A Comparative Study. Eur. J. Lipid Sci. Technol. 2009, 111, 1072-1089. https://doi.org/10.1002/ejlt.200900005
dc.relation.referencesen[15] Yuliana, A.; Pradeckta, L.S.; Savitri, E.; Handaratri, A.R.; Sumarno. The Effect of Sonication on the Characteristic of Chitosan. Proceeding of International Conference on Chemical and Material Engineering 2012, 1-5.
dc.relation.referencesen[16] Albu, S.; Joyce, E; Paniwnyk, L; Lorimer, J.P.; Mason, T.J. Potential for the Use of Ultrasound in the Extraction of Antioxidants from Rosmarinus Officinalis for the Food and Pharmaceutical Industry. Ultrason. Sonochem. 2004, 11, 261-265. https://doi.org/10.1016/j.ultsonch.2004.01.015
dc.relation.referencesen[17] Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chinese Med. 2018, 13, 20. https://doi.org/10.1186/s13020-018-0177-x
dc.relation.referencesen[18] AOAC. Official Methods of Analysis, 18th edn. Washington, DC: Association of Official Analytical Chemists, 2007. https://doi.org/10.1007/BF02670789
dc.relation.referencesen[19] Xuan Du, D.; Xuan Vuong, B. Study on Preparation of Water-Soluble Chitosan with Varying Molecular Weights and Its Antioxidant Activity. Adv. Mater. Sci. Eng. 2019, 2019, 8781013. https://doi.org/10.1155/2019/8781013
dc.relation.referencesen[20] Journot, C.M.A.; Nicolle, L.; Lavanchy, Y.; Gerber-Lamaire, S. Selection of Water-Soluble Chitosan by Microwave-Assisted Degradation and pH-Controlled Precipitation. Polymers 2020, 12, 1274. https://doi.org/10.3390/polym12061274
dc.relation.referencesen[21] Hsu, C.-Y.; Chan, Y.-P.; Chang, J. Antioxidant Activity of Extract from Polygonum cuspidatum. Biol. Res. 2007, 40, 12-21. https://doi:10.4067/S0716-97602007000100002
dc.relation.referencesen[22] Wafiroh, S.; Wathoniyyah, M.; Abdulloh, A.; Rahardjo, Y.; Fahmi, M. A. Application of Glutaraldehyde-Crosslinked Chitosan Membranes from Shrimp Shellwaste on Production of Biodiesel from Calophyllum Inophyllum Oil. Chem. Chem. Technol. 2017, 11, 65-70. https://doi.org/10.23939/chcht11.01.065
dc.relation.referencesen[23] Oyekunle, D. T; Omoleye, J. A. E. New Process for Synthesizing Chitosan from Snail Shells. J. Phys. Conf. Ser. 2019, 1299, 012089. https://doi.org/:10.1088/1742-6596/1299/1/012089
dc.relation.referencesen[24] [EFSA] European Food Safety Authority. Scientific Opinion on the Safety of Chitinglucan as a Novel Food Ingredient. EFSA J. 2011, 9, 2137. https://doi.org/:10.2903/j.efsa.2011.2137
dc.relation.referencesen[25] Ningrum, S.R.; Sinaga, S.M.; Harahap, U. Isolation of Chitosan from Cuttlefish Bones. Int. J. Sci. Technol. Manag. 2022, 3, 785-788. https://doi.org/10.46729/ijstm.v3i3.523
dc.relation.referencesen[26] Yuan, Y.; Wan, Z.-L.; Yin, S.-W.; Teng, Z.; Yang, X.-Q.; Qi, J.-R.; Wang, X.-Y. Formation and Dynamic Interfacial Adsorption-of Glycinin/Chitosan Soluble Complex at Acidic pH: Relationship to Mixed Emulsion Stability. Food Hydrocoll. 2013, 31, 85-93. https://doi.org/10.1016/j.foodhyd.2012.10.003
dc.relation.referencesen[27] Kusumaningsih, T.; Masykur, A.; Arief, U. Synthesis of hitosan from the Chitin Of Escargot (Achatina fulica). Biofarmasi Journal of Natural Product Biochemistry 2004, 2, 64-68. http://dx.doi.org/10.13057/biofar/f020204
dc.relation.referencesen[28] Waryani, S.W.; Silvia, R.; Hanum, F. Utilization of Chitosan from The Shells of Snail (Achatina fulica) as a Preservative of Plush Fish (Rastrelliger sp) and Catfish (Clarias batrachus). Jurnal Teknik Kimia 2014, 3, 51-57. https://doi.org/10.32734/jtk.v3i4.1656
dc.relation.referencesen[29] Hossain, M.S; Iqbal, A. Production and Characterization of Chitosan from Shrimp Waste. J. Bangladesh Agric. Univ. 2014, 12, 153-160. https://doi.org/10.3329/jbau.v12i1.21405
dc.relation.referencesen[30] Srinivasan, H.; Kanayairam, V.; Ravichandran, R. Chitin and Chitosan Preparation from Shrimp Shells Penaeus Monodon and its Human Ovarian Cancer Cell Line, PA-1. Int. J. Biol. Macromol. 2018, 107, 662-667. https://doi.org/10.1016/j.ijbiomac.2017.09.035
dc.relation.referencesen[31] Xuan Du, D.; Xuan Vuong, B. Study on Preparation of Water-Soluble Chitosan with Varying Molecular Weights and Its Antioxidant Activity. Adv. Mater. Sci. Eng. 2018, 1-8. https://doi.org/10.1155/2019/8781013
dc.relation.referencesen[32] Zhang, H.; Li, Y.; Zhang, X; Liu, B.; Zhao, H.; Chen, D. Directly Determining the Molecular Weight of Chitosan with Atomic Force Microscopy. Front Nanosci. Nanotech. 2016, 185, 57-63. https://doi.org/10.15761/FNN.1000121
dc.relation.referencesen[33] Lu, C.; Li, H.; Li, C.; Chen, B.; Shen, Y. Chemical Composition and Radical Scavenging Activity of Amygdalus pedunculata Pall Leaves Essential Oil. Food Chem. Toxicol. 2018, 19, 368-374. https://doi.org/10.1016/j.fct.2018.02.012
dc.relation.referencesen[34] Ma, Y.-L.; Zhu, D.-Y.; Thakur, K.; Wang, C.-H.; Wang, H.; Ren, Y.-F.; Zhang, J.-G.; Wei, Z.-J. Antioxidant and Antibacterial Evaluation of Polysaccharides Sequentially Extracted from Onion (Allium cepa L.). Int. J. Biol. Macromol. 2018, 111, 92-101. https://doi.org/10.1016/j.ijbiomac.2017.12.154
dc.relation.referencesen[35] Prakakash, P.; Neelu, G. Therapeutic Uses of Ocimum Santum Linn (Tulsi) with a Note on Eugenol and its Pharmacological Ac-tions: A Short Review. Indian J. Physiol. Pharmacol. 2005, 49, 125-131.
dc.relation.referencesen[36] Jafari, H.; Bernaerts, K. V.; Dodi. G.; Shavandi. A. Chitooligosaccharides for Wound Healing Biomaterials Engineer-ing. Mater. Sci. Eng. P. 2020, 117, 111266. https://doi:10.1016/j.msec.2020.111266
dc.relation.referencesen[37] Ngo, D.-H.; Kim, S.-K. Chapter Two – Antioxidant Effects Of Chitin, Chitosan, and their Derivatives. Adv. Food Nutr. Res. 2014, 73, 15-31. https://doi:10.1016/b978-0-12-800268-1.00002-0
dc.relation.referencesen[38] Rahayu, S.; Prasetyawan, S.; Suprihatin, T.; Ciptadi, G. In-silico study of Marselia crenata compounds as activator Keap1/Nrf2 pathway in ovarian function. IOP Conf. Ser., Earth Environ. Sci. 2021, 743, 012056. https://doi.org/10.1088/1755-1315/743/1/012056
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2019.05.219
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2019.e02828
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2018.01.073
dc.relation.urihttps://doi.org/10.23939/chcht08.02.171
dc.relation.urihttps://doi.org/10.23939/chcht12.01.043
dc.relation.urihttps://doi.org/10.7324/JAPS.2019.90909
dc.relation.urihttps://doi.org/10.23939/chcht01.03.137
dc.relation.urihttp://doi.org/10.31788/RJC.2022.1547050
dc.relation.urihttps://doi.org/10.56499/jppres22.1468_10.6.995
dc.relation.urihttps://doi.org/10.1016/j.ejpb.2011.12.014
dc.relation.urihttps://doi.org/10.1016/j.fct.2012.09.021
dc.relation.urihttps://doi.org/10.1002/ejlt.200900005
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2004.01.015
dc.relation.urihttps://doi.org/10.1186/s13020-018-0177-x
dc.relation.urihttps://doi.org/10.1007/BF02670789
dc.relation.urihttps://doi.org/10.1155/2019/8781013
dc.relation.urihttps://doi.org/10.3390/polym12061274
dc.relation.urihttps://doi:10.4067/S0716-97602007000100002
dc.relation.urihttps://doi.org/10.23939/chcht11.01.065
dc.relation.urihttps://doi.org/:10.1088/1742-6596/1299/1/012089
dc.relation.urihttps://doi.org/:10.2903/j.efsa.2011.2137
dc.relation.urihttps://doi.org/10.46729/ijstm.v3i3.523
dc.relation.urihttps://doi.org/10.1016/j.foodhyd.2012.10.003
dc.relation.urihttp://dx.doi.org/10.13057/biofar/f020204
dc.relation.urihttps://doi.org/10.32734/jtk.v3i4.1656
dc.relation.urihttps://doi.org/10.3329/jbau.v12i1.21405
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2017.09.035
dc.relation.urihttps://doi.org/10.15761/FNN.1000121
dc.relation.urihttps://doi.org/10.1016/j.fct.2018.02.012
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2017.12.154
dc.relation.urihttps://doi:10.1016/j.msec.2020.111266
dc.relation.urihttps://doi:10.1016/b978-0-12-800268-1.00002-0
dc.relation.urihttps://doi.org/10.1088/1755-1315/743/1/012056
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Umarudin, Rahayu S., Widyarti S., Warsito, 2023
dc.subjectхітозан-SSW
dc.subjectхарактеризація
dc.subjectультразвук
dc.subjectантиоксидант
dc.subjectin silico молекулярний докінг
dc.subjectchitosan-SSW
dc.subjectcharacterization
dc.subjectultrasound
dc.subjectantioxidant
dc.subjectin silico molecular docking
dc.titleCharacterization, Antioxidant Activity, and In Silico Molecular Docking of Chitosan from Snail Shell Waste by Ultrasonic Technique
dc.title.alternativeДослідження властивостей, антиоксидантна активність та in silico молекулярний докінг хітозану з відходів черепашок равлика за допомогою ультразвукової методикии
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n1_Umarudin-Characterization_Antioxidant_126-132.pdf
Size:
572.65 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n1_Umarudin-Characterization_Antioxidant_126-132__COVER.png
Size:
572.58 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: