Application of Infrared Spectroscopy and X-Ray Powder Diffractometry for Assessment of the Qualitative Composition of Components in a Pharmaceutical Formulation
dc.citation.epage | 517 | |
dc.citation.issue | 3 | |
dc.citation.spage | 510 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Stasevych, Maryna | |
dc.contributor.author | Zvarych, Viktor | |
dc.contributor.author | Dronik, Mykhailo | |
dc.contributor.author | Sozanskyi, Martyn | |
dc.contributor.author | Khomyak, Semen | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:52:07Z | |
dc.date.available | 2024-02-12T08:52:07Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Проведено якісну оцінку нової фармацевтичної композиції з чотирьох компонентів за допомогою методів інфрачервоної спектроскопії та рентгенівської порошкової дифрактометрії. Визначено якісні характеристики для проведення ідентифікації компонентів у суміші за смугами поглинання в інфрачервоних спектрах і характерними піками за положеннями на шкалі градусів 2θ у дифрактограмах. Експериментально підтверджено зменшення кількісного вмісту бензокаїну та прокаїну гідрохлориду в суміші без диклофенаку натрію у 2 рази порівняно з їхнім вмістом у суміші з ним. Представлено оригінальні інфрачервоні спектри та рентгенівські дифрактограми запропонованої фармацевтичної композиції з диклофенаком натрію, за якими можна проводити її ідентифікацію. | |
dc.description.abstract | A qualitative assessment of a new four-component pharmaceutical composition has been carried out using the methods of infrared spectroscopy and X-ray powder diffractometry. Qualitative characteristics for the identification of mixture components by absorption bands in infrared spectra and characteristic peaks by positions on the scattering angle 2θ scale in diffractograms were determined. It was experimentally confirmed that the quantitative content of benzocaine and procaine hydrochloride in the mixture without diclofenac sodium decreased by two times compared to their content in the mixture with it. Original infrared spectra and X-ray diffractograms of the new pharmaceutical composition with diclofenac sodium, which can be used for its identification, are presented. | |
dc.format.extent | 510-517 | |
dc.format.pages | 8 | |
dc.identifier.citation | Application of Infrared Spectroscopy and X-Ray Powder Diffractometry for Assessment of the Qualitative Composition of Components in a Pharmaceutical Formulation / Maryna Stasevych, Viktor Zvarych, Mykhailo Dronik, Martyn Sozanskyi, Semen Khomyak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 510–517. | |
dc.identifier.citationen | Application of Infrared Spectroscopy and X-Ray Powder Diffractometry for Assessment of the Qualitative Composition of Components in a Pharmaceutical Formulation / Maryna Stasevych, Viktor Zvarych, Mykhailo Dronik, Martyn Sozanskyi, Semen Khomyak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 510–517. | |
dc.identifier.doi | doi.org/10.23939/chcht17.03.510 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61282 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (17), 2023 | |
dc.relation.references | [1] Elzayat, E.M.; Abdel-Rahman, A.A.; Ahmed S.M.; Alanazi, F.K.; Habib, W.A.; Sakr, A. Studying the Impact of Formulation and Processing Parameters on the Release Characteristics From Hydroxypropyl Methylcellulose Matrix Tablets of Diclofenac. Acta Pol. Pharm. 2016, 73, 439-452. | |
dc.relation.references | [2] Stasevych, M.; Zvarych, V.; Musyanovych, R.; Novikov, V.; Vovk, M. Synthesis of N-benzoyl-N'-(9,10-dioxo-9,10-dihydroanthacen-1-yl)-thioureas and Quantum-Chemical Analysis of the Reaction Passing. Chem. Chem. Technol. 2014, 8, 135-140. https://doi.org/10.23939/chcht08.02.135 | |
dc.relation.references | [3] Zvarych, V.I.; Stasevych, M.V.; Lunin, V.V.; Vovk, M.V.; Novikov, V.P. Synthesis of (1H-pyrrol-1-yl)anthracene-9,10-diones. Chem. Heterocycl. Compd. 2016, 52, 421-423, https://doi.org/10.1007/s10593-016-1904-9 | |
dc.relation.references | [4] Stasevych, M.V.; Plotnikov, M.Y.; Platonov, M.O.; Sabat, S.I.; Musyanovych, R.Y.; Novikov, V.P. Sulfur-containing Deriva-tives of 1,4-Naphthoquinone, Part 1: Disulfide Synthesis. Heteroa-tom Chem. 2005, 16, 205-211. https://doi.org/10.1002/hc.20112 | |
dc.relation.references | [5] Ibis, C.; Ozsoy-Gunes, Z.; Tuyun, A.F.; Ayla, S.S.; Bahar, H.; Stasevych, M.; Mysyanovych, R.; Komarovska-Porohnyavets, O.; Novikov, V. Synthesis, Antibacterial And Antifungal Evaluation of Thio- or Piperazinyl-Substituted 1,4-Naphthoquinone Derivatives. J. Sulfur Chem. 2016, 37, 477-487. https://doi.org/10.1080/17415993.2016.1187734 | |
dc.relation.references | [6] Zvarych, V.I.; Stasevych, M.V.; Stanko, O.V.; Komarovska-Porokhnyavets, O.; Poroikov, V.V; Rudik, A.V.; Lagunin, A.A.; Vovk, M.V.; Novikov, V. Computerized Prediction, Synthesis, and Antimicrobial Activity of New Amino-Acid Derivatives of 2-Chloro-N-(9,10-Dioxo-9,10-Dihydroanthracen-1-yl)Acetamide. Pharm. Chem. J. 2014, 48, 582-586. https://doi.org/10.1007/s11094-014-1154-z | |
dc.relation.references | [7] Stasevych, M.; Zvarych, V.; Khomyak, S; Lunin, V.; Kopak, N.; Novikov, V.; Vovk, M. Proton-initiated Conversion of Dithiocarbamates of 9,10-Anthracenedione. Chem. Chem. Technol. 2018, 12, 300-304. https://doi.org/10.23939/chcht12.03.300 | |
dc.relation.references | [8] Stasevych, M.; Zvarych, V.; Lunin, V.; Vovk, M.; Novikov, V. The New 1,2,3-Triazolylantracene-9,10-diones: Synthesis and Computer Bioactivity Screening. Chem. Chem. Technol. 2017, 11, 1-9. https://doi.org/10.23939/chcht11.01.001 | |
dc.relation.references | [9] Analytical Methods Committee. Fourier Transform Infrared Spectroscopic Analysis of Organic Archaeological Materials: Back-ground Paper. Anal. Methods 2021, 3, 2997-3000. https://doi.org/10.1039/D1AY90064A | |
dc.relation.references | [10] Derzhavna Farmakopeya Ukrayiny : v. 1. In Derzhavne pid-pryyemstvo «Ukrayins’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv»; 2-e vyd.; Kharkiv: Derzhavne pidpryyemstvo «Ukrayin s’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv», 2015. | |
dc.relation.references | [11] Sozanskyi, M.; Stadnik, V.; Shapoval, P.; Yatchyshyn, Io.; Guminilovych, R.; Shapoval, S. Optimization of Synthesis Condi-tions of Mercury Selenide Thin Films. Chem. Chem. Technol. 2020, 14, 290-296. https://doi.org/10.23939/chcht14.03.290 | |
dc.relation.references | [12] Sozanskyi, M.; Stadnik, V.; Chaykivska, R.; Guminilovych, R; Shapoval, P.; Yatchyshyn, Io. Synthesis and Properties of Mer-cury Selenide Films Deposited by Using Pottasium Iodide as Com-plexing Agent. Chem. Chem. Technol. 2017, 11, 445-448. https://doi.org/10.23939/chcht11.04.445 | |
dc.relation.references | [13] Litteer, B.; Beckers, D. Increasing Application of X-Ray Powder Diffraction in the Pharmaceutical Industry. American Laboratory (Fairfield) А [Online] 2005, 37, 22-24. https://www.americanlaboratory.com/914-Application-Notes/36153-Increasin... (accessed Dec 6, 2022). | |
dc.relation.references | [14] Manjunath, A.; Ashwini, A.; Mahalesh, D.; Balaji, B.; Mohanraj, P.; Kerur, B.R. Qualitative Analysis of Pharmaceutical Drugs by X-Ray Transmission Method: A non-Destructive Technique. Proceedings of the AIP Conference, India (Indore), December 27–28, 2018, 2100, 020114. https://doi.org/10.1063/1.5098668 | |
dc.relation.references | [15] Orimolade, B.O.; Arotiba, O.A. Enhanced Photoelectro-catalytic Degradation of Diclofenac Sodium Using a System of Ag-BiVO4/BiOI Anode and Ag-BiOI Cathode. Sci. Rep. 2022, 12, 4214. https://doi.org/10.1038/s41598-022-08213-0 | |
dc.relation.references | [16] Malathi, K.; Ramana Murthy, K.V.; Bhikshapathi, D.V.R.N.; Kusum B. Physico-Chemical Characterization of Diclofenac and Rasagiline Salts and its Relationship for Development of Sublingual Drug Delivery Systems. Int. J. Pharm. Sci. Drug Res. 2021, 13, 60-66. https://doi.org/10.25004/IJPSDR.2021.130109 | |
dc.relation.references | [17] Sa’adon, S.; Ansari, M.N.M.; Razak, S.I.A.; Anand, J.S.; Nayan, N.H.M.; Ismail, A.E.; Khan, M.U.A.; Haider, A. Preparation and Physicochemical Characterization of a Diclofenac Sodium-Dual Layer Polyvinyl Alcohol Patch. Polymers 2021, 13, 2459. https://doi.org/10.3390/polym13152459 | |
dc.relation.references | [18] Maurin, J.K.; Plucinski, F.; Mazurek, A.P.; Fijalek, Z. The Usefulness of Simple X-ray Powder Diffraction Analysis for Counterfeit Control - The Viagra® example. J. Pharm. Biomed. Anal. 2007, 43, 1514-1518. https://doi.org/10.1016/j.jpba.2006.10.033 | |
dc.relation.references | [19] Jendrzejewska, I.; Zajdel, P.; Pietrasik, E.; Barsova, Z.; Goryczka, T. Application of X-ray Powder Diffraction and Differential Scanning Calorimetry for Identification of Counterfeit Drugs. Monatsh. Chem. 2018, 149, 977-985. https://doi.org/10.1007/s00706-018-2193-z | |
dc.relation.references | [20] Caira, M.R. Current Applications of Powder X-Ray Dif-fraction in Drug Discovery and Development. Am. Pharm. Rev. 2014, 17, 54-58. | |
dc.relation.references | [21] Witkowski, M.R.; DeWitt, K. The Use of X-Ray Powder Diffraction (XRD) and Vibrational Spectroscopic Techniques in the Analysis of Suspect Pharmaceutical Products. Spectroscopy 2020, 35, 41-48. | |
dc.relation.references | [22] Derzhavna Farmakopeya Ukrayiny : v. 2. In Derzhavne pid-pryyemstvo «Ukrayins’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv»; 2-e vyd. Kharkiv: Derzhavne pidpryyemstvo «Ukrayin s’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv», 2014. | |
dc.relation.references | [23] Kraus, W.; Nolze, G. Powder Cell - a Program for the Representation and Manipulation of Crystal Structures and Calcula-tion of the Resulting X-Ray Powder Patterns. J. Appl. Crystall. 1996, 29, 301-303. https://doi.org/10.1107/S0021889895014920 | |
dc.relation.references | [24] Crystallography Open Database. http://crystallography.net/cod/ (accessed 2022-11-17). | |
dc.relation.references | [25] Zhu, G.; Xiao, Z.; Zhu, G.; Rujunzhou, Niu Y. Encapsulation of L-Menthol in Hydroxypropyl-β-Cyclodextrin and Release Characteristics of The Inclusion Complex. Pol. J. Chem. Technol. 2016, 18, 110-116. https://doi.org/10.1515/pjct-2016-0056 | |
dc.relation.references | [26] Younes, H.A.; Khaled, R.; Mahmoud, H.M.; Nassar, H.F.; Abdelrahman, M.M.; Abo El-Ela, F.I.; Taha, M. Computational and Experimental Studies on the Efficient Removal of Diclofenac from Water Using ZnFe-Layered Double Hydroxide as an Environmen-tally Benign Absorbent. J. Taiwan Inst. Chem. Eng. 2019, 102, 297-311. https://doi.org/10.1016/j.jtice.2019.06.018 | |
dc.relation.references | [27] Paczkowska, M.; Wiergowska, G.; Miklaszewski, A.; Krause, A.; Mroczkowka, M.; Zalewski, P.; Cielecka-Piontek, J. The Analysis of the Physicochemical Properties of Benzocaine Polymorphs. Molecules 2018, 23, 1737. https://doi.org/10.3390/molecules23071737 | |
dc.relation.referencesen | [1] Elzayat, E.M.; Abdel-Rahman, A.A.; Ahmed S.M.; Alanazi, F.K.; Habib, W.A.; Sakr, A. Studying the Impact of Formulation and Processing Parameters on the Release Characteristics From Hydroxypropyl Methylcellulose Matrix Tablets of Diclofenac. Acta Pol. Pharm. 2016, 73, 439-452. | |
dc.relation.referencesen | [2] Stasevych, M.; Zvarych, V.; Musyanovych, R.; Novikov, V.; Vovk, M. Synthesis of N-benzoyl-N'-(9,10-dioxo-9,10-dihydroanthacen-1-yl)-thioureas and Quantum-Chemical Analysis of the Reaction Passing. Chem. Chem. Technol. 2014, 8, 135-140. https://doi.org/10.23939/chcht08.02.135 | |
dc.relation.referencesen | [3] Zvarych, V.I.; Stasevych, M.V.; Lunin, V.V.; Vovk, M.V.; Novikov, V.P. Synthesis of (1H-pyrrol-1-yl)anthracene-9,10-diones. Chem. Heterocycl. Compd. 2016, 52, 421-423, https://doi.org/10.1007/s10593-016-1904-9 | |
dc.relation.referencesen | [4] Stasevych, M.V.; Plotnikov, M.Y.; Platonov, M.O.; Sabat, S.I.; Musyanovych, R.Y.; Novikov, V.P. Sulfur-containing Deriva-tives of 1,4-Naphthoquinone, Part 1: Disulfide Synthesis. Heteroa-tom Chem. 2005, 16, 205-211. https://doi.org/10.1002/hc.20112 | |
dc.relation.referencesen | [5] Ibis, C.; Ozsoy-Gunes, Z.; Tuyun, A.F.; Ayla, S.S.; Bahar, H.; Stasevych, M.; Mysyanovych, R.; Komarovska-Porohnyavets, O.; Novikov, V. Synthesis, Antibacterial And Antifungal Evaluation of Thio- or Piperazinyl-Substituted 1,4-Naphthoquinone Derivatives. J. Sulfur Chem. 2016, 37, 477-487. https://doi.org/10.1080/17415993.2016.1187734 | |
dc.relation.referencesen | [6] Zvarych, V.I.; Stasevych, M.V.; Stanko, O.V.; Komarovska-Porokhnyavets, O.; Poroikov, V.V; Rudik, A.V.; Lagunin, A.A.; Vovk, M.V.; Novikov, V. Computerized Prediction, Synthesis, and Antimicrobial Activity of New Amino-Acid Derivatives of 2-Chloro-N-(9,10-Dioxo-9,10-Dihydroanthracen-1-yl)Acetamide. Pharm. Chem. J. 2014, 48, 582-586. https://doi.org/10.1007/s11094-014-1154-z | |
dc.relation.referencesen | [7] Stasevych, M.; Zvarych, V.; Khomyak, S; Lunin, V.; Kopak, N.; Novikov, V.; Vovk, M. Proton-initiated Conversion of Dithiocarbamates of 9,10-Anthracenedione. Chem. Chem. Technol. 2018, 12, 300-304. https://doi.org/10.23939/chcht12.03.300 | |
dc.relation.referencesen | [8] Stasevych, M.; Zvarych, V.; Lunin, V.; Vovk, M.; Novikov, V. The New 1,2,3-Triazolylantracene-9,10-diones: Synthesis and Computer Bioactivity Screening. Chem. Chem. Technol. 2017, 11, 1-9. https://doi.org/10.23939/chcht11.01.001 | |
dc.relation.referencesen | [9] Analytical Methods Committee. Fourier Transform Infrared Spectroscopic Analysis of Organic Archaeological Materials: Back-ground Paper. Anal. Methods 2021, 3, 2997-3000. https://doi.org/10.1039/D1AY90064A | |
dc.relation.referencesen | [10] Derzhavna Farmakopeya Ukrayiny : v. 1. In Derzhavne pid-pryyemstvo "Ukrayins’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv"; 2-e vyd.; Kharkiv: Derzhavne pidpryyemstvo "Ukrayin s’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv", 2015. | |
dc.relation.referencesen | [11] Sozanskyi, M.; Stadnik, V.; Shapoval, P.; Yatchyshyn, Io.; Guminilovych, R.; Shapoval, S. Optimization of Synthesis Condi-tions of Mercury Selenide Thin Films. Chem. Chem. Technol. 2020, 14, 290-296. https://doi.org/10.23939/chcht14.03.290 | |
dc.relation.referencesen | [12] Sozanskyi, M.; Stadnik, V.; Chaykivska, R.; Guminilovych, R; Shapoval, P.; Yatchyshyn, Io. Synthesis and Properties of Mer-cury Selenide Films Deposited by Using Pottasium Iodide as Com-plexing Agent. Chem. Chem. Technol. 2017, 11, 445-448. https://doi.org/10.23939/chcht11.04.445 | |
dc.relation.referencesen | [13] Litteer, B.; Beckers, D. Increasing Application of X-Ray Powder Diffraction in the Pharmaceutical Industry. American Laboratory (Fairfield) A [Online] 2005, 37, 22-24. https://www.americanlaboratory.com/914-Application-Notes/36153-Increasin... (accessed Dec 6, 2022). | |
dc.relation.referencesen | [14] Manjunath, A.; Ashwini, A.; Mahalesh, D.; Balaji, B.; Mohanraj, P.; Kerur, B.R. Qualitative Analysis of Pharmaceutical Drugs by X-Ray Transmission Method: A non-Destructive Technique. Proceedings of the AIP Conference, India (Indore), December 27–28, 2018, 2100, 020114. https://doi.org/10.1063/1.5098668 | |
dc.relation.referencesen | [15] Orimolade, B.O.; Arotiba, O.A. Enhanced Photoelectro-catalytic Degradation of Diclofenac Sodium Using a System of Ag-BiVO4/BiOI Anode and Ag-BiOI Cathode. Sci. Rep. 2022, 12, 4214. https://doi.org/10.1038/s41598-022-08213-0 | |
dc.relation.referencesen | [16] Malathi, K.; Ramana Murthy, K.V.; Bhikshapathi, D.V.R.N.; Kusum B. Physico-Chemical Characterization of Diclofenac and Rasagiline Salts and its Relationship for Development of Sublingual Drug Delivery Systems. Int. J. Pharm. Sci. Drug Res. 2021, 13, 60-66. https://doi.org/10.25004/IJPSDR.2021.130109 | |
dc.relation.referencesen | [17] Sa’adon, S.; Ansari, M.N.M.; Razak, S.I.A.; Anand, J.S.; Nayan, N.H.M.; Ismail, A.E.; Khan, M.U.A.; Haider, A. Preparation and Physicochemical Characterization of a Diclofenac Sodium-Dual Layer Polyvinyl Alcohol Patch. Polymers 2021, 13, 2459. https://doi.org/10.3390/polym13152459 | |
dc.relation.referencesen | [18] Maurin, J.K.; Plucinski, F.; Mazurek, A.P.; Fijalek, Z. The Usefulness of Simple X-ray Powder Diffraction Analysis for Counterfeit Control - The Viagra® example. J. Pharm. Biomed. Anal. 2007, 43, 1514-1518. https://doi.org/10.1016/j.jpba.2006.10.033 | |
dc.relation.referencesen | [19] Jendrzejewska, I.; Zajdel, P.; Pietrasik, E.; Barsova, Z.; Goryczka, T. Application of X-ray Powder Diffraction and Differential Scanning Calorimetry for Identification of Counterfeit Drugs. Monatsh. Chem. 2018, 149, 977-985. https://doi.org/10.1007/s00706-018-2193-z | |
dc.relation.referencesen | [20] Caira, M.R. Current Applications of Powder X-Ray Dif-fraction in Drug Discovery and Development. Am. Pharm. Rev. 2014, 17, 54-58. | |
dc.relation.referencesen | [21] Witkowski, M.R.; DeWitt, K. The Use of X-Ray Powder Diffraction (XRD) and Vibrational Spectroscopic Techniques in the Analysis of Suspect Pharmaceutical Products. Spectroscopy 2020, 35, 41-48. | |
dc.relation.referencesen | [22] Derzhavna Farmakopeya Ukrayiny : v. 2. In Derzhavne pid-pryyemstvo "Ukrayins’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv"; 2-e vyd. Kharkiv: Derzhavne pidpryyemstvo "Ukrayin s’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv", 2014. | |
dc.relation.referencesen | [23] Kraus, W.; Nolze, G. Powder Cell - a Program for the Representation and Manipulation of Crystal Structures and Calcula-tion of the Resulting X-Ray Powder Patterns. J. Appl. Crystall. 1996, 29, 301-303. https://doi.org/10.1107/S0021889895014920 | |
dc.relation.referencesen | [24] Crystallography Open Database. http://crystallography.net/cod/ (accessed 2022-11-17). | |
dc.relation.referencesen | [25] Zhu, G.; Xiao, Z.; Zhu, G.; Rujunzhou, Niu Y. Encapsulation of L-Menthol in Hydroxypropyl-b-Cyclodextrin and Release Characteristics of The Inclusion Complex. Pol. J. Chem. Technol. 2016, 18, 110-116. https://doi.org/10.1515/pjct-2016-0056 | |
dc.relation.referencesen | [26] Younes, H.A.; Khaled, R.; Mahmoud, H.M.; Nassar, H.F.; Abdelrahman, M.M.; Abo El-Ela, F.I.; Taha, M. Computational and Experimental Studies on the Efficient Removal of Diclofenac from Water Using ZnFe-Layered Double Hydroxide as an Environmen-tally Benign Absorbent. J. Taiwan Inst. Chem. Eng. 2019, 102, 297-311. https://doi.org/10.1016/j.jtice.2019.06.018 | |
dc.relation.referencesen | [27] Paczkowska, M.; Wiergowska, G.; Miklaszewski, A.; Krause, A.; Mroczkowka, M.; Zalewski, P.; Cielecka-Piontek, J. The Analysis of the Physicochemical Properties of Benzocaine Polymorphs. Molecules 2018, 23, 1737. https://doi.org/10.3390/molecules23071737 | |
dc.relation.uri | https://doi.org/10.23939/chcht08.02.135 | |
dc.relation.uri | https://doi.org/10.1007/s10593-016-1904-9 | |
dc.relation.uri | https://doi.org/10.1002/hc.20112 | |
dc.relation.uri | https://doi.org/10.1080/17415993.2016.1187734 | |
dc.relation.uri | https://doi.org/10.1007/s11094-014-1154-z | |
dc.relation.uri | https://doi.org/10.23939/chcht12.03.300 | |
dc.relation.uri | https://doi.org/10.23939/chcht11.01.001 | |
dc.relation.uri | https://doi.org/10.1039/D1AY90064A | |
dc.relation.uri | https://doi.org/10.23939/chcht14.03.290 | |
dc.relation.uri | https://doi.org/10.23939/chcht11.04.445 | |
dc.relation.uri | https://www.americanlaboratory.com/914-Application-Notes/36153-Increasin.. | |
dc.relation.uri | https://doi.org/10.1063/1.5098668 | |
dc.relation.uri | https://doi.org/10.1038/s41598-022-08213-0 | |
dc.relation.uri | https://doi.org/10.25004/IJPSDR.2021.130109 | |
dc.relation.uri | https://doi.org/10.3390/polym13152459 | |
dc.relation.uri | https://doi.org/10.1016/j.jpba.2006.10.033 | |
dc.relation.uri | https://doi.org/10.1007/s00706-018-2193-z | |
dc.relation.uri | https://doi.org/10.1107/S0021889895014920 | |
dc.relation.uri | http://crystallography.net/cod/ | |
dc.relation.uri | https://doi.org/10.1515/pjct-2016-0056 | |
dc.relation.uri | https://doi.org/10.1016/j.jtice.2019.06.018 | |
dc.relation.uri | https://doi.org/10.3390/molecules23071737 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Stasevych M., Zvarych V., Dronik M., Sozanskyi M., Khomyak, S.,2023 | |
dc.subject | активний фармацевтичний інгредієнт (АФІ) | |
dc.subject | якісний склад | |
dc.subject | суміш АФІ | |
dc.subject | інфрачервона спектроскопія | |
dc.subject | рентгенівська дифракція порошку | |
dc.subject | active pharmaceutical ingredient (API) | |
dc.subject | quality composition | |
dc.subject | API mixture | |
dc.subject | infrared spectroscopy | |
dc.subject | X-ray powder diffraction | |
dc.title | Application of Infrared Spectroscopy and X-Ray Powder Diffractometry for Assessment of the Qualitative Composition of Components in a Pharmaceutical Formulation | |
dc.title.alternative | Застосування інфрачервоної спектроскопії та рентгенівської порошкової дифрактометрії для оцінки якісного складу компонентів фармацевтичної композиції | |
dc.type | Article |
Files
License bundle
1 - 1 of 1