Gravitational potential energy and fundamental parameters of the terrestrial and giant planets
dc.citation.epage | 15 | |
dc.citation.issue | 2(31) | |
dc.citation.journalTitle | Геодинаміка | |
dc.citation.spage | 5 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Марченко, Олександр | |
dc.contributor.author | Перій, Сергій | |
dc.contributor.author | Покотило, Іван | |
dc.contributor.author | Тартачинська, Зоряна | |
dc.contributor.author | Marchenko, Alexander N. | |
dc.contributor.author | Perii, Serhii | |
dc.contributor.author | Pokotylo, Ivan | |
dc.contributor.author | Tartachynska, Zoriana | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-07-03T07:56:04Z | |
dc.date.available | 2023-07-03T07:56:04Z | |
dc.date.created | 2021-02-23 | |
dc.date.issued | 2021-02-23 | |
dc.description.abstract | Основною метою цього дослідження (перший етап) стало накопичення відповідного набору фунда- ментальних астрономо-геодезичних параметрів для їх подальшого використання з метою визначення складових розподілів густини для земних та зовнішніх планет Сонячної системи (на інтервалі більше ніж десять років). Початкові дані отримано у результаті кількох кроків загального способу дослідження Сонячної системи із виконанням ітерацій за допомогою різних космічних апаратів та місій. Механічні та геометричні параметри планет дають змогу знайти розв’язання оберненої гравітаційної задачі (другий етап) у разі використання гауссового розподілу густини для Місяця та земних (Меркурій, Венера, Земля, Марс) і планет-гігантів (Юпітер, Сатурн, Уран, Нептун). Цей закон розподілу густини Гаусса (або нормальний розподіл) вибрано як частковий розв’язок рівняння Адамса – Вільямсона та найкраще наближення кусково-радіального профілю Землі, ураховуючи модель PREM на основі незалежних сейсмічних швидкостей. Цей висновок, як гіпотеза вже зроблений для Землі, використано для вирішення проблеми апроксимації для інших планет, щодо яких ми сподіваємося вирішити обернену гравітаційну проблему в разі застосування розподілу густини Гаусса для інших планет, оскільки сейсмічна інформація в такому випадку майже відсутня. Тому, якщо ми можемо знайти стійкий розв’язок для оберненої гравітаційної задачі та відповідний розподіл густини Гаусса, апроксимований із належною якістю, то приходимо у результаті до стабільного визначення гравітаційної потенційної енергії земних та гігантських планет. Крім нормального закону густини планети, визначено гравітаційну потенціальну енергію, інтеграл Діріхле та інші фундаментальні параметри планет Сонячної системи. Це дослідження здійснюється вперше як статичне, щоб уникнути можливих залежностей від часу в гравітаційних полях планет. | |
dc.description.abstract | The basic goal of this study (as the first step) is to collect the appropriate set of the fundamental astronomicgeodetics parameters for their further use to obtain the components of the density distributions for the terrestrial and outer planets of the Solar system (in the time interval of more than 10 years). The initial data were adopted from several steps of the general way of the exploration of the Solar system by iterations through different spacecraft. The mechanical and geometrical parameters of the planets allow finding the solution of the inverse gravitational problem (as the second stage) in the case of the continued Gaussian density distribution for the Moon, terrestrial planets (Mercury, Venus, Earth, Mars) and outer planets (Jupiter, Saturn, Uranus, Neptune). This law of Gaussian density distribution or normal density was chosen as a partial solution of the Adams- Williamson equation and the best approximation of the piecewise radial profile of the Earth, including the PREM model based on independent seismic velocities. Such conclusion already obtained for the Earth’s was used as hypothetic in view of the approximation problem for other planets of the Solar system where we believing to get the density from the inverse gravitational problem in the case of the Gaussian density distribution for other planets because seismic information, in that case, is almost absent. Therefore, if we can find a stable solution for the inverse gravitational problem and corresponding continue Gaussian density distribution approximated with good quality of planet’s density distribution we come in this way to a stable determination of the gravitational potential energy of the terrestrial and giant planets. Moreover to the planet’s normal low, the gravitational potential energy, Dirichlet’s integral, and other planets’ parameters were derived. It should be noted that this study is considered time-independent to avoid possible time changes in the gravitational fields of the planets. | |
dc.format.extent | 5-15 | |
dc.format.pages | 11 | |
dc.identifier.citation | Gravitational potential energy and fundamental parameters of the terrestrial and giant planets / Alexander N. Marchenko, Serhii Perii, Ivan Pokotylo, Zoriana Tartachynska // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2021. — No 2(31). — P. 5–15. | |
dc.identifier.citationen | Gravitational potential energy and fundamental parameters of the terrestrial and giant planets / Alexander N. Marchenko, Serhii Perii, Ivan Pokotylo, Zoriana Tartachynska // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2021. — No 2(31). — P. 5–15. | |
dc.identifier.doi | doi.org/10.23939/jgd2021.02.005 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/59355 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодинаміка, 2(31), 2021 | |
dc.relation.ispartof | Geodynamics, 2(31), 2021 | |
dc.relation.references | Bullard, E. C. (1954). The interior of the Earth. In: | |
dc.relation.references | The Earth as a Planet (G. P. Kuiper, ed). Univ. of | |
dc.relation.references | Chicago Press, 57–137. | |
dc.relation.references | Bullen, K. E. (1975) The Earth’s Density. Chapman | |
dc.relation.references | and Hall, London. | |
dc.relation.references | Cottereau, L., & Souchay, J. (2009). Rotation of rigid | |
dc.relation.references | Venus: a complete precession-nutation model. | |
dc.relation.references | Astronomy & Astrophysics, 507(3), 1635–1648. | |
dc.relation.references | DOI: 10.1051/0004-6361/200912174 | |
dc.relation.references | Darwin, G. H. (1884). On the figure of equilibrium of | |
dc.relation.references | a planet of heterogeneous density. Proceeding of | |
dc.relation.references | the Royal Society, 36(228–231), 158–166. | |
dc.relation.references | Dziewonski, A. M., & Anderson, D. L. (1981). | |
dc.relation.references | Preliminary reference Earth model. Physics of | |
dc.relation.references | the earth and planetary interiors, 25(4), 297–356. | |
dc.relation.references | https://doi.org/10.1016/0031-9201(81)90046-7. | |
dc.relation.references | Encyclopedia of the Solar System (2015). Editted by | |
dc.relation.references | Tilman Spohn, Doris Breuer, Torrence V. | |
dc.relation.references | Johnson, 3rd edition, ELSELVER. | |
dc.relation.references | Gauss, C. F. (1840, 1867). Allgemeine Lehrsätze in | |
dc.relation.references | Beziehung auf die im verkehrten Verhältnisse des | |
dc.relation.references | Quadrats der Entfernung wirkenden Anziehungsund | |
dc.relation.references | Abstossungs-Kräfte. In Werke (pp. 195–242). | |
dc.relation.references | Springer, Berlin, Heidelberg. | |
dc.relation.references | Helled, R., Anderson, J. D., Schubert, G., & | |
dc.relation.references | Stevenson, D. J. (2011, October). Constraining the | |
dc.relation.references | Internal Structures of Jupiter and Saturn from | |
dc.relation.references | Moments of Inertia Measurements: Implications | |
dc.relation.references | for the Juno and Solstice Missions.Paper presented | |
dc.relation.references | at the “European Planetary Science Congress”, | |
dc.relation.references | Abstracts, Vol. 6, EPSC-DPS2011-52-2, | |
dc.relation.references | EPSC-DPS Joint Meeting. http://meetings.copernicus.org/epsc-dps2011. | |
dc.relation.references | Hikida, H., & Wieczorek, M. A. (2007). Crustal | |
dc.relation.references | thickness of the Moon: New constraints from | |
dc.relation.references | gravity inversions using polyhedral shape models. | |
dc.relation.references | Icarus, 192(1), 150–166. https://doi.org/10.1016/j.icarus.2007.06.015. | |
dc.relation.references | Konopliv, A. S., Yoder, C. F., Standish, E. M., | |
dc.relation.references | Yuan, D. N., & Sjogren, W. L. (2006). A global | |
dc.relation.references | solution for the Mars static and seasonal gravity, | |
dc.relation.references | Mars orientation, Phobos and Deimos masses, and | |
dc.relation.references | Mars ephemeris. Icarus, 182(1), 23–50. https://doi.org/10.1016/j.icarus.2005.12.025. | |
dc.relation.references | Konopliv, A. S., Park, R. S., Yuan, D. N., Asmar, S.W., | |
dc.relation.references | Watkins, M. M., Williams, J. G., …& Zuber, M. T. | |
dc.relation.references | (2014). High resolution lunar gravity fields from | |
dc.relation.references | the GRAIL primary and extended missions. | |
dc.relation.references | Geophysical Research Letters, 41(5), 1452–1458. | |
dc.relation.references | doi:10.1002/2013GL059066. | |
dc.relation.references | Konopliv, A. S., Park, R. S., & Folkner, W. M. | |
dc.relation.references | (2016). An improved JPL Mars gravity field and | |
dc.relation.references | orientation from Mars orbiter and lander tracking | |
dc.relation.references | data. Icarus, 274, 253–260. https://doi.org/10.1016/j.icarus.2016.02.052. | |
dc.relation.references | Konopliv, A. S. (2016). Private communication. | |
dc.relation.references | Lemoine, F. G., Goossens, S., Sabaka, T. J., | |
dc.relation.references | Nicholas, J. B., Mazarico, E., Rowlands, D. D., ... | |
dc.relation.references | & Zuber, M. T. (2014). GRGM900C: A degree 900 lunar gravity model from GRAIL primary and | |
dc.relation.references | extended mission data. Geophysical research | |
dc.relation.references | letters, 41(10), 3382–3389. https://doi.org/10.1002/2014GL060027 | |
dc.relation.references | Marchenko, A. N. (2000). Earth’s radial density profiles | |
dc.relation.references | based on Gauss’ and Roche’s distributions. | |
dc.relation.references | Bolletino di Geodesia e Scienze Affini, 59(3), 201–220. | |
dc.relation.references | Marchenko, A. N. (2009). The Earth’s global density | |
dc.relation.references | distribution and gravitational potential energy. | |
dc.relation.references | In Observing our Changing Earth (pp. 483–491). | |
dc.relation.references | Springer, Berlin, Heidelberg. | |
dc.relation.references | Marchenko, A. N., & Zayats, A. S. (2011). Estimation | |
dc.relation.references | of the gravitational potential energy of the | |
dc.relation.references | earth based on different density models. Studia | |
dc.relation.references | Geophysica et Geodaetica, 55(1), 35–54. | |
dc.relation.references | https://doi.org/10.1007/s11200-011-0003-8/ | |
dc.relation.references | Margot, J. L., Peale, S. J., Solomon, S. C., | |
dc.relation.references | Hauck, S. A., Ghigo, F. D., Jurgens, R. F., ... & | |
dc.relation.references | Campbell, D. B. (2012). Mercury’s moment of | |
dc.relation.references | inertia from spin and gravity data. Journal of | |
dc.relation.references | Geophysical Research: Planets, 117(E12). | |
dc.relation.references | DOI:10.1029/2012JE004161. | |
dc.relation.references | Mescheryakov, G. A. (1977). On the unique solution | |
dc.relation.references | of the inverse problem of the potential theory. | |
dc.relation.references | Reports of the Ukrainian Academy of Sciences. | |
dc.relation.references | Kiev, Series A, No. 6, 492–495 (in Ukrainian). | |
dc.relation.references | Mocquet, A., Rosenblatt, P., Dehant, V., & | |
dc.relation.references | Verhoeven, O. (2011). The deep interior of Venus, | |
dc.relation.references | Mars, and the Earth: A brief review and the need | |
dc.relation.references | for planetary surface-based measurements. | |
dc.relation.references | Planetary and Space Science, 59(10), 1048–1061. | |
dc.relation.references | DOI:10.1016/j.pss.2010.02.002. | |
dc.relation.references | Moritz, H. (1990). The figure of the Earth: theoretical | |
dc.relation.references | geodesy and the Earth's interior. Karlsruhe: | |
dc.relation.references | Wichmann. | |
dc.relation.references | Neumann, G. A., Zuber, M. T., Wieczorek, M. A., | |
dc.relation.references | Head, J. W., Baker, D. M., Solomon, S. C., ... & | |
dc.relation.references | Kiefer, W. S. (2015). Lunar impact basins | |
dc.relation.references | revealed by Gravity Recovery and Interior | |
dc.relation.references | Laboratory measurements. Science advances, 1(9), | |
dc.relation.references | e1500852. DOI: 10.1126/sciadv.1500852 | |
dc.relation.references | Rubincam, D. P. (1979). Gravitational potential | |
dc.relation.references | energy of the Earth: A spherical harmonic | |
dc.relation.references | approach. Journal of Geophysical Research: Solid | |
dc.relation.references | Earth, 84(B11), 6219–6225. | |
dc.relation.references | Rappaport, N. J., Konopliv, A. S., Kucinskas, A. B., | |
dc.relation.references | & Ford, P. G. (1999). An improved 360 degree | |
dc.relation.references | and order model of Venus topography. | |
dc.relation.references | Icarus, 139(1), 19–31. | |
dc.relation.references | Rivoldini, A., Van Hoolst, T., & Verhoeven, O. | |
dc.relation.references | (2009). The interior structure of Mercury and its | |
dc.relation.references | core sulfur content. Icarus, 201(1), 12–30. | |
dc.relation.references | https://doi.org/10.1016/j.icarus.2008.12.020. | |
dc.relation.references | Seidelmann, P. K., Abalakin, V. K., Bursa, M., | |
dc.relation.references | Davies, M. E., De Bergh, C., Lieske, J. H., Oberst, J., | |
dc.relation.references | Simon, J. L., Standish, E.M., Stooke, P., Thomas, P. C. | |
dc.relation.references | (2002). Report of the IAU/IAG working group on | |
dc.relation.references | cartographic coordinates and rotational elements | |
dc.relation.references | of the planets and satellites: 2000. Celest. Mech. | |
dc.relation.references | Dyn. Astron. 82(1), 83–110. | |
dc.relation.references | Thomson, W., & Tait, P. G. (1883). Treatise on | |
dc.relation.references | Natural Philosophy. Vol. 2, Cambridge University | |
dc.relation.references | Press. | |
dc.relation.references | Tikhonov, A. N. & Arsenin, V. Y. (1974). Methods of | |
dc.relation.references | the solution of ill-posed problems, Moscow: | |
dc.relation.references | Nauka, 1974 (in Russian). | |
dc.relation.references | Wermer, J. (1981). Potential theory, Springer, Berlin | |
dc.relation.references | Heidelberg New York, 1981. | |
dc.relation.references | Wieczorek, M. A., Neumann, G. A., Nimmo, F., | |
dc.relation.references | Kiefer, W. S., Taylor, G. J., Melosh, H. J., ... & | |
dc.relation.references | Zuber, M. T. (2013). The crust of the Moon as | |
dc.relation.references | seen by GRAIL. Science, 339(6120), 671–675. | |
dc.relation.references | DOI: 10.1126/science.1231530. | |
dc.relation.references | Yoder, C. F. (1995). Venus’ free obliquity. | |
dc.relation.references | Icarus, 117(2), 250–286. | |
dc.relation.references | Zuber, M. T., Solomon, S. C., Phillips, R. J., Smith, D. E., | |
dc.relation.references | Tyler, G. L., Aharonson, O., ... & Zhong, S. (2000). | |
dc.relation.references | Internal structure and early thermal evolution of Mars | |
dc.relation.references | from Mars Global Surveyor topography and gravity. | |
dc.relation.references | Science, 287(5459), 1788–1793. https://doi.org/10.1126/science.287.5459.1788 | |
dc.relation.referencesen | Bullard, E. C. (1954). The interior of the Earth. In: | |
dc.relation.referencesen | The Earth as a Planet (G. P. Kuiper, ed). Univ. of | |
dc.relation.referencesen | Chicago Press, 57–137. | |
dc.relation.referencesen | Bullen, K. E. (1975) The Earth’s Density. Chapman | |
dc.relation.referencesen | and Hall, London. | |
dc.relation.referencesen | Cottereau, L., & Souchay, J. (2009). Rotation of rigid | |
dc.relation.referencesen | Venus: a complete precession-nutation model. | |
dc.relation.referencesen | Astronomy & Astrophysics, 507(3), 1635–1648. | |
dc.relation.referencesen | DOI: 10.1051/0004-6361/200912174 | |
dc.relation.referencesen | Darwin, G. H. (1884). On the figure of equilibrium of | |
dc.relation.referencesen | a planet of heterogeneous density. Proceeding of | |
dc.relation.referencesen | the Royal Society, 36(228–231), 158–166. | |
dc.relation.referencesen | Dziewonski, A. M., & Anderson, D. L. (1981). | |
dc.relation.referencesen | Preliminary reference Earth model. Physics of | |
dc.relation.referencesen | the earth and planetary interiors, 25(4), 297–356. | |
dc.relation.referencesen | https://doi.org/10.1016/0031-9201(81)90046-7. | |
dc.relation.referencesen | Encyclopedia of the Solar System (2015). Editted by | |
dc.relation.referencesen | Tilman Spohn, Doris Breuer, Torrence V. | |
dc.relation.referencesen | Johnson, 3rd edition, ELSELVER. | |
dc.relation.referencesen | Gauss, C. F. (1840, 1867). Allgemeine Lehrsätze in | |
dc.relation.referencesen | Beziehung auf die im verkehrten Verhältnisse des | |
dc.relation.referencesen | Quadrats der Entfernung wirkenden Anziehungsund | |
dc.relation.referencesen | Abstossungs-Kräfte. In Werke (pp. 195–242). | |
dc.relation.referencesen | Springer, Berlin, Heidelberg. | |
dc.relation.referencesen | Helled, R., Anderson, J. D., Schubert, G., & | |
dc.relation.referencesen | Stevenson, D. J. (2011, October). Constraining the | |
dc.relation.referencesen | Internal Structures of Jupiter and Saturn from | |
dc.relation.referencesen | Moments of Inertia Measurements: Implications | |
dc.relation.referencesen | for the Juno and Solstice Missions.Paper presented | |
dc.relation.referencesen | at the "European Planetary Science Congress", | |
dc.relation.referencesen | Abstracts, Vol. 6, EPSC-DPS2011-52-2, | |
dc.relation.referencesen | EPSC-DPS Joint Meeting. http://meetings.copernicus.org/epsc-dps2011. | |
dc.relation.referencesen | Hikida, H., & Wieczorek, M. A. (2007). Crustal | |
dc.relation.referencesen | thickness of the Moon: New constraints from | |
dc.relation.referencesen | gravity inversions using polyhedral shape models. | |
dc.relation.referencesen | Icarus, 192(1), 150–166. https://doi.org/10.1016/j.icarus.2007.06.015. | |
dc.relation.referencesen | Konopliv, A. S., Yoder, C. F., Standish, E. M., | |
dc.relation.referencesen | Yuan, D. N., & Sjogren, W. L. (2006). A global | |
dc.relation.referencesen | solution for the Mars static and seasonal gravity, | |
dc.relation.referencesen | Mars orientation, Phobos and Deimos masses, and | |
dc.relation.referencesen | Mars ephemeris. Icarus, 182(1), 23–50. https://doi.org/10.1016/j.icarus.2005.12.025. | |
dc.relation.referencesen | Konopliv, A. S., Park, R. S., Yuan, D. N., Asmar, S.W., | |
dc.relation.referencesen | Watkins, M. M., Williams, J. G., …& Zuber, M. T. | |
dc.relation.referencesen | (2014). High resolution lunar gravity fields from | |
dc.relation.referencesen | the GRAIL primary and extended missions. | |
dc.relation.referencesen | Geophysical Research Letters, 41(5), 1452–1458. | |
dc.relation.referencesen | doi:10.1002/2013GL059066. | |
dc.relation.referencesen | Konopliv, A. S., Park, R. S., & Folkner, W. M. | |
dc.relation.referencesen | (2016). An improved JPL Mars gravity field and | |
dc.relation.referencesen | orientation from Mars orbiter and lander tracking | |
dc.relation.referencesen | data. Icarus, 274, 253–260. https://doi.org/10.1016/j.icarus.2016.02.052. | |
dc.relation.referencesen | Konopliv, A. S. (2016). Private communication. | |
dc.relation.referencesen | Lemoine, F. G., Goossens, S., Sabaka, T. J., | |
dc.relation.referencesen | Nicholas, J. B., Mazarico, E., Rowlands, D. D., ... | |
dc.relation.referencesen | & Zuber, M. T. (2014). GRGM900C: A degree 900 lunar gravity model from GRAIL primary and | |
dc.relation.referencesen | extended mission data. Geophysical research | |
dc.relation.referencesen | letters, 41(10), 3382–3389. https://doi.org/10.1002/2014GL060027 | |
dc.relation.referencesen | Marchenko, A. N. (2000). Earth’s radial density profiles | |
dc.relation.referencesen | based on Gauss’ and Roche’s distributions. | |
dc.relation.referencesen | Bolletino di Geodesia e Scienze Affini, 59(3), 201–220. | |
dc.relation.referencesen | Marchenko, A. N. (2009). The Earth’s global density | |
dc.relation.referencesen | distribution and gravitational potential energy. | |
dc.relation.referencesen | In Observing our Changing Earth (pp. 483–491). | |
dc.relation.referencesen | Springer, Berlin, Heidelberg. | |
dc.relation.referencesen | Marchenko, A. N., & Zayats, A. S. (2011). Estimation | |
dc.relation.referencesen | of the gravitational potential energy of the | |
dc.relation.referencesen | earth based on different density models. Studia | |
dc.relation.referencesen | Geophysica et Geodaetica, 55(1), 35–54. | |
dc.relation.referencesen | https://doi.org/10.1007/s11200-011-0003-8/ | |
dc.relation.referencesen | Margot, J. L., Peale, S. J., Solomon, S. C., | |
dc.relation.referencesen | Hauck, S. A., Ghigo, F. D., Jurgens, R. F., ... & | |
dc.relation.referencesen | Campbell, D. B. (2012). Mercury’s moment of | |
dc.relation.referencesen | inertia from spin and gravity data. Journal of | |
dc.relation.referencesen | Geophysical Research: Planets, 117(E12). | |
dc.relation.referencesen | DOI:10.1029/2012JE004161. | |
dc.relation.referencesen | Mescheryakov, G. A. (1977). On the unique solution | |
dc.relation.referencesen | of the inverse problem of the potential theory. | |
dc.relation.referencesen | Reports of the Ukrainian Academy of Sciences. | |
dc.relation.referencesen | Kiev, Series A, No. 6, 492–495 (in Ukrainian). | |
dc.relation.referencesen | Mocquet, A., Rosenblatt, P., Dehant, V., & | |
dc.relation.referencesen | Verhoeven, O. (2011). The deep interior of Venus, | |
dc.relation.referencesen | Mars, and the Earth: A brief review and the need | |
dc.relation.referencesen | for planetary surface-based measurements. | |
dc.relation.referencesen | Planetary and Space Science, 59(10), 1048–1061. | |
dc.relation.referencesen | DOI:10.1016/j.pss.2010.02.002. | |
dc.relation.referencesen | Moritz, H. (1990). The figure of the Earth: theoretical | |
dc.relation.referencesen | geodesy and the Earth's interior. Karlsruhe: | |
dc.relation.referencesen | Wichmann. | |
dc.relation.referencesen | Neumann, G. A., Zuber, M. T., Wieczorek, M. A., | |
dc.relation.referencesen | Head, J. W., Baker, D. M., Solomon, S. C., ... & | |
dc.relation.referencesen | Kiefer, W. S. (2015). Lunar impact basins | |
dc.relation.referencesen | revealed by Gravity Recovery and Interior | |
dc.relation.referencesen | Laboratory measurements. Science advances, 1(9), | |
dc.relation.referencesen | e1500852. DOI: 10.1126/sciadv.1500852 | |
dc.relation.referencesen | Rubincam, D. P. (1979). Gravitational potential | |
dc.relation.referencesen | energy of the Earth: A spherical harmonic | |
dc.relation.referencesen | approach. Journal of Geophysical Research: Solid | |
dc.relation.referencesen | Earth, 84(B11), 6219–6225. | |
dc.relation.referencesen | Rappaport, N. J., Konopliv, A. S., Kucinskas, A. B., | |
dc.relation.referencesen | & Ford, P. G. (1999). An improved 360 degree | |
dc.relation.referencesen | and order model of Venus topography. | |
dc.relation.referencesen | Icarus, 139(1), 19–31. | |
dc.relation.referencesen | Rivoldini, A., Van Hoolst, T., & Verhoeven, O. | |
dc.relation.referencesen | (2009). The interior structure of Mercury and its | |
dc.relation.referencesen | core sulfur content. Icarus, 201(1), 12–30. | |
dc.relation.referencesen | https://doi.org/10.1016/j.icarus.2008.12.020. | |
dc.relation.referencesen | Seidelmann, P. K., Abalakin, V. K., Bursa, M., | |
dc.relation.referencesen | Davies, M. E., De Bergh, C., Lieske, J. H., Oberst, J., | |
dc.relation.referencesen | Simon, J. L., Standish, E.M., Stooke, P., Thomas, P. C. | |
dc.relation.referencesen | (2002). Report of the IAU/IAG working group on | |
dc.relation.referencesen | cartographic coordinates and rotational elements | |
dc.relation.referencesen | of the planets and satellites: 2000. Celest. Mech. | |
dc.relation.referencesen | Dyn. Astron. 82(1), 83–110. | |
dc.relation.referencesen | Thomson, W., & Tait, P. G. (1883). Treatise on | |
dc.relation.referencesen | Natural Philosophy. Vol. 2, Cambridge University | |
dc.relation.referencesen | Press. | |
dc.relation.referencesen | Tikhonov, A. N. & Arsenin, V. Y. (1974). Methods of | |
dc.relation.referencesen | the solution of ill-posed problems, Moscow: | |
dc.relation.referencesen | Nauka, 1974 (in Russian). | |
dc.relation.referencesen | Wermer, J. (1981). Potential theory, Springer, Berlin | |
dc.relation.referencesen | Heidelberg New York, 1981. | |
dc.relation.referencesen | Wieczorek, M. A., Neumann, G. A., Nimmo, F., | |
dc.relation.referencesen | Kiefer, W. S., Taylor, G. J., Melosh, H. J., ... & | |
dc.relation.referencesen | Zuber, M. T. (2013). The crust of the Moon as | |
dc.relation.referencesen | seen by GRAIL. Science, 339(6120), 671–675. | |
dc.relation.referencesen | DOI: 10.1126/science.1231530. | |
dc.relation.referencesen | Yoder, C. F. (1995). Venus’ free obliquity. | |
dc.relation.referencesen | Icarus, 117(2), 250–286. | |
dc.relation.referencesen | Zuber, M. T., Solomon, S. C., Phillips, R. J., Smith, D. E., | |
dc.relation.referencesen | Tyler, G. L., Aharonson, O., ... & Zhong, S. (2000). | |
dc.relation.referencesen | Internal structure and early thermal evolution of Mars | |
dc.relation.referencesen | from Mars Global Surveyor topography and gravity. | |
dc.relation.referencesen | Science, 287(5459), 1788–1793. https://doi.org/10.1126/science.287.5459.1788 | |
dc.relation.uri | https://doi.org/10.1016/0031-9201(81)90046-7 | |
dc.relation.uri | http://meetings.copernicus.org/epsc-dps2011 | |
dc.relation.uri | https://doi.org/10.1016/j.icarus.2007.06.015 | |
dc.relation.uri | https://doi.org/10.1016/j.icarus.2005.12.025 | |
dc.relation.uri | https://doi.org/10.1016/j.icarus.2016.02.052 | |
dc.relation.uri | https://doi.org/10.1002/2014GL060027 | |
dc.relation.uri | https://doi.org/10.1007/s11200-011-0003-8/ | |
dc.relation.uri | https://doi.org/10.1016/j.icarus.2008.12.020 | |
dc.relation.uri | https://doi.org/10.1126/science.287.5459.1788 | |
dc.rights.holder | © Інститут геології і геохімії горючих копалин Національної академії наук України, 2021 | |
dc.rights.holder | © Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2021 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Marchenko Alexander N., Perii S., Pokotylo I., Tartachynska Z. | |
dc.subject | фундаментальні астрономо-геодезичні параметри | |
dc.subject | розв’язання оберненої гравітаційної задачі | |
dc.subject | розподіл густини Гаусса | |
dc.subject | інтеграл Діріхле | |
dc.subject | fundamental astronomic-geodetics parameters | |
dc.subject | solution of the inverse gravitational problem | |
dc.subject | Gaussian density distribution | |
dc.subject | Dirichlet’s integral | |
dc.subject.udc | 528.21/22 | |
dc.title | Gravitational potential energy and fundamental parameters of the terrestrial and giant planets | |
dc.title.alternative | Гравітаційна потенціальна енергія та основні параметри земних планет і планет-гігантів | |
dc.type | Article |
Files
License bundle
1 - 1 of 1