Application of Infrared Spectroscopy and X-Ray Powder Diffractometry for Assessment of the Qualitative Composition of Components in a Pharmaceutical Formulation

dc.citation.epage517
dc.citation.issue3
dc.citation.spage510
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorStasevych, Maryna
dc.contributor.authorZvarych, Viktor
dc.contributor.authorDronik, Mykhailo
dc.contributor.authorSozanskyi, Martyn
dc.contributor.authorKhomyak, Semen
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:52:07Z
dc.date.available2024-02-12T08:52:07Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractПроведено якісну оцінку нової фармацевтичної композиції з чотирьох компонентів за допомогою методів інфрачервоної спектроскопії та рентгенівської порошкової дифрактометрії. Визначено якісні характеристики для проведення ідентифікації компонентів у суміші за смугами поглинання в інфрачервоних спектрах і характерними піками за положеннями на шкалі градусів 2θ у дифрактограмах. Експериментально підтверджено зменшення кількісного вмісту бензокаїну та прокаїну гідрохлориду в суміші без диклофенаку натрію у 2 рази порівняно з їхнім вмістом у суміші з ним. Представлено оригінальні інфрачервоні спектри та рентгенівські дифрактограми запропонованої фармацевтичної композиції з диклофенаком натрію, за якими можна проводити її ідентифікацію.
dc.description.abstractA qualitative assessment of a new four-component pharmaceutical composition has been carried out using the methods of infrared spectroscopy and X-ray powder diffractometry. Qualitative characteristics for the identification of mixture components by absorption bands in infrared spectra and characteristic peaks by positions on the scattering angle 2θ scale in diffractograms were determined. It was experimentally confirmed that the quantitative content of benzocaine and procaine hydrochloride in the mixture without diclofenac sodium decreased by two times compared to their content in the mixture with it. Original infrared spectra and X-ray diffractograms of the new pharmaceutical composition with diclofenac sodium, which can be used for its identification, are presented.
dc.format.extent510-517
dc.format.pages8
dc.identifier.citationApplication of Infrared Spectroscopy and X-Ray Powder Diffractometry for Assessment of the Qualitative Composition of Components in a Pharmaceutical Formulation / Maryna Stasevych, Viktor Zvarych, Mykhailo Dronik, Martyn Sozanskyi, Semen Khomyak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 510–517.
dc.identifier.citationenApplication of Infrared Spectroscopy and X-Ray Powder Diffractometry for Assessment of the Qualitative Composition of Components in a Pharmaceutical Formulation / Maryna Stasevych, Viktor Zvarych, Mykhailo Dronik, Martyn Sozanskyi, Semen Khomyak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 510–517.
dc.identifier.doidoi.org/10.23939/chcht17.03.510
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61282
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (17), 2023
dc.relation.references[1] Elzayat, E.M.; Abdel-Rahman, A.A.; Ahmed S.M.; Alanazi, F.K.; Habib, W.A.; Sakr, A. Studying the Impact of Formulation and Processing Parameters on the Release Characteristics From Hydroxypropyl Methylcellulose Matrix Tablets of Diclofenac. Acta Pol. Pharm. 2016, 73, 439-452.
dc.relation.references[2] Stasevych, M.; Zvarych, V.; Musyanovych, R.; Novikov, V.; Vovk, M. Synthesis of N-benzoyl-N'-(9,10-dioxo-9,10-dihydroanthacen-1-yl)-thioureas and Quantum-Chemical Analysis of the Reaction Passing. Chem. Chem. Technol. 2014, 8, 135-140. https://doi.org/10.23939/chcht08.02.135
dc.relation.references[3] Zvarych, V.I.; Stasevych, M.V.; Lunin, V.V.; Vovk, M.V.; Novikov, V.P. Synthesis of (1H-pyrrol-1-yl)anthracene-9,10-diones. Chem. Heterocycl. Compd. 2016, 52, 421-423, https://doi.org/10.1007/s10593-016-1904-9
dc.relation.references[4] Stasevych, M.V.; Plotnikov, M.Y.; Platonov, M.O.; Sabat, S.I.; Musyanovych, R.Y.; Novikov, V.P. Sulfur-containing Deriva-tives of 1,4-Naphthoquinone, Part 1: Disulfide Synthesis. Heteroa-tom Chem. 2005, 16, 205-211. https://doi.org/10.1002/hc.20112
dc.relation.references[5] Ibis, C.; Ozsoy-Gunes, Z.; Tuyun, A.F.; Ayla, S.S.; Bahar, H.; Stasevych, M.; Mysyanovych, R.; Komarovska-Porohnyavets, O.; Novikov, V. Synthesis, Antibacterial And Antifungal Evaluation of Thio- or Piperazinyl-Substituted 1,4-Naphthoquinone Derivatives. J. Sulfur Chem. 2016, 37, 477-487. https://doi.org/10.1080/17415993.2016.1187734
dc.relation.references[6] Zvarych, V.I.; Stasevych, M.V.; Stanko, O.V.; Komarovska-Porokhnyavets, O.; Poroikov, V.V; Rudik, A.V.; Lagunin, A.A.; Vovk, M.V.; Novikov, V. Computerized Prediction, Synthesis, and Antimicrobial Activity of New Amino-Acid Derivatives of 2-Chloro-N-(9,10-Dioxo-9,10-Dihydroanthracen-1-yl)Acetamide. Pharm. Chem. J. 2014, 48, 582-586. https://doi.org/10.1007/s11094-014-1154-z
dc.relation.references[7] Stasevych, M.; Zvarych, V.; Khomyak, S; Lunin, V.; Kopak, N.; Novikov, V.; Vovk, M. Proton-initiated Conversion of Dithiocarbamates of 9,10-Anthracenedione. Chem. Chem. Technol. 2018, 12, 300-304. https://doi.org/10.23939/chcht12.03.300
dc.relation.references[8] Stasevych, M.; Zvarych, V.; Lunin, V.; Vovk, M.; Novikov, V. The New 1,2,3-Triazolylantracene-9,10-diones: Synthesis and Computer Bioactivity Screening. Chem. Chem. Technol. 2017, 11, 1-9. https://doi.org/10.23939/chcht11.01.001
dc.relation.references[9] Analytical Methods Committee. Fourier Transform Infrared Spectroscopic Analysis of Organic Archaeological Materials: Back-ground Paper. Anal. Methods 2021, 3, 2997-3000. https://doi.org/10.1039/D1AY90064A
dc.relation.references[10] Derzhavna Farmakopeya Ukrayiny : v. 1. In Derzhavne pid-pryyemstvo «Ukrayins’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv»; 2-e vyd.; Kharkiv: Derzhavne pidpryyemstvo «Ukrayin s’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv», 2015.
dc.relation.references[11] Sozanskyi, M.; Stadnik, V.; Shapoval, P.; Yatchyshyn, Io.; Guminilovych, R.; Shapoval, S. Optimization of Synthesis Condi-tions of Mercury Selenide Thin Films. Chem. Chem. Technol. 2020, 14, 290-296. https://doi.org/10.23939/chcht14.03.290
dc.relation.references[12] Sozanskyi, M.; Stadnik, V.; Chaykivska, R.; Guminilovych, R; Shapoval, P.; Yatchyshyn, Io. Synthesis and Properties of Mer-cury Selenide Films Deposited by Using Pottasium Iodide as Com-plexing Agent. Chem. Chem. Technol. 2017, 11, 445-448. https://doi.org/10.23939/chcht11.04.445
dc.relation.references[13] Litteer, B.; Beckers, D. Increasing Application of X-Ray Powder Diffraction in the Pharmaceutical Industry. American Laboratory (Fairfield) А [Online] 2005, 37, 22-24. https://www.americanlaboratory.com/914-Application-Notes/36153-Increasin... (accessed Dec 6, 2022).
dc.relation.references[14] Manjunath, A.; Ashwini, A.; Mahalesh, D.; Balaji, B.; Mohanraj, P.; Kerur, B.R. Qualitative Analysis of Pharmaceutical Drugs by X-Ray Transmission Method: A non-Destructive Technique. Proceedings of the AIP Conference, India (Indore), December 27–28, 2018, 2100, 020114. https://doi.org/10.1063/1.5098668
dc.relation.references[15] Orimolade, B.O.; Arotiba, O.A. Enhanced Photoelectro-catalytic Degradation of Diclofenac Sodium Using a System of Ag-BiVO4/BiOI Anode and Ag-BiOI Cathode. Sci. Rep. 2022, 12, 4214. https://doi.org/10.1038/s41598-022-08213-0
dc.relation.references[16] Malathi, K.; Ramana Murthy, K.V.; Bhikshapathi, D.V.R.N.; Kusum B. Physico-Chemical Characterization of Diclofenac and Rasagiline Salts and its Relationship for Development of Sublingual Drug Delivery Systems. Int. J. Pharm. Sci. Drug Res. 2021, 13, 60-66. https://doi.org/10.25004/IJPSDR.2021.130109
dc.relation.references[17] Sa’adon, S.; Ansari, M.N.M.; Razak, S.I.A.; Anand, J.S.; Nayan, N.H.M.; Ismail, A.E.; Khan, M.U.A.; Haider, A. Preparation and Physicochemical Characterization of a Diclofenac Sodium-Dual Layer Polyvinyl Alcohol Patch. Polymers 2021, 13, 2459. https://doi.org/10.3390/polym13152459
dc.relation.references[18] Maurin, J.K.; Plucinski, F.; Mazurek, A.P.; Fijalek, Z. The Usefulness of Simple X-ray Powder Diffraction Analysis for Counterfeit Control - The Viagra® example. J. Pharm. Biomed. Anal. 2007, 43, 1514-1518. https://doi.org/10.1016/j.jpba.2006.10.033
dc.relation.references[19] Jendrzejewska, I.; Zajdel, P.; Pietrasik, E.; Barsova, Z.; Goryczka, T. Application of X-ray Powder Diffraction and Differential Scanning Calorimetry for Identification of Counterfeit Drugs. Monatsh. Chem. 2018, 149, 977-985. https://doi.org/10.1007/s00706-018-2193-z
dc.relation.references[20] Caira, M.R. Current Applications of Powder X-Ray Dif-fraction in Drug Discovery and Development. Am. Pharm. Rev. 2014, 17, 54-58.
dc.relation.references[21] Witkowski, M.R.; DeWitt, K. The Use of X-Ray Powder Diffraction (XRD) and Vibrational Spectroscopic Techniques in the Analysis of Suspect Pharmaceutical Products. Spectroscopy 2020, 35, 41-48.
dc.relation.references[22] Derzhavna Farmakopeya Ukrayiny : v. 2. In Derzhavne pid-pryyemstvo «Ukrayins’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv»; 2-e vyd. Kharkiv: Derzhavne pidpryyemstvo «Ukrayin s’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv», 2014.
dc.relation.references[23] Kraus, W.; Nolze, G. Powder Cell - a Program for the Representation and Manipulation of Crystal Structures and Calcula-tion of the Resulting X-Ray Powder Patterns. J. Appl. Crystall. 1996, 29, 301-303. https://doi.org/10.1107/S0021889895014920
dc.relation.references[24] Crystallography Open Database. http://crystallography.net/cod/ (accessed 2022-11-17).
dc.relation.references[25] Zhu, G.; Xiao, Z.; Zhu, G.; Rujunzhou, Niu Y. Encapsulation of L-Menthol in Hydroxypropyl-β-Cyclodextrin and Release Characteristics of The Inclusion Complex. Pol. J. Chem. Technol. 2016, 18, 110-116. https://doi.org/10.1515/pjct-2016-0056
dc.relation.references[26] Younes, H.A.; Khaled, R.; Mahmoud, H.M.; Nassar, H.F.; Abdelrahman, M.M.; Abo El-Ela, F.I.; Taha, M. Computational and Experimental Studies on the Efficient Removal of Diclofenac from Water Using ZnFe-Layered Double Hydroxide as an Environmen-tally Benign Absorbent. J. Taiwan Inst. Chem. Eng. 2019, 102, 297-311. https://doi.org/10.1016/j.jtice.2019.06.018
dc.relation.references[27] Paczkowska, M.; Wiergowska, G.; Miklaszewski, A.; Krause, A.; Mroczkowka, M.; Zalewski, P.; Cielecka-Piontek, J. The Analysis of the Physicochemical Properties of Benzocaine Polymorphs. Molecules 2018, 23, 1737. https://doi.org/10.3390/molecules23071737
dc.relation.referencesen[1] Elzayat, E.M.; Abdel-Rahman, A.A.; Ahmed S.M.; Alanazi, F.K.; Habib, W.A.; Sakr, A. Studying the Impact of Formulation and Processing Parameters on the Release Characteristics From Hydroxypropyl Methylcellulose Matrix Tablets of Diclofenac. Acta Pol. Pharm. 2016, 73, 439-452.
dc.relation.referencesen[2] Stasevych, M.; Zvarych, V.; Musyanovych, R.; Novikov, V.; Vovk, M. Synthesis of N-benzoyl-N'-(9,10-dioxo-9,10-dihydroanthacen-1-yl)-thioureas and Quantum-Chemical Analysis of the Reaction Passing. Chem. Chem. Technol. 2014, 8, 135-140. https://doi.org/10.23939/chcht08.02.135
dc.relation.referencesen[3] Zvarych, V.I.; Stasevych, M.V.; Lunin, V.V.; Vovk, M.V.; Novikov, V.P. Synthesis of (1H-pyrrol-1-yl)anthracene-9,10-diones. Chem. Heterocycl. Compd. 2016, 52, 421-423, https://doi.org/10.1007/s10593-016-1904-9
dc.relation.referencesen[4] Stasevych, M.V.; Plotnikov, M.Y.; Platonov, M.O.; Sabat, S.I.; Musyanovych, R.Y.; Novikov, V.P. Sulfur-containing Deriva-tives of 1,4-Naphthoquinone, Part 1: Disulfide Synthesis. Heteroa-tom Chem. 2005, 16, 205-211. https://doi.org/10.1002/hc.20112
dc.relation.referencesen[5] Ibis, C.; Ozsoy-Gunes, Z.; Tuyun, A.F.; Ayla, S.S.; Bahar, H.; Stasevych, M.; Mysyanovych, R.; Komarovska-Porohnyavets, O.; Novikov, V. Synthesis, Antibacterial And Antifungal Evaluation of Thio- or Piperazinyl-Substituted 1,4-Naphthoquinone Derivatives. J. Sulfur Chem. 2016, 37, 477-487. https://doi.org/10.1080/17415993.2016.1187734
dc.relation.referencesen[6] Zvarych, V.I.; Stasevych, M.V.; Stanko, O.V.; Komarovska-Porokhnyavets, O.; Poroikov, V.V; Rudik, A.V.; Lagunin, A.A.; Vovk, M.V.; Novikov, V. Computerized Prediction, Synthesis, and Antimicrobial Activity of New Amino-Acid Derivatives of 2-Chloro-N-(9,10-Dioxo-9,10-Dihydroanthracen-1-yl)Acetamide. Pharm. Chem. J. 2014, 48, 582-586. https://doi.org/10.1007/s11094-014-1154-z
dc.relation.referencesen[7] Stasevych, M.; Zvarych, V.; Khomyak, S; Lunin, V.; Kopak, N.; Novikov, V.; Vovk, M. Proton-initiated Conversion of Dithiocarbamates of 9,10-Anthracenedione. Chem. Chem. Technol. 2018, 12, 300-304. https://doi.org/10.23939/chcht12.03.300
dc.relation.referencesen[8] Stasevych, M.; Zvarych, V.; Lunin, V.; Vovk, M.; Novikov, V. The New 1,2,3-Triazolylantracene-9,10-diones: Synthesis and Computer Bioactivity Screening. Chem. Chem. Technol. 2017, 11, 1-9. https://doi.org/10.23939/chcht11.01.001
dc.relation.referencesen[9] Analytical Methods Committee. Fourier Transform Infrared Spectroscopic Analysis of Organic Archaeological Materials: Back-ground Paper. Anal. Methods 2021, 3, 2997-3000. https://doi.org/10.1039/D1AY90064A
dc.relation.referencesen[10] Derzhavna Farmakopeya Ukrayiny : v. 1. In Derzhavne pid-pryyemstvo "Ukrayins’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv"; 2-e vyd.; Kharkiv: Derzhavne pidpryyemstvo "Ukrayin s’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv", 2015.
dc.relation.referencesen[11] Sozanskyi, M.; Stadnik, V.; Shapoval, P.; Yatchyshyn, Io.; Guminilovych, R.; Shapoval, S. Optimization of Synthesis Condi-tions of Mercury Selenide Thin Films. Chem. Chem. Technol. 2020, 14, 290-296. https://doi.org/10.23939/chcht14.03.290
dc.relation.referencesen[12] Sozanskyi, M.; Stadnik, V.; Chaykivska, R.; Guminilovych, R; Shapoval, P.; Yatchyshyn, Io. Synthesis and Properties of Mer-cury Selenide Films Deposited by Using Pottasium Iodide as Com-plexing Agent. Chem. Chem. Technol. 2017, 11, 445-448. https://doi.org/10.23939/chcht11.04.445
dc.relation.referencesen[13] Litteer, B.; Beckers, D. Increasing Application of X-Ray Powder Diffraction in the Pharmaceutical Industry. American Laboratory (Fairfield) A [Online] 2005, 37, 22-24. https://www.americanlaboratory.com/914-Application-Notes/36153-Increasin... (accessed Dec 6, 2022).
dc.relation.referencesen[14] Manjunath, A.; Ashwini, A.; Mahalesh, D.; Balaji, B.; Mohanraj, P.; Kerur, B.R. Qualitative Analysis of Pharmaceutical Drugs by X-Ray Transmission Method: A non-Destructive Technique. Proceedings of the AIP Conference, India (Indore), December 27–28, 2018, 2100, 020114. https://doi.org/10.1063/1.5098668
dc.relation.referencesen[15] Orimolade, B.O.; Arotiba, O.A. Enhanced Photoelectro-catalytic Degradation of Diclofenac Sodium Using a System of Ag-BiVO4/BiOI Anode and Ag-BiOI Cathode. Sci. Rep. 2022, 12, 4214. https://doi.org/10.1038/s41598-022-08213-0
dc.relation.referencesen[16] Malathi, K.; Ramana Murthy, K.V.; Bhikshapathi, D.V.R.N.; Kusum B. Physico-Chemical Characterization of Diclofenac and Rasagiline Salts and its Relationship for Development of Sublingual Drug Delivery Systems. Int. J. Pharm. Sci. Drug Res. 2021, 13, 60-66. https://doi.org/10.25004/IJPSDR.2021.130109
dc.relation.referencesen[17] Sa’adon, S.; Ansari, M.N.M.; Razak, S.I.A.; Anand, J.S.; Nayan, N.H.M.; Ismail, A.E.; Khan, M.U.A.; Haider, A. Preparation and Physicochemical Characterization of a Diclofenac Sodium-Dual Layer Polyvinyl Alcohol Patch. Polymers 2021, 13, 2459. https://doi.org/10.3390/polym13152459
dc.relation.referencesen[18] Maurin, J.K.; Plucinski, F.; Mazurek, A.P.; Fijalek, Z. The Usefulness of Simple X-ray Powder Diffraction Analysis for Counterfeit Control - The Viagra® example. J. Pharm. Biomed. Anal. 2007, 43, 1514-1518. https://doi.org/10.1016/j.jpba.2006.10.033
dc.relation.referencesen[19] Jendrzejewska, I.; Zajdel, P.; Pietrasik, E.; Barsova, Z.; Goryczka, T. Application of X-ray Powder Diffraction and Differential Scanning Calorimetry for Identification of Counterfeit Drugs. Monatsh. Chem. 2018, 149, 977-985. https://doi.org/10.1007/s00706-018-2193-z
dc.relation.referencesen[20] Caira, M.R. Current Applications of Powder X-Ray Dif-fraction in Drug Discovery and Development. Am. Pharm. Rev. 2014, 17, 54-58.
dc.relation.referencesen[21] Witkowski, M.R.; DeWitt, K. The Use of X-Ray Powder Diffraction (XRD) and Vibrational Spectroscopic Techniques in the Analysis of Suspect Pharmaceutical Products. Spectroscopy 2020, 35, 41-48.
dc.relation.referencesen[22] Derzhavna Farmakopeya Ukrayiny : v. 2. In Derzhavne pid-pryyemstvo "Ukrayins’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv"; 2-e vyd. Kharkiv: Derzhavne pidpryyemstvo "Ukrayin s’kyy naukovyy farmakopeynyy tsentr yakosti likars’kykh zasobiv", 2014.
dc.relation.referencesen[23] Kraus, W.; Nolze, G. Powder Cell - a Program for the Representation and Manipulation of Crystal Structures and Calcula-tion of the Resulting X-Ray Powder Patterns. J. Appl. Crystall. 1996, 29, 301-303. https://doi.org/10.1107/S0021889895014920
dc.relation.referencesen[24] Crystallography Open Database. http://crystallography.net/cod/ (accessed 2022-11-17).
dc.relation.referencesen[25] Zhu, G.; Xiao, Z.; Zhu, G.; Rujunzhou, Niu Y. Encapsulation of L-Menthol in Hydroxypropyl-b-Cyclodextrin and Release Characteristics of The Inclusion Complex. Pol. J. Chem. Technol. 2016, 18, 110-116. https://doi.org/10.1515/pjct-2016-0056
dc.relation.referencesen[26] Younes, H.A.; Khaled, R.; Mahmoud, H.M.; Nassar, H.F.; Abdelrahman, M.M.; Abo El-Ela, F.I.; Taha, M. Computational and Experimental Studies on the Efficient Removal of Diclofenac from Water Using ZnFe-Layered Double Hydroxide as an Environmen-tally Benign Absorbent. J. Taiwan Inst. Chem. Eng. 2019, 102, 297-311. https://doi.org/10.1016/j.jtice.2019.06.018
dc.relation.referencesen[27] Paczkowska, M.; Wiergowska, G.; Miklaszewski, A.; Krause, A.; Mroczkowka, M.; Zalewski, P.; Cielecka-Piontek, J. The Analysis of the Physicochemical Properties of Benzocaine Polymorphs. Molecules 2018, 23, 1737. https://doi.org/10.3390/molecules23071737
dc.relation.urihttps://doi.org/10.23939/chcht08.02.135
dc.relation.urihttps://doi.org/10.1007/s10593-016-1904-9
dc.relation.urihttps://doi.org/10.1002/hc.20112
dc.relation.urihttps://doi.org/10.1080/17415993.2016.1187734
dc.relation.urihttps://doi.org/10.1007/s11094-014-1154-z
dc.relation.urihttps://doi.org/10.23939/chcht12.03.300
dc.relation.urihttps://doi.org/10.23939/chcht11.01.001
dc.relation.urihttps://doi.org/10.1039/D1AY90064A
dc.relation.urihttps://doi.org/10.23939/chcht14.03.290
dc.relation.urihttps://doi.org/10.23939/chcht11.04.445
dc.relation.urihttps://www.americanlaboratory.com/914-Application-Notes/36153-Increasin..
dc.relation.urihttps://doi.org/10.1063/1.5098668
dc.relation.urihttps://doi.org/10.1038/s41598-022-08213-0
dc.relation.urihttps://doi.org/10.25004/IJPSDR.2021.130109
dc.relation.urihttps://doi.org/10.3390/polym13152459
dc.relation.urihttps://doi.org/10.1016/j.jpba.2006.10.033
dc.relation.urihttps://doi.org/10.1007/s00706-018-2193-z
dc.relation.urihttps://doi.org/10.1107/S0021889895014920
dc.relation.urihttp://crystallography.net/cod/
dc.relation.urihttps://doi.org/10.1515/pjct-2016-0056
dc.relation.urihttps://doi.org/10.1016/j.jtice.2019.06.018
dc.relation.urihttps://doi.org/10.3390/molecules23071737
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Stasevych M., Zvarych V., Dronik M., Sozanskyi M., Khomyak, S.,2023
dc.subjectактивний фармацевтичний інгредієнт (АФІ)
dc.subjectякісний склад
dc.subjectсуміш АФІ
dc.subjectінфрачервона спектроскопія
dc.subjectрентгенівська дифракція порошку
dc.subjectactive pharmaceutical ingredient (API)
dc.subjectquality composition
dc.subjectAPI mixture
dc.subjectinfrared spectroscopy
dc.subjectX-ray powder diffraction
dc.titleApplication of Infrared Spectroscopy and X-Ray Powder Diffractometry for Assessment of the Qualitative Composition of Components in a Pharmaceutical Formulation
dc.title.alternativeЗастосування інфрачервоної спектроскопії та рентгенівської порошкової дифрактометрії для оцінки якісного складу компонентів фармацевтичної композиції
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n3_Stasevych_M-Application_of_Infrared_510-517.pdf
Size:
555.63 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n3_Stasevych_M-Application_of_Infrared_510-517__COVER.png
Size:
526.18 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: