Analysis of kinematic characteristics of a mobile caterpillar robot with a SCARA-type manipulator

dc.citation.epage67
dc.citation.issue2
dc.citation.journalTitleТранспортні технології
dc.citation.spage56
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorKorendiy, Vitaliy
dc.contributor.authorKachur, Oleksandr
dc.contributor.authorBoikiv, Mykola
dc.contributor.authorNovitskyi, Yurii
dc.contributor.authorYaniv, Oleksandr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-22T07:50:13Z
dc.date.available2024-02-22T07:50:13Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractАвтоматизація і роботизація різноманітних виробничо-технологічних процесів у багатьох галузях промисловості є однією із провідних тенденцій розвитку сучасного суспільства. Чималого поширення останнім часом набули промислові роботи, без яких практично неможливо уявити будь-яке новітнє виробництво у галузях машинобудування, приладобудування, фармацевтики, легкої, харчової, переробної, хімічної промисловостей тощо. Також за останні кілька десятиліть сформувався ще один напрям робототехніки – автономні мобільні роботи, який поєднав дослідження у сферах механіки, електроніки та комп’ютерних технологій, зокрема штучного інтелекту. Серед найпоширеніших сфер використання автономних мобільних роботів варто відзначити виконання різноманітних технологічних операцій у місцях, небезпечних для життя людей (радіаційно, біологічно чи хімічно забруднених) або непридатних для життя (космос, морські глибини, кратери вулканів тощо). Також мобільні роботи добре зарекомендували себе під час виконання рятувальних операцій у випадках катаклізмів і стихійних лих, антитерористичних операцій, військових дій, розмінування території тощо. Враховуючи актуальність питання розвитку мобільної робототехніки, у статті запропоновано нову конструкцію автономного роботизованого комплексу, побудованого на базі гусеничного шасі та оснащеного маніпулятором типу SCARA. Основним завданням пропонованого робота є виконання різноманітних технологічних операцій у місцях, де перебування людини є небезпечним або неможливим, зокрема виконання завдань розміновування територій. Під час досліджень детально проаналізовано кінематику маніпулятора з метою встановлення його робочої зони та експериментально протестовано кінематичні параметри гусеничного шасі під час його руху по пересіченій місцевості. Отримані результати можуть бути використані для подальшого удосконалення конструкції й систем керування робота і маніпулятора та визначення конкретних технологічних завдань, які покладатимуться на цю роботизовану платформу.
dc.description.abstractAutomation and robotization of various production and technological processes in many industries is one of the leading trends in the development of modern society. Industrial robots have recently become quite widespread, and it is almost impossible to imagine any modern production in the fields of mechanical engineering (machine building), instrumentation, pharmaceuticals, food, chemical industries, etc., without robotic complexes. Over the past few decades, another area of robotics has emerged: autonomous mobile robots. It combines research in mechanics, electronics, and computer technologies, including artificial intelligence. Among the most common applications of autonomous mobile robots are the performance of various technological operations in places that are dangerous to human life (radiation, biological or chemical contamination) or uninhabitable (space, sea depths, volcanic craters, etc.). Mobile robots have also proven themselves in rescue operations during cataclysms and natural disasters, antiterrorist operations, military operations, mine clearance, etc. Given the urgency of the issue of mobile robotics development, this article proposes a new design of an autonomous robotic complex built on the basis of a tracked chassis and equipped with a SCARA-type manipulator. The main task of the developed robot is to perform various technological operations in places where human presence is dangerous or impossible, in particular, when performing demining tasks. In the course of the research, the kinematics of the manipulator was analyzed in detail to determine its working area, and the kinematic parameters of the tracked chassis were experimentally tested while it was moving over rough terrain. The obtained results can be used to further improve the design and control system of the robot and manipulator and in the process of determining the specific technological tasks that will be assigned to this robotic platform
dc.format.extent56-67
dc.format.pages12
dc.identifier.citationAnalysis of kinematic characteristics of a mobile caterpillar robot with a SCARA-type manipulator / Vitaliy Korendiy, Oleksandr Kachur, Mykola Boikiv, Yurii Novitskyi, Oleksandr Yaniv // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 4. — No 2. — P. 56–67.
dc.identifier.citationenAnalysis of kinematic characteristics of a mobile caterpillar robot with a SCARA-type manipulator / Vitaliy Korendiy, Oleksandr Kachur, Mykola Boikiv, Yurii Novitskyi, Oleksandr Yaniv // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 4. — No 2. — P. 56–67.
dc.identifier.doidoi.org/10.23939/tt2023.02.056
dc.identifier.issn2708-2199
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61387
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТранспортні технології, 2 (4), 2023
dc.relation.ispartofTransport Technologies, 2 (4), 2023
dc.relation.references1. Dong, L., He, Z., Song, C., & Sun, C. (2023). A review of mobile robot motion planning methods: from classical motion planning workflows to reinforcement learning-based architectures. Journal of Systems Engineering and Electronics, 34(2), 439-459. doi: 10.23919/JSEE.2023.000051 (in English). https://doi.org/10.23919/JSEE.2023.000051
dc.relation.references2. Mikołajczyk, T., Mikołajewski, D., Kłodowski, A., Łukaszewicz, A., Mikołajewska, E., Paczkowski, T., & Skornia, M. (2023). Energy Sources of Mobile Robot Power Systems: A Systematic Review and Comparison of Efficiency. Applied Sciences, 13(13), 7547. doi: 10.3390/app13137547 (in English). https://doi.org/10.3390/app13137547
dc.relation.references3. Qin, H., Shao, S., Wang, T., Yu, X., Jiang, Y., & Cao, Z. (2023). Review of autonomous path planning algorithms for mobile robots. Drones, 7(3), 211. doi: 10.3390/drones7030211 (in English). https://doi.org/10.3390/drones7030211
dc.relation.references4. Bruzzone, L., Nodehi, S. E., & Fanghella, P. (2022). Tracked locomotion systems for ground mobile robots: A review. Machines, 10(8), 648. doi: 10.3390/machines10080648 (in English). https://doi.org/10.3390/machines10080648
dc.relation.references5. Seo, T., Ryu, S., Won, J. H., Kim, Y., & Kim, H. S. (2023). Stair-Climbing Robots: A Review on Mechanism, Sensing, and Performance Evaluation. IEEE Access, 11, 60539-60561. doi: 10.1109/ACCESS.2023.3286871 (in English). https://doi.org/10.1109/ACCESS.2023.3286871
dc.relation.references6. SWORDS Combat Robot Opens Possibilities; Perhaps Not the way You'd Expect. Retrieved from: https://www.sarna.net/news/swords-combat-robot-opens-possibilities-perha... (in English).
dc.relation.references7. Remotec ANDROS Mark V-A1 Robot. Retrieved from: https://www.azorobotics.com/equipment-details.aspx?EquipID=412 (in English).
dc.relation.references8. Centaur Unmanned Ground Vehicle. Retrieved from: https://www.army-technology.com/projects/centaur-unmanned-ground-vehicle/ (in English).
dc.relation.references9. EOD-Roboter tEODor EVO. Retrieved from: https://esut.de/2019/03/meldungen/land/11637/eod-roboter-teodor-evo/ (in English).
dc.relation.references10. Media Gallery: TELEMAX™ EVO. Retrieved from: https://www.avinc.com/media_center/assets/unmanned-ground-vehicles/telemax-evo (in English).
dc.relation.references11. Clearpath Grizzly and Husky More Flexible Than Ever. Retrieved from: https://blog.robotiq.com/clearpath-grizzly-and-husky-more-felxible-than-ever (in English).
dc.relation.references12. Korendiy, V. (2021). Generalized design diagram and mathematical model of suspension system of vibration-driven robot. Ukrainian Journal of Mechanical Engineering and Materials Science, 7(3-4), 1-10. doi: 10.23939/ujmems2021.03-04.001 (in English). https://doi.org/10.23939/ujmems2021.03-04.001
dc.relation.references13. Korendiy, V., Kachur, O., Predko, R., Kotsiumbas, O., Brytkovskyi, V., & Ostashuk, M. (2023). Development and investigation of the vibration-driven in-pipe robot. Vibroengineering Procedia, 50, 1-7. doi: 10.21595/vp.2023.23513 (in English). https://doi.org/10.21595/vp.2023.23513
dc.relation.references14. Wang, C., Lv, W., Li, X., & Mei, M. (2018). Terrain Adaptive Estimation of Instantaneous Centres of Rotation for Tracked Robots. Complexity, 2018, 1-10. doi: 10.1155/2018/4816712 (in English). https://doi.org/10.1155/2018/4816712
dc.relation.references15. BaniHani, S., Hayajneh, M. R. M., Al-Jarrah, A., & Mutawe, S. (2021). New control approaches for trajectory tracking and motion planning of unmanned tracked robot. Advances in Electrical and Electronic Engineering, 19(1), 42-56. doi: 10.15598/aeee.v19i1.4006 (in English). https://doi.org/10.15598/aeee.v19i1.4006
dc.relation.references16. Ahluwalia, V., Arents, J., Oraby, A., & Greitans, M. (2022). Construction and benchmark of an autonomous tracked mobile robot system. Robotic Systems and Applications, 2(1), 15-28. doi: 10.21595/rsa.2022.22336 (in English). https://doi.org/10.21595/rsa.2022.22336
dc.relation.references17. Zhao, J., Zhang, Z., Liu, S., Tao, Y., & Liu, Y. (2022). Design and research of an articulated tracked firefighting robot. Sensors, 22(14), 5086. doi: 10.3390/s22145086 (in English). https://doi.org/10.3390/s22145086
dc.relation.references18. Wang, C., Wang, S., Ma, H., Zhang, H., Xue, X., Tian, H., & Zhang, L. (2022). Research on the Obstacle-Avoidance Steering Control Strategy of Tracked Inspection Robots. Applied Sciences, 12(20), 10526. doi: 10.3390/app122010526 (in English). https://doi.org/10.3390/app122010526
dc.relation.references19. Bang, H.-S., Lee, C.-J., Park, M.-H., Cho, J.-H., & Kim, Y.-T. (2022). Outdoor Navigation System of Caterpillar Mobile Robot Based on Multiple Sensors. Journal of Korean Institute of Intelligent Systems, 32(2), 93-100. doi: 10.5391/JKIIS.2022.32.2.93 (in English). https://doi.org/10.5391/JKIIS.2022.32.2.93
dc.relation.references20. Pandey, A., Singh, S., Kumar, P., Pothal, L. K., & Mohanty, R. L. (2022). Design and Analysis of All-Terrain Differential-Driven Caterpillar-Wheeled Based Unmanned Fire Extinguisher Robot. Journal of Applied Research and Technology, 20(5), 529-535. doi: 10.22201/icat.24486736e.2022.20.5.1389 (in English). https://doi.org/10.22201/icat.24486736e.2022.20.5.1389
dc.relation.references21. Li, H., Cui, J., Ma, Y., Tan, J., Cao, X., Yin, C., & Jiang, Z. (2023). Design and Implementation of Autonomous Navigation System Based on Tracked Mobile Robot. Communications in Computer and Information Science. 1787, 329-350. doi: 10.1007/978-981-99-0617-8_23 (in English). https://doi.org/10.1007/978-981-99-0617-8_23
dc.relation.references22. Zhao, J., Zhang, J., Liu, H., Wang, J., & Chen, Z. (2023). Path planning for a tracked robot traversing uneven terrains based on tip‐over stability. Asian Journal of Control, 25(5), 3569-3583. doi: 10.1002/asjc.3048 (in English). https://doi.org/10.1002/asjc.3048
dc.relation.references23. Shafaei, S. M., & Mousazadeh, H. (2023). Experimental comparison of locomotion system performance of ground mobile robots in agricultural drawbar works. Smart Agricultural Technology, 3, 100131. doi: 10.1016/j.atech.2022.100131 (in English). https://doi.org/10.1016/j.atech.2022.100131
dc.relation.references24. Petrişor, S. M., Simion, M., Bârsan, G., & Hancu, O. (2023). Humanitarian Demining Serial-Tracked Robot: Design and Dynamic Modeling. Machines, 11(5), 548. doi: 10.3390/machines11050548 (in English). https://doi.org/10.3390/machines11050548
dc.relation.references25. Ugenti, A., Galati, R., Mantriota, G., & Reina, G. (2023). Analysis of an all-terrain tracked robot with innovative suspension system. Mechanism and Machine Theory, 182, 105237. doi: 10.1016/j.mechmachtheory.2023.105237 (in English). https://doi.org/10.1016/j.mechmachtheory.2023.105237
dc.relation.referencesen1. Dong, L., He, Z., Song, C., & Sun, C. (2023). A review of mobile robot motion planning methods: from classical motion planning workflows to reinforcement learning-based architectures. Journal of Systems Engineering and Electronics, 34(2), 439-459. doi: 10.23919/JSEE.2023.000051 (in English). https://doi.org/10.23919/JSEE.2023.000051
dc.relation.referencesen2. Mikołajczyk, T., Mikołajewski, D., Kłodowski, A., Łukaszewicz, A., Mikołajewska, E., Paczkowski, T., & Skornia, M. (2023). Energy Sources of Mobile Robot Power Systems: A Systematic Review and Comparison of Efficiency. Applied Sciences, 13(13), 7547. doi: 10.3390/app13137547 (in English). https://doi.org/10.3390/app13137547
dc.relation.referencesen3. Qin, H., Shao, S., Wang, T., Yu, X., Jiang, Y., & Cao, Z. (2023). Review of autonomous path planning algorithms for mobile robots. Drones, 7(3), 211. doi: 10.3390/drones7030211 (in English). https://doi.org/10.3390/drones7030211
dc.relation.referencesen4. Bruzzone, L., Nodehi, S. E., & Fanghella, P. (2022). Tracked locomotion systems for ground mobile robots: A review. Machines, 10(8), 648. doi: 10.3390/machines10080648 (in English). https://doi.org/10.3390/machines10080648
dc.relation.referencesen5. Seo, T., Ryu, S., Won, J. H., Kim, Y., & Kim, H. S. (2023). Stair-Climbing Robots: A Review on Mechanism, Sensing, and Performance Evaluation. IEEE Access, 11, 60539-60561. doi: 10.1109/ACCESS.2023.3286871 (in English). https://doi.org/10.1109/ACCESS.2023.3286871
dc.relation.referencesen6. SWORDS Combat Robot Opens Possibilities; Perhaps Not the way You'd Expect. Retrieved from: https://www.sarna.net/news/swords-combat-robot-opens-possibilities-perha... (in English).
dc.relation.referencesen7. Remotec ANDROS Mark V-A1 Robot. Retrieved from: https://www.azorobotics.com/equipment-details.aspx?EquipID=412 (in English).
dc.relation.referencesen8. Centaur Unmanned Ground Vehicle. Retrieved from: https://www.army-technology.com/projects/centaur-unmanned-ground-vehicle/ (in English).
dc.relation.referencesen9. EOD-Roboter tEODor EVO. Retrieved from: https://esut.de/2019/03/meldungen/land/11637/eod-roboter-teodor-evo/ (in English).
dc.relation.referencesen10. Media Gallery: TELEMAX™ EVO. Retrieved from: https://www.avinc.com/media_center/assets/unmanned-ground-vehicles/telemax-evo (in English).
dc.relation.referencesen11. Clearpath Grizzly and Husky More Flexible Than Ever. Retrieved from: https://blog.robotiq.com/clearpath-grizzly-and-husky-more-felxible-than-ever (in English).
dc.relation.referencesen12. Korendiy, V. (2021). Generalized design diagram and mathematical model of suspension system of vibration-driven robot. Ukrainian Journal of Mechanical Engineering and Materials Science, 7(3-4), 1-10. doi: 10.23939/ujmems2021.03-04.001 (in English). https://doi.org/10.23939/ujmems2021.03-04.001
dc.relation.referencesen13. Korendiy, V., Kachur, O., Predko, R., Kotsiumbas, O., Brytkovskyi, V., & Ostashuk, M. (2023). Development and investigation of the vibration-driven in-pipe robot. Vibroengineering Procedia, 50, 1-7. doi: 10.21595/vp.2023.23513 (in English). https://doi.org/10.21595/vp.2023.23513
dc.relation.referencesen14. Wang, C., Lv, W., Li, X., & Mei, M. (2018). Terrain Adaptive Estimation of Instantaneous Centres of Rotation for Tracked Robots. Complexity, 2018, 1-10. doi: 10.1155/2018/4816712 (in English). https://doi.org/10.1155/2018/4816712
dc.relation.referencesen15. BaniHani, S., Hayajneh, M. R. M., Al-Jarrah, A., & Mutawe, S. (2021). New control approaches for trajectory tracking and motion planning of unmanned tracked robot. Advances in Electrical and Electronic Engineering, 19(1), 42-56. doi: 10.15598/aeee.v19i1.4006 (in English). https://doi.org/10.15598/aeee.v19i1.4006
dc.relation.referencesen16. Ahluwalia, V., Arents, J., Oraby, A., & Greitans, M. (2022). Construction and benchmark of an autonomous tracked mobile robot system. Robotic Systems and Applications, 2(1), 15-28. doi: 10.21595/rsa.2022.22336 (in English). https://doi.org/10.21595/rsa.2022.22336
dc.relation.referencesen17. Zhao, J., Zhang, Z., Liu, S., Tao, Y., & Liu, Y. (2022). Design and research of an articulated tracked firefighting robot. Sensors, 22(14), 5086. doi: 10.3390/s22145086 (in English). https://doi.org/10.3390/s22145086
dc.relation.referencesen18. Wang, C., Wang, S., Ma, H., Zhang, H., Xue, X., Tian, H., & Zhang, L. (2022). Research on the Obstacle-Avoidance Steering Control Strategy of Tracked Inspection Robots. Applied Sciences, 12(20), 10526. doi: 10.3390/app122010526 (in English). https://doi.org/10.3390/app122010526
dc.relation.referencesen19. Bang, H.-S., Lee, C.-J., Park, M.-H., Cho, J.-H., & Kim, Y.-T. (2022). Outdoor Navigation System of Caterpillar Mobile Robot Based on Multiple Sensors. Journal of Korean Institute of Intelligent Systems, 32(2), 93-100. doi: 10.5391/JKIIS.2022.32.2.93 (in English). https://doi.org/10.5391/JKIIS.2022.32.2.93
dc.relation.referencesen20. Pandey, A., Singh, S., Kumar, P., Pothal, L. K., & Mohanty, R. L. (2022). Design and Analysis of All-Terrain Differential-Driven Caterpillar-Wheeled Based Unmanned Fire Extinguisher Robot. Journal of Applied Research and Technology, 20(5), 529-535. doi: 10.22201/icat.24486736e.2022.20.5.1389 (in English). https://doi.org/10.22201/icat.24486736e.2022.20.5.1389
dc.relation.referencesen21. Li, H., Cui, J., Ma, Y., Tan, J., Cao, X., Yin, C., & Jiang, Z. (2023). Design and Implementation of Autonomous Navigation System Based on Tracked Mobile Robot. Communications in Computer and Information Science. 1787, 329-350. doi: 10.1007/978-981-99-0617-8_23 (in English). https://doi.org/10.1007/978-981-99-0617-8_23
dc.relation.referencesen22. Zhao, J., Zhang, J., Liu, H., Wang, J., & Chen, Z. (2023). Path planning for a tracked robot traversing uneven terrains based on tip‐over stability. Asian Journal of Control, 25(5), 3569-3583. doi: 10.1002/asjc.3048 (in English). https://doi.org/10.1002/asjc.3048
dc.relation.referencesen23. Shafaei, S. M., & Mousazadeh, H. (2023). Experimental comparison of locomotion system performance of ground mobile robots in agricultural drawbar works. Smart Agricultural Technology, 3, 100131. doi: 10.1016/j.atech.2022.100131 (in English). https://doi.org/10.1016/j.atech.2022.100131
dc.relation.referencesen24. Petrişor, S. M., Simion, M., Bârsan, G., & Hancu, O. (2023). Humanitarian Demining Serial-Tracked Robot: Design and Dynamic Modeling. Machines, 11(5), 548. doi: 10.3390/machines11050548 (in English). https://doi.org/10.3390/machines11050548
dc.relation.referencesen25. Ugenti, A., Galati, R., Mantriota, G., & Reina, G. (2023). Analysis of an all-terrain tracked robot with innovative suspension system. Mechanism and Machine Theory, 182, 105237. doi: 10.1016/j.mechmachtheory.2023.105237 (in English). https://doi.org/10.1016/j.mechmachtheory.2023.105237
dc.relation.urihttps://doi.org/10.23919/JSEE.2023.000051
dc.relation.urihttps://doi.org/10.3390/app13137547
dc.relation.urihttps://doi.org/10.3390/drones7030211
dc.relation.urihttps://doi.org/10.3390/machines10080648
dc.relation.urihttps://doi.org/10.1109/ACCESS.2023.3286871
dc.relation.urihttps://www.sarna.net/news/swords-combat-robot-opens-possibilities-perha..
dc.relation.urihttps://www.azorobotics.com/equipment-details.aspx?EquipID=412
dc.relation.urihttps://www.army-technology.com/projects/centaur-unmanned-ground-vehicle/
dc.relation.urihttps://esut.de/2019/03/meldungen/land/11637/eod-roboter-teodor-evo/
dc.relation.urihttps://www.avinc.com/media_center/assets/unmanned-ground-vehicles/telemax-evo
dc.relation.urihttps://blog.robotiq.com/clearpath-grizzly-and-husky-more-felxible-than-ever
dc.relation.urihttps://doi.org/10.23939/ujmems2021.03-04.001
dc.relation.urihttps://doi.org/10.21595/vp.2023.23513
dc.relation.urihttps://doi.org/10.1155/2018/4816712
dc.relation.urihttps://doi.org/10.15598/aeee.v19i1.4006
dc.relation.urihttps://doi.org/10.21595/rsa.2022.22336
dc.relation.urihttps://doi.org/10.3390/s22145086
dc.relation.urihttps://doi.org/10.3390/app122010526
dc.relation.urihttps://doi.org/10.5391/JKIIS.2022.32.2.93
dc.relation.urihttps://doi.org/10.22201/icat.24486736e.2022.20.5.1389
dc.relation.urihttps://doi.org/10.1007/978-981-99-0617-8_23
dc.relation.urihttps://doi.org/10.1002/asjc.3048
dc.relation.urihttps://doi.org/10.1016/j.atech.2022.100131
dc.relation.urihttps://doi.org/10.3390/machines11050548
dc.relation.urihttps://doi.org/10.1016/j.mechmachtheory.2023.105237
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© V. Korendiy, O. Kachur, M. Boikiv, Yu. Novitskyi, O. Yaniv, 2023
dc.subjectмобільний робот
dc.subjectроботизований комплекс
dc.subjectгусеничне шасі
dc.subjectрозміновування територій
dc.subjectкінематика маніпулятора
dc.subjectробоча зона маніпулятора
dc.subjectрух по пересіченій місцевості
dc.subjectmobile robot
dc.subjectrobotic complex
dc.subjecttracked chassis
dc.subjectterritory demining
dc.subjectmanipulator kinematics
dc.subjectmanipulator working area
dc.subjectmotion over rough terrain
dc.titleAnalysis of kinematic characteristics of a mobile caterpillar robot with a SCARA-type manipulator
dc.title.alternativeАналіз кінематичних характеристик мобільної гусеничної платформи з маніпулятором типу SCARA
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v4n2_Korendiy_V-Analysis_of_kinematic_characteristics_56-67.pdf
Size:
722.79 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v4n2_Korendiy_V-Analysis_of_kinematic_characteristics_56-67__COVER.png
Size:
468.07 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: