Gravitational potential energy and fundamental parameters of the terrestrial and giant planets

dc.citation.epage15
dc.citation.issue2(31)
dc.citation.journalTitleГеодинаміка
dc.citation.spage5
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМарченко, Олександр
dc.contributor.authorПерій, Сергій
dc.contributor.authorПокотило, Іван
dc.contributor.authorТартачинська, Зоряна
dc.contributor.authorMarchenko, Alexander N.
dc.contributor.authorPerii, Serhii
dc.contributor.authorPokotylo, Ivan
dc.contributor.authorTartachynska, Zoriana
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-07-03T07:56:04Z
dc.date.available2023-07-03T07:56:04Z
dc.date.created2021-02-23
dc.date.issued2021-02-23
dc.description.abstractОсновною метою цього дослідження (перший етап) стало накопичення відповідного набору фунда- ментальних астрономо-геодезичних параметрів для їх подальшого використання з метою визначення складових розподілів густини для земних та зовнішніх планет Сонячної системи (на інтервалі більше ніж десять років). Початкові дані отримано у результаті кількох кроків загального способу дослідження Сонячної системи із виконанням ітерацій за допомогою різних космічних апаратів та місій. Механічні та геометричні параметри планет дають змогу знайти розв’язання оберненої гравітаційної задачі (другий етап) у разі використання гауссового розподілу густини для Місяця та земних (Меркурій, Венера, Земля, Марс) і планет-гігантів (Юпітер, Сатурн, Уран, Нептун). Цей закон розподілу густини Гаусса (або нормальний розподіл) вибрано як частковий розв’язок рівняння Адамса – Вільямсона та найкраще наближення кусково-радіального профілю Землі, ураховуючи модель PREM на основі незалежних сейсмічних швидкостей. Цей висновок, як гіпотеза вже зроблений для Землі, використано для вирішення проблеми апроксимації для інших планет, щодо яких ми сподіваємося вирішити обернену гравітаційну проблему в разі застосування розподілу густини Гаусса для інших планет, оскільки сейсмічна інформація в такому випадку майже відсутня. Тому, якщо ми можемо знайти стійкий розв’язок для оберненої гравітаційної задачі та відповідний розподіл густини Гаусса, апроксимований із належною якістю, то приходимо у результаті до стабільного визначення гравітаційної потенційної енергії земних та гігантських планет. Крім нормального закону густини планети, визначено гравітаційну потенціальну енергію, інтеграл Діріхле та інші фундаментальні параметри планет Сонячної системи. Це дослідження здійснюється вперше як статичне, щоб уникнути можливих залежностей від часу в гравітаційних полях планет.
dc.description.abstractThe basic goal of this study (as the first step) is to collect the appropriate set of the fundamental astronomicgeodetics parameters for their further use to obtain the components of the density distributions for the terrestrial and outer planets of the Solar system (in the time interval of more than 10 years). The initial data were adopted from several steps of the general way of the exploration of the Solar system by iterations through different spacecraft. The mechanical and geometrical parameters of the planets allow finding the solution of the inverse gravitational problem (as the second stage) in the case of the continued Gaussian density distribution for the Moon, terrestrial planets (Mercury, Venus, Earth, Mars) and outer planets (Jupiter, Saturn, Uranus, Neptune). This law of Gaussian density distribution or normal density was chosen as a partial solution of the Adams- Williamson equation and the best approximation of the piecewise radial profile of the Earth, including the PREM model based on independent seismic velocities. Such conclusion already obtained for the Earth’s was used as hypothetic in view of the approximation problem for other planets of the Solar system where we believing to get the density from the inverse gravitational problem in the case of the Gaussian density distribution for other planets because seismic information, in that case, is almost absent. Therefore, if we can find a stable solution for the inverse gravitational problem and corresponding continue Gaussian density distribution approximated with good quality of planet’s density distribution we come in this way to a stable determination of the gravitational potential energy of the terrestrial and giant planets. Moreover to the planet’s normal low, the gravitational potential energy, Dirichlet’s integral, and other planets’ parameters were derived. It should be noted that this study is considered time-independent to avoid possible time changes in the gravitational fields of the planets.
dc.format.extent5-15
dc.format.pages11
dc.identifier.citationGravitational potential energy and fundamental parameters of the terrestrial and giant planets / Alexander N. Marchenko, Serhii Perii, Ivan Pokotylo, Zoriana Tartachynska // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2021. — No 2(31). — P. 5–15.
dc.identifier.citationenGravitational potential energy and fundamental parameters of the terrestrial and giant planets / Alexander N. Marchenko, Serhii Perii, Ivan Pokotylo, Zoriana Tartachynska // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2021. — No 2(31). — P. 5–15.
dc.identifier.doidoi.org/10.23939/jgd2021.02.005
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59355
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 2(31), 2021
dc.relation.ispartofGeodynamics, 2(31), 2021
dc.relation.referencesBullard, E. C. (1954). The interior of the Earth. In:
dc.relation.referencesThe Earth as a Planet (G. P. Kuiper, ed). Univ. of
dc.relation.referencesChicago Press, 57–137.
dc.relation.referencesBullen, K. E. (1975) The Earth’s Density. Chapman
dc.relation.referencesand Hall, London.
dc.relation.referencesCottereau, L., & Souchay, J. (2009). Rotation of rigid
dc.relation.referencesVenus: a complete precession-nutation model.
dc.relation.referencesAstronomy & Astrophysics, 507(3), 1635–1648.
dc.relation.referencesDOI: 10.1051/0004-6361/200912174
dc.relation.referencesDarwin, G. H. (1884). On the figure of equilibrium of
dc.relation.referencesa planet of heterogeneous density. Proceeding of
dc.relation.referencesthe Royal Society, 36(228–231), 158–166.
dc.relation.referencesDziewonski, A. M., & Anderson, D. L. (1981).
dc.relation.referencesPreliminary reference Earth model. Physics of
dc.relation.referencesthe earth and planetary interiors, 25(4), 297–356.
dc.relation.referenceshttps://doi.org/10.1016/0031-9201(81)90046-7.
dc.relation.referencesEncyclopedia of the Solar System (2015). Editted by
dc.relation.referencesTilman Spohn, Doris Breuer, Torrence V.
dc.relation.referencesJohnson, 3rd edition, ELSELVER.
dc.relation.referencesGauss, C. F. (1840, 1867). Allgemeine Lehrsätze in
dc.relation.referencesBeziehung auf die im verkehrten Verhältnisse des
dc.relation.referencesQuadrats der Entfernung wirkenden Anziehungsund
dc.relation.referencesAbstossungs-Kräfte. In Werke (pp. 195–242).
dc.relation.referencesSpringer, Berlin, Heidelberg.
dc.relation.referencesHelled, R., Anderson, J. D., Schubert, G., &
dc.relation.referencesStevenson, D. J. (2011, October). Constraining the
dc.relation.referencesInternal Structures of Jupiter and Saturn from
dc.relation.referencesMoments of Inertia Measurements: Implications
dc.relation.referencesfor the Juno and Solstice Missions.Paper presented
dc.relation.referencesat the “European Planetary Science Congress”,
dc.relation.referencesAbstracts, Vol. 6, EPSC-DPS2011-52-2,
dc.relation.referencesEPSC-DPS Joint Meeting. http://meetings.copernicus.org/epsc-dps2011.
dc.relation.referencesHikida, H., & Wieczorek, M. A. (2007). Crustal
dc.relation.referencesthickness of the Moon: New constraints from
dc.relation.referencesgravity inversions using polyhedral shape models.
dc.relation.referencesIcarus, 192(1), 150–166. https://doi.org/10.1016/j.icarus.2007.06.015.
dc.relation.referencesKonopliv, A. S., Yoder, C. F., Standish, E. M.,
dc.relation.referencesYuan, D. N., & Sjogren, W. L. (2006). A global
dc.relation.referencessolution for the Mars static and seasonal gravity,
dc.relation.referencesMars orientation, Phobos and Deimos masses, and
dc.relation.referencesMars ephemeris. Icarus, 182(1), 23–50. https://doi.org/10.1016/j.icarus.2005.12.025.
dc.relation.referencesKonopliv, A. S., Park, R. S., Yuan, D. N., Asmar, S.W.,
dc.relation.referencesWatkins, M. M., Williams, J. G., …& Zuber, M. T.
dc.relation.references(2014). High resolution lunar gravity fields from
dc.relation.referencesthe GRAIL primary and extended missions.
dc.relation.referencesGeophysical Research Letters, 41(5), 1452–1458.
dc.relation.referencesdoi:10.1002/2013GL059066.
dc.relation.referencesKonopliv, A. S., Park, R. S., & Folkner, W. M.
dc.relation.references(2016). An improved JPL Mars gravity field and
dc.relation.referencesorientation from Mars orbiter and lander tracking
dc.relation.referencesdata. Icarus, 274, 253–260. https://doi.org/10.1016/j.icarus.2016.02.052.
dc.relation.referencesKonopliv, A. S. (2016). Private communication.
dc.relation.referencesLemoine, F. G., Goossens, S., Sabaka, T. J.,
dc.relation.referencesNicholas, J. B., Mazarico, E., Rowlands, D. D., ...
dc.relation.references& Zuber, M. T. (2014). GRGM900C: A degree 900 lunar gravity model from GRAIL primary and
dc.relation.referencesextended mission data. Geophysical research
dc.relation.referencesletters, 41(10), 3382–3389. https://doi.org/10.1002/2014GL060027
dc.relation.referencesMarchenko, A. N. (2000). Earth’s radial density profiles
dc.relation.referencesbased on Gauss’ and Roche’s distributions.
dc.relation.referencesBolletino di Geodesia e Scienze Affini, 59(3), 201–220.
dc.relation.referencesMarchenko, A. N. (2009). The Earth’s global density
dc.relation.referencesdistribution and gravitational potential energy.
dc.relation.referencesIn Observing our Changing Earth (pp. 483–491).
dc.relation.referencesSpringer, Berlin, Heidelberg.
dc.relation.referencesMarchenko, A. N., & Zayats, A. S. (2011). Estimation
dc.relation.referencesof the gravitational potential energy of the
dc.relation.referencesearth based on different density models. Studia
dc.relation.referencesGeophysica et Geodaetica, 55(1), 35–54.
dc.relation.referenceshttps://doi.org/10.1007/s11200-011-0003-8/
dc.relation.referencesMargot, J. L., Peale, S. J., Solomon, S. C.,
dc.relation.referencesHauck, S. A., Ghigo, F. D., Jurgens, R. F., ... &
dc.relation.referencesCampbell, D. B. (2012). Mercury’s moment of
dc.relation.referencesinertia from spin and gravity data. Journal of
dc.relation.referencesGeophysical Research: Planets, 117(E12).
dc.relation.referencesDOI:10.1029/2012JE004161.
dc.relation.referencesMescheryakov, G. A. (1977). On the unique solution
dc.relation.referencesof the inverse problem of the potential theory.
dc.relation.referencesReports of the Ukrainian Academy of Sciences.
dc.relation.referencesKiev, Series A, No. 6, 492–495 (in Ukrainian).
dc.relation.referencesMocquet, A., Rosenblatt, P., Dehant, V., &
dc.relation.referencesVerhoeven, O. (2011). The deep interior of Venus,
dc.relation.referencesMars, and the Earth: A brief review and the need
dc.relation.referencesfor planetary surface-based measurements.
dc.relation.referencesPlanetary and Space Science, 59(10), 1048–1061.
dc.relation.referencesDOI:10.1016/j.pss.2010.02.002.
dc.relation.referencesMoritz, H. (1990). The figure of the Earth: theoretical
dc.relation.referencesgeodesy and the Earth's interior. Karlsruhe:
dc.relation.referencesWichmann.
dc.relation.referencesNeumann, G. A., Zuber, M. T., Wieczorek, M. A.,
dc.relation.referencesHead, J. W., Baker, D. M., Solomon, S. C., ... &
dc.relation.referencesKiefer, W. S. (2015). Lunar impact basins
dc.relation.referencesrevealed by Gravity Recovery and Interior
dc.relation.referencesLaboratory measurements. Science advances, 1(9),
dc.relation.referencese1500852. DOI: 10.1126/sciadv.1500852
dc.relation.referencesRubincam, D. P. (1979). Gravitational potential
dc.relation.referencesenergy of the Earth: A spherical harmonic
dc.relation.referencesapproach. Journal of Geophysical Research: Solid
dc.relation.referencesEarth, 84(B11), 6219–6225.
dc.relation.referencesRappaport, N. J., Konopliv, A. S., Kucinskas, A. B.,
dc.relation.references& Ford, P. G. (1999). An improved 360 degree
dc.relation.referencesand order model of Venus topography.
dc.relation.referencesIcarus, 139(1), 19–31.
dc.relation.referencesRivoldini, A., Van Hoolst, T., & Verhoeven, O.
dc.relation.references(2009). The interior structure of Mercury and its
dc.relation.referencescore sulfur content. Icarus, 201(1), 12–30.
dc.relation.referenceshttps://doi.org/10.1016/j.icarus.2008.12.020.
dc.relation.referencesSeidelmann, P. K., Abalakin, V. K., Bursa, M.,
dc.relation.referencesDavies, M. E., De Bergh, C., Lieske, J. H., Oberst, J.,
dc.relation.referencesSimon, J. L., Standish, E.M., Stooke, P., Thomas, P. C.
dc.relation.references(2002). Report of the IAU/IAG working group on
dc.relation.referencescartographic coordinates and rotational elements
dc.relation.referencesof the planets and satellites: 2000. Celest. Mech.
dc.relation.referencesDyn. Astron. 82(1), 83–110.
dc.relation.referencesThomson, W., & Tait, P. G. (1883). Treatise on
dc.relation.referencesNatural Philosophy. Vol. 2, Cambridge University
dc.relation.referencesPress.
dc.relation.referencesTikhonov, A. N. & Arsenin, V. Y. (1974). Methods of
dc.relation.referencesthe solution of ill-posed problems, Moscow:
dc.relation.referencesNauka, 1974 (in Russian).
dc.relation.referencesWermer, J. (1981). Potential theory, Springer, Berlin
dc.relation.referencesHeidelberg New York, 1981.
dc.relation.referencesWieczorek, M. A., Neumann, G. A., Nimmo, F.,
dc.relation.referencesKiefer, W. S., Taylor, G. J., Melosh, H. J., ... &
dc.relation.referencesZuber, M. T. (2013). The crust of the Moon as
dc.relation.referencesseen by GRAIL. Science, 339(6120), 671–675.
dc.relation.referencesDOI: 10.1126/science.1231530.
dc.relation.referencesYoder, C. F. (1995). Venus’ free obliquity.
dc.relation.referencesIcarus, 117(2), 250–286.
dc.relation.referencesZuber, M. T., Solomon, S. C., Phillips, R. J., Smith, D. E.,
dc.relation.referencesTyler, G. L., Aharonson, O., ... & Zhong, S. (2000).
dc.relation.referencesInternal structure and early thermal evolution of Mars
dc.relation.referencesfrom Mars Global Surveyor topography and gravity.
dc.relation.referencesScience, 287(5459), 1788–1793. https://doi.org/10.1126/science.287.5459.1788
dc.relation.referencesenBullard, E. C. (1954). The interior of the Earth. In:
dc.relation.referencesenThe Earth as a Planet (G. P. Kuiper, ed). Univ. of
dc.relation.referencesenChicago Press, 57–137.
dc.relation.referencesenBullen, K. E. (1975) The Earth’s Density. Chapman
dc.relation.referencesenand Hall, London.
dc.relation.referencesenCottereau, L., & Souchay, J. (2009). Rotation of rigid
dc.relation.referencesenVenus: a complete precession-nutation model.
dc.relation.referencesenAstronomy & Astrophysics, 507(3), 1635–1648.
dc.relation.referencesenDOI: 10.1051/0004-6361/200912174
dc.relation.referencesenDarwin, G. H. (1884). On the figure of equilibrium of
dc.relation.referencesena planet of heterogeneous density. Proceeding of
dc.relation.referencesenthe Royal Society, 36(228–231), 158–166.
dc.relation.referencesenDziewonski, A. M., & Anderson, D. L. (1981).
dc.relation.referencesenPreliminary reference Earth model. Physics of
dc.relation.referencesenthe earth and planetary interiors, 25(4), 297–356.
dc.relation.referencesenhttps://doi.org/10.1016/0031-9201(81)90046-7.
dc.relation.referencesenEncyclopedia of the Solar System (2015). Editted by
dc.relation.referencesenTilman Spohn, Doris Breuer, Torrence V.
dc.relation.referencesenJohnson, 3rd edition, ELSELVER.
dc.relation.referencesenGauss, C. F. (1840, 1867). Allgemeine Lehrsätze in
dc.relation.referencesenBeziehung auf die im verkehrten Verhältnisse des
dc.relation.referencesenQuadrats der Entfernung wirkenden Anziehungsund
dc.relation.referencesenAbstossungs-Kräfte. In Werke (pp. 195–242).
dc.relation.referencesenSpringer, Berlin, Heidelberg.
dc.relation.referencesenHelled, R., Anderson, J. D., Schubert, G., &
dc.relation.referencesenStevenson, D. J. (2011, October). Constraining the
dc.relation.referencesenInternal Structures of Jupiter and Saturn from
dc.relation.referencesenMoments of Inertia Measurements: Implications
dc.relation.referencesenfor the Juno and Solstice Missions.Paper presented
dc.relation.referencesenat the "European Planetary Science Congress",
dc.relation.referencesenAbstracts, Vol. 6, EPSC-DPS2011-52-2,
dc.relation.referencesenEPSC-DPS Joint Meeting. http://meetings.copernicus.org/epsc-dps2011.
dc.relation.referencesenHikida, H., & Wieczorek, M. A. (2007). Crustal
dc.relation.referencesenthickness of the Moon: New constraints from
dc.relation.referencesengravity inversions using polyhedral shape models.
dc.relation.referencesenIcarus, 192(1), 150–166. https://doi.org/10.1016/j.icarus.2007.06.015.
dc.relation.referencesenKonopliv, A. S., Yoder, C. F., Standish, E. M.,
dc.relation.referencesenYuan, D. N., & Sjogren, W. L. (2006). A global
dc.relation.referencesensolution for the Mars static and seasonal gravity,
dc.relation.referencesenMars orientation, Phobos and Deimos masses, and
dc.relation.referencesenMars ephemeris. Icarus, 182(1), 23–50. https://doi.org/10.1016/j.icarus.2005.12.025.
dc.relation.referencesenKonopliv, A. S., Park, R. S., Yuan, D. N., Asmar, S.W.,
dc.relation.referencesenWatkins, M. M., Williams, J. G., …& Zuber, M. T.
dc.relation.referencesen(2014). High resolution lunar gravity fields from
dc.relation.referencesenthe GRAIL primary and extended missions.
dc.relation.referencesenGeophysical Research Letters, 41(5), 1452–1458.
dc.relation.referencesendoi:10.1002/2013GL059066.
dc.relation.referencesenKonopliv, A. S., Park, R. S., & Folkner, W. M.
dc.relation.referencesen(2016). An improved JPL Mars gravity field and
dc.relation.referencesenorientation from Mars orbiter and lander tracking
dc.relation.referencesendata. Icarus, 274, 253–260. https://doi.org/10.1016/j.icarus.2016.02.052.
dc.relation.referencesenKonopliv, A. S. (2016). Private communication.
dc.relation.referencesenLemoine, F. G., Goossens, S., Sabaka, T. J.,
dc.relation.referencesenNicholas, J. B., Mazarico, E., Rowlands, D. D., ...
dc.relation.referencesen& Zuber, M. T. (2014). GRGM900C: A degree 900 lunar gravity model from GRAIL primary and
dc.relation.referencesenextended mission data. Geophysical research
dc.relation.referencesenletters, 41(10), 3382–3389. https://doi.org/10.1002/2014GL060027
dc.relation.referencesenMarchenko, A. N. (2000). Earth’s radial density profiles
dc.relation.referencesenbased on Gauss’ and Roche’s distributions.
dc.relation.referencesenBolletino di Geodesia e Scienze Affini, 59(3), 201–220.
dc.relation.referencesenMarchenko, A. N. (2009). The Earth’s global density
dc.relation.referencesendistribution and gravitational potential energy.
dc.relation.referencesenIn Observing our Changing Earth (pp. 483–491).
dc.relation.referencesenSpringer, Berlin, Heidelberg.
dc.relation.referencesenMarchenko, A. N., & Zayats, A. S. (2011). Estimation
dc.relation.referencesenof the gravitational potential energy of the
dc.relation.referencesenearth based on different density models. Studia
dc.relation.referencesenGeophysica et Geodaetica, 55(1), 35–54.
dc.relation.referencesenhttps://doi.org/10.1007/s11200-011-0003-8/
dc.relation.referencesenMargot, J. L., Peale, S. J., Solomon, S. C.,
dc.relation.referencesenHauck, S. A., Ghigo, F. D., Jurgens, R. F., ... &
dc.relation.referencesenCampbell, D. B. (2012). Mercury’s moment of
dc.relation.referenceseninertia from spin and gravity data. Journal of
dc.relation.referencesenGeophysical Research: Planets, 117(E12).
dc.relation.referencesenDOI:10.1029/2012JE004161.
dc.relation.referencesenMescheryakov, G. A. (1977). On the unique solution
dc.relation.referencesenof the inverse problem of the potential theory.
dc.relation.referencesenReports of the Ukrainian Academy of Sciences.
dc.relation.referencesenKiev, Series A, No. 6, 492–495 (in Ukrainian).
dc.relation.referencesenMocquet, A., Rosenblatt, P., Dehant, V., &
dc.relation.referencesenVerhoeven, O. (2011). The deep interior of Venus,
dc.relation.referencesenMars, and the Earth: A brief review and the need
dc.relation.referencesenfor planetary surface-based measurements.
dc.relation.referencesenPlanetary and Space Science, 59(10), 1048–1061.
dc.relation.referencesenDOI:10.1016/j.pss.2010.02.002.
dc.relation.referencesenMoritz, H. (1990). The figure of the Earth: theoretical
dc.relation.referencesengeodesy and the Earth's interior. Karlsruhe:
dc.relation.referencesenWichmann.
dc.relation.referencesenNeumann, G. A., Zuber, M. T., Wieczorek, M. A.,
dc.relation.referencesenHead, J. W., Baker, D. M., Solomon, S. C., ... &
dc.relation.referencesenKiefer, W. S. (2015). Lunar impact basins
dc.relation.referencesenrevealed by Gravity Recovery and Interior
dc.relation.referencesenLaboratory measurements. Science advances, 1(9),
dc.relation.referencesene1500852. DOI: 10.1126/sciadv.1500852
dc.relation.referencesenRubincam, D. P. (1979). Gravitational potential
dc.relation.referencesenenergy of the Earth: A spherical harmonic
dc.relation.referencesenapproach. Journal of Geophysical Research: Solid
dc.relation.referencesenEarth, 84(B11), 6219–6225.
dc.relation.referencesenRappaport, N. J., Konopliv, A. S., Kucinskas, A. B.,
dc.relation.referencesen& Ford, P. G. (1999). An improved 360 degree
dc.relation.referencesenand order model of Venus topography.
dc.relation.referencesenIcarus, 139(1), 19–31.
dc.relation.referencesenRivoldini, A., Van Hoolst, T., & Verhoeven, O.
dc.relation.referencesen(2009). The interior structure of Mercury and its
dc.relation.referencesencore sulfur content. Icarus, 201(1), 12–30.
dc.relation.referencesenhttps://doi.org/10.1016/j.icarus.2008.12.020.
dc.relation.referencesenSeidelmann, P. K., Abalakin, V. K., Bursa, M.,
dc.relation.referencesenDavies, M. E., De Bergh, C., Lieske, J. H., Oberst, J.,
dc.relation.referencesenSimon, J. L., Standish, E.M., Stooke, P., Thomas, P. C.
dc.relation.referencesen(2002). Report of the IAU/IAG working group on
dc.relation.referencesencartographic coordinates and rotational elements
dc.relation.referencesenof the planets and satellites: 2000. Celest. Mech.
dc.relation.referencesenDyn. Astron. 82(1), 83–110.
dc.relation.referencesenThomson, W., & Tait, P. G. (1883). Treatise on
dc.relation.referencesenNatural Philosophy. Vol. 2, Cambridge University
dc.relation.referencesenPress.
dc.relation.referencesenTikhonov, A. N. & Arsenin, V. Y. (1974). Methods of
dc.relation.referencesenthe solution of ill-posed problems, Moscow:
dc.relation.referencesenNauka, 1974 (in Russian).
dc.relation.referencesenWermer, J. (1981). Potential theory, Springer, Berlin
dc.relation.referencesenHeidelberg New York, 1981.
dc.relation.referencesenWieczorek, M. A., Neumann, G. A., Nimmo, F.,
dc.relation.referencesenKiefer, W. S., Taylor, G. J., Melosh, H. J., ... &
dc.relation.referencesenZuber, M. T. (2013). The crust of the Moon as
dc.relation.referencesenseen by GRAIL. Science, 339(6120), 671–675.
dc.relation.referencesenDOI: 10.1126/science.1231530.
dc.relation.referencesenYoder, C. F. (1995). Venus’ free obliquity.
dc.relation.referencesenIcarus, 117(2), 250–286.
dc.relation.referencesenZuber, M. T., Solomon, S. C., Phillips, R. J., Smith, D. E.,
dc.relation.referencesenTyler, G. L., Aharonson, O., ... & Zhong, S. (2000).
dc.relation.referencesenInternal structure and early thermal evolution of Mars
dc.relation.referencesenfrom Mars Global Surveyor topography and gravity.
dc.relation.referencesenScience, 287(5459), 1788–1793. https://doi.org/10.1126/science.287.5459.1788
dc.relation.urihttps://doi.org/10.1016/0031-9201(81)90046-7
dc.relation.urihttp://meetings.copernicus.org/epsc-dps2011
dc.relation.urihttps://doi.org/10.1016/j.icarus.2007.06.015
dc.relation.urihttps://doi.org/10.1016/j.icarus.2005.12.025
dc.relation.urihttps://doi.org/10.1016/j.icarus.2016.02.052
dc.relation.urihttps://doi.org/10.1002/2014GL060027
dc.relation.urihttps://doi.org/10.1007/s11200-011-0003-8/
dc.relation.urihttps://doi.org/10.1016/j.icarus.2008.12.020
dc.relation.urihttps://doi.org/10.1126/science.287.5459.1788
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2021
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2021
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Marchenko Alexander N., Perii S., Pokotylo I., Tartachynska Z.
dc.subjectфундаментальні астрономо-геодезичні параметри
dc.subjectрозв’язання оберненої гравітаційної задачі
dc.subjectрозподіл густини Гаусса
dc.subjectінтеграл Діріхле
dc.subjectfundamental astronomic-geodetics parameters
dc.subjectsolution of the inverse gravitational problem
dc.subjectGaussian density distribution
dc.subjectDirichlet’s integral
dc.subject.udc528.21/22
dc.titleGravitational potential energy and fundamental parameters of the terrestrial and giant planets
dc.title.alternativeГравітаційна потенціальна енергія та основні параметри земних планет і планет-гігантів
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021n2_31__Marchenko_A_N-Gravitational_potential_5-15.pdf
Size:
390.83 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021n2_31__Marchenko_A_N-Gravitational_potential_5-15__COVER.png
Size:
475.58 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: