Analysis of kinematic characteristics of a mobile caterpillar robot with a SCARA-type manipulator
dc.citation.epage | 67 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Транспортні технології | |
dc.citation.spage | 56 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Korendiy, Vitaliy | |
dc.contributor.author | Kachur, Oleksandr | |
dc.contributor.author | Boikiv, Mykola | |
dc.contributor.author | Novitskyi, Yurii | |
dc.contributor.author | Yaniv, Oleksandr | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-22T07:50:13Z | |
dc.date.available | 2024-02-22T07:50:13Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Автоматизація і роботизація різноманітних виробничо-технологічних процесів у багатьох галузях промисловості є однією із провідних тенденцій розвитку сучасного суспільства. Чималого поширення останнім часом набули промислові роботи, без яких практично неможливо уявити будь-яке новітнє виробництво у галузях машинобудування, приладобудування, фармацевтики, легкої, харчової, переробної, хімічної промисловостей тощо. Також за останні кілька десятиліть сформувався ще один напрям робототехніки – автономні мобільні роботи, який поєднав дослідження у сферах механіки, електроніки та комп’ютерних технологій, зокрема штучного інтелекту. Серед найпоширеніших сфер використання автономних мобільних роботів варто відзначити виконання різноманітних технологічних операцій у місцях, небезпечних для життя людей (радіаційно, біологічно чи хімічно забруднених) або непридатних для життя (космос, морські глибини, кратери вулканів тощо). Також мобільні роботи добре зарекомендували себе під час виконання рятувальних операцій у випадках катаклізмів і стихійних лих, антитерористичних операцій, військових дій, розмінування території тощо. Враховуючи актуальність питання розвитку мобільної робототехніки, у статті запропоновано нову конструкцію автономного роботизованого комплексу, побудованого на базі гусеничного шасі та оснащеного маніпулятором типу SCARA. Основним завданням пропонованого робота є виконання різноманітних технологічних операцій у місцях, де перебування людини є небезпечним або неможливим, зокрема виконання завдань розміновування територій. Під час досліджень детально проаналізовано кінематику маніпулятора з метою встановлення його робочої зони та експериментально протестовано кінематичні параметри гусеничного шасі під час його руху по пересіченій місцевості. Отримані результати можуть бути використані для подальшого удосконалення конструкції й систем керування робота і маніпулятора та визначення конкретних технологічних завдань, які покладатимуться на цю роботизовану платформу. | |
dc.description.abstract | Automation and robotization of various production and technological processes in many industries is one of the leading trends in the development of modern society. Industrial robots have recently become quite widespread, and it is almost impossible to imagine any modern production in the fields of mechanical engineering (machine building), instrumentation, pharmaceuticals, food, chemical industries, etc., without robotic complexes. Over the past few decades, another area of robotics has emerged: autonomous mobile robots. It combines research in mechanics, electronics, and computer technologies, including artificial intelligence. Among the most common applications of autonomous mobile robots are the performance of various technological operations in places that are dangerous to human life (radiation, biological or chemical contamination) or uninhabitable (space, sea depths, volcanic craters, etc.). Mobile robots have also proven themselves in rescue operations during cataclysms and natural disasters, antiterrorist operations, military operations, mine clearance, etc. Given the urgency of the issue of mobile robotics development, this article proposes a new design of an autonomous robotic complex built on the basis of a tracked chassis and equipped with a SCARA-type manipulator. The main task of the developed robot is to perform various technological operations in places where human presence is dangerous or impossible, in particular, when performing demining tasks. In the course of the research, the kinematics of the manipulator was analyzed in detail to determine its working area, and the kinematic parameters of the tracked chassis were experimentally tested while it was moving over rough terrain. The obtained results can be used to further improve the design and control system of the robot and manipulator and in the process of determining the specific technological tasks that will be assigned to this robotic platform | |
dc.format.extent | 56-67 | |
dc.format.pages | 12 | |
dc.identifier.citation | Analysis of kinematic characteristics of a mobile caterpillar robot with a SCARA-type manipulator / Vitaliy Korendiy, Oleksandr Kachur, Mykola Boikiv, Yurii Novitskyi, Oleksandr Yaniv // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 4. — No 2. — P. 56–67. | |
dc.identifier.citationen | Analysis of kinematic characteristics of a mobile caterpillar robot with a SCARA-type manipulator / Vitaliy Korendiy, Oleksandr Kachur, Mykola Boikiv, Yurii Novitskyi, Oleksandr Yaniv // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 4. — No 2. — P. 56–67. | |
dc.identifier.doi | doi.org/10.23939/tt2023.02.056 | |
dc.identifier.issn | 2708-2199 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61387 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Транспортні технології, 2 (4), 2023 | |
dc.relation.ispartof | Transport Technologies, 2 (4), 2023 | |
dc.relation.references | 1. Dong, L., He, Z., Song, C., & Sun, C. (2023). A review of mobile robot motion planning methods: from classical motion planning workflows to reinforcement learning-based architectures. Journal of Systems Engineering and Electronics, 34(2), 439-459. doi: 10.23919/JSEE.2023.000051 (in English). https://doi.org/10.23919/JSEE.2023.000051 | |
dc.relation.references | 2. Mikołajczyk, T., Mikołajewski, D., Kłodowski, A., Łukaszewicz, A., Mikołajewska, E., Paczkowski, T., & Skornia, M. (2023). Energy Sources of Mobile Robot Power Systems: A Systematic Review and Comparison of Efficiency. Applied Sciences, 13(13), 7547. doi: 10.3390/app13137547 (in English). https://doi.org/10.3390/app13137547 | |
dc.relation.references | 3. Qin, H., Shao, S., Wang, T., Yu, X., Jiang, Y., & Cao, Z. (2023). Review of autonomous path planning algorithms for mobile robots. Drones, 7(3), 211. doi: 10.3390/drones7030211 (in English). https://doi.org/10.3390/drones7030211 | |
dc.relation.references | 4. Bruzzone, L., Nodehi, S. E., & Fanghella, P. (2022). Tracked locomotion systems for ground mobile robots: A review. Machines, 10(8), 648. doi: 10.3390/machines10080648 (in English). https://doi.org/10.3390/machines10080648 | |
dc.relation.references | 5. Seo, T., Ryu, S., Won, J. H., Kim, Y., & Kim, H. S. (2023). Stair-Climbing Robots: A Review on Mechanism, Sensing, and Performance Evaluation. IEEE Access, 11, 60539-60561. doi: 10.1109/ACCESS.2023.3286871 (in English). https://doi.org/10.1109/ACCESS.2023.3286871 | |
dc.relation.references | 6. SWORDS Combat Robot Opens Possibilities; Perhaps Not the way You'd Expect. Retrieved from: https://www.sarna.net/news/swords-combat-robot-opens-possibilities-perha... (in English). | |
dc.relation.references | 7. Remotec ANDROS Mark V-A1 Robot. Retrieved from: https://www.azorobotics.com/equipment-details.aspx?EquipID=412 (in English). | |
dc.relation.references | 8. Centaur Unmanned Ground Vehicle. Retrieved from: https://www.army-technology.com/projects/centaur-unmanned-ground-vehicle/ (in English). | |
dc.relation.references | 9. EOD-Roboter tEODor EVO. Retrieved from: https://esut.de/2019/03/meldungen/land/11637/eod-roboter-teodor-evo/ (in English). | |
dc.relation.references | 10. Media Gallery: TELEMAX™ EVO. Retrieved from: https://www.avinc.com/media_center/assets/unmanned-ground-vehicles/telemax-evo (in English). | |
dc.relation.references | 11. Clearpath Grizzly and Husky More Flexible Than Ever. Retrieved from: https://blog.robotiq.com/clearpath-grizzly-and-husky-more-felxible-than-ever (in English). | |
dc.relation.references | 12. Korendiy, V. (2021). Generalized design diagram and mathematical model of suspension system of vibration-driven robot. Ukrainian Journal of Mechanical Engineering and Materials Science, 7(3-4), 1-10. doi: 10.23939/ujmems2021.03-04.001 (in English). https://doi.org/10.23939/ujmems2021.03-04.001 | |
dc.relation.references | 13. Korendiy, V., Kachur, O., Predko, R., Kotsiumbas, O., Brytkovskyi, V., & Ostashuk, M. (2023). Development and investigation of the vibration-driven in-pipe robot. Vibroengineering Procedia, 50, 1-7. doi: 10.21595/vp.2023.23513 (in English). https://doi.org/10.21595/vp.2023.23513 | |
dc.relation.references | 14. Wang, C., Lv, W., Li, X., & Mei, M. (2018). Terrain Adaptive Estimation of Instantaneous Centres of Rotation for Tracked Robots. Complexity, 2018, 1-10. doi: 10.1155/2018/4816712 (in English). https://doi.org/10.1155/2018/4816712 | |
dc.relation.references | 15. BaniHani, S., Hayajneh, M. R. M., Al-Jarrah, A., & Mutawe, S. (2021). New control approaches for trajectory tracking and motion planning of unmanned tracked robot. Advances in Electrical and Electronic Engineering, 19(1), 42-56. doi: 10.15598/aeee.v19i1.4006 (in English). https://doi.org/10.15598/aeee.v19i1.4006 | |
dc.relation.references | 16. Ahluwalia, V., Arents, J., Oraby, A., & Greitans, M. (2022). Construction and benchmark of an autonomous tracked mobile robot system. Robotic Systems and Applications, 2(1), 15-28. doi: 10.21595/rsa.2022.22336 (in English). https://doi.org/10.21595/rsa.2022.22336 | |
dc.relation.references | 17. Zhao, J., Zhang, Z., Liu, S., Tao, Y., & Liu, Y. (2022). Design and research of an articulated tracked firefighting robot. Sensors, 22(14), 5086. doi: 10.3390/s22145086 (in English). https://doi.org/10.3390/s22145086 | |
dc.relation.references | 18. Wang, C., Wang, S., Ma, H., Zhang, H., Xue, X., Tian, H., & Zhang, L. (2022). Research on the Obstacle-Avoidance Steering Control Strategy of Tracked Inspection Robots. Applied Sciences, 12(20), 10526. doi: 10.3390/app122010526 (in English). https://doi.org/10.3390/app122010526 | |
dc.relation.references | 19. Bang, H.-S., Lee, C.-J., Park, M.-H., Cho, J.-H., & Kim, Y.-T. (2022). Outdoor Navigation System of Caterpillar Mobile Robot Based on Multiple Sensors. Journal of Korean Institute of Intelligent Systems, 32(2), 93-100. doi: 10.5391/JKIIS.2022.32.2.93 (in English). https://doi.org/10.5391/JKIIS.2022.32.2.93 | |
dc.relation.references | 20. Pandey, A., Singh, S., Kumar, P., Pothal, L. K., & Mohanty, R. L. (2022). Design and Analysis of All-Terrain Differential-Driven Caterpillar-Wheeled Based Unmanned Fire Extinguisher Robot. Journal of Applied Research and Technology, 20(5), 529-535. doi: 10.22201/icat.24486736e.2022.20.5.1389 (in English). https://doi.org/10.22201/icat.24486736e.2022.20.5.1389 | |
dc.relation.references | 21. Li, H., Cui, J., Ma, Y., Tan, J., Cao, X., Yin, C., & Jiang, Z. (2023). Design and Implementation of Autonomous Navigation System Based on Tracked Mobile Robot. Communications in Computer and Information Science. 1787, 329-350. doi: 10.1007/978-981-99-0617-8_23 (in English). https://doi.org/10.1007/978-981-99-0617-8_23 | |
dc.relation.references | 22. Zhao, J., Zhang, J., Liu, H., Wang, J., & Chen, Z. (2023). Path planning for a tracked robot traversing uneven terrains based on tip‐over stability. Asian Journal of Control, 25(5), 3569-3583. doi: 10.1002/asjc.3048 (in English). https://doi.org/10.1002/asjc.3048 | |
dc.relation.references | 23. Shafaei, S. M., & Mousazadeh, H. (2023). Experimental comparison of locomotion system performance of ground mobile robots in agricultural drawbar works. Smart Agricultural Technology, 3, 100131. doi: 10.1016/j.atech.2022.100131 (in English). https://doi.org/10.1016/j.atech.2022.100131 | |
dc.relation.references | 24. Petrişor, S. M., Simion, M., Bârsan, G., & Hancu, O. (2023). Humanitarian Demining Serial-Tracked Robot: Design and Dynamic Modeling. Machines, 11(5), 548. doi: 10.3390/machines11050548 (in English). https://doi.org/10.3390/machines11050548 | |
dc.relation.references | 25. Ugenti, A., Galati, R., Mantriota, G., & Reina, G. (2023). Analysis of an all-terrain tracked robot with innovative suspension system. Mechanism and Machine Theory, 182, 105237. doi: 10.1016/j.mechmachtheory.2023.105237 (in English). https://doi.org/10.1016/j.mechmachtheory.2023.105237 | |
dc.relation.referencesen | 1. Dong, L., He, Z., Song, C., & Sun, C. (2023). A review of mobile robot motion planning methods: from classical motion planning workflows to reinforcement learning-based architectures. Journal of Systems Engineering and Electronics, 34(2), 439-459. doi: 10.23919/JSEE.2023.000051 (in English). https://doi.org/10.23919/JSEE.2023.000051 | |
dc.relation.referencesen | 2. Mikołajczyk, T., Mikołajewski, D., Kłodowski, A., Łukaszewicz, A., Mikołajewska, E., Paczkowski, T., & Skornia, M. (2023). Energy Sources of Mobile Robot Power Systems: A Systematic Review and Comparison of Efficiency. Applied Sciences, 13(13), 7547. doi: 10.3390/app13137547 (in English). https://doi.org/10.3390/app13137547 | |
dc.relation.referencesen | 3. Qin, H., Shao, S., Wang, T., Yu, X., Jiang, Y., & Cao, Z. (2023). Review of autonomous path planning algorithms for mobile robots. Drones, 7(3), 211. doi: 10.3390/drones7030211 (in English). https://doi.org/10.3390/drones7030211 | |
dc.relation.referencesen | 4. Bruzzone, L., Nodehi, S. E., & Fanghella, P. (2022). Tracked locomotion systems for ground mobile robots: A review. Machines, 10(8), 648. doi: 10.3390/machines10080648 (in English). https://doi.org/10.3390/machines10080648 | |
dc.relation.referencesen | 5. Seo, T., Ryu, S., Won, J. H., Kim, Y., & Kim, H. S. (2023). Stair-Climbing Robots: A Review on Mechanism, Sensing, and Performance Evaluation. IEEE Access, 11, 60539-60561. doi: 10.1109/ACCESS.2023.3286871 (in English). https://doi.org/10.1109/ACCESS.2023.3286871 | |
dc.relation.referencesen | 6. SWORDS Combat Robot Opens Possibilities; Perhaps Not the way You'd Expect. Retrieved from: https://www.sarna.net/news/swords-combat-robot-opens-possibilities-perha... (in English). | |
dc.relation.referencesen | 7. Remotec ANDROS Mark V-A1 Robot. Retrieved from: https://www.azorobotics.com/equipment-details.aspx?EquipID=412 (in English). | |
dc.relation.referencesen | 8. Centaur Unmanned Ground Vehicle. Retrieved from: https://www.army-technology.com/projects/centaur-unmanned-ground-vehicle/ (in English). | |
dc.relation.referencesen | 9. EOD-Roboter tEODor EVO. Retrieved from: https://esut.de/2019/03/meldungen/land/11637/eod-roboter-teodor-evo/ (in English). | |
dc.relation.referencesen | 10. Media Gallery: TELEMAX™ EVO. Retrieved from: https://www.avinc.com/media_center/assets/unmanned-ground-vehicles/telemax-evo (in English). | |
dc.relation.referencesen | 11. Clearpath Grizzly and Husky More Flexible Than Ever. Retrieved from: https://blog.robotiq.com/clearpath-grizzly-and-husky-more-felxible-than-ever (in English). | |
dc.relation.referencesen | 12. Korendiy, V. (2021). Generalized design diagram and mathematical model of suspension system of vibration-driven robot. Ukrainian Journal of Mechanical Engineering and Materials Science, 7(3-4), 1-10. doi: 10.23939/ujmems2021.03-04.001 (in English). https://doi.org/10.23939/ujmems2021.03-04.001 | |
dc.relation.referencesen | 13. Korendiy, V., Kachur, O., Predko, R., Kotsiumbas, O., Brytkovskyi, V., & Ostashuk, M. (2023). Development and investigation of the vibration-driven in-pipe robot. Vibroengineering Procedia, 50, 1-7. doi: 10.21595/vp.2023.23513 (in English). https://doi.org/10.21595/vp.2023.23513 | |
dc.relation.referencesen | 14. Wang, C., Lv, W., Li, X., & Mei, M. (2018). Terrain Adaptive Estimation of Instantaneous Centres of Rotation for Tracked Robots. Complexity, 2018, 1-10. doi: 10.1155/2018/4816712 (in English). https://doi.org/10.1155/2018/4816712 | |
dc.relation.referencesen | 15. BaniHani, S., Hayajneh, M. R. M., Al-Jarrah, A., & Mutawe, S. (2021). New control approaches for trajectory tracking and motion planning of unmanned tracked robot. Advances in Electrical and Electronic Engineering, 19(1), 42-56. doi: 10.15598/aeee.v19i1.4006 (in English). https://doi.org/10.15598/aeee.v19i1.4006 | |
dc.relation.referencesen | 16. Ahluwalia, V., Arents, J., Oraby, A., & Greitans, M. (2022). Construction and benchmark of an autonomous tracked mobile robot system. Robotic Systems and Applications, 2(1), 15-28. doi: 10.21595/rsa.2022.22336 (in English). https://doi.org/10.21595/rsa.2022.22336 | |
dc.relation.referencesen | 17. Zhao, J., Zhang, Z., Liu, S., Tao, Y., & Liu, Y. (2022). Design and research of an articulated tracked firefighting robot. Sensors, 22(14), 5086. doi: 10.3390/s22145086 (in English). https://doi.org/10.3390/s22145086 | |
dc.relation.referencesen | 18. Wang, C., Wang, S., Ma, H., Zhang, H., Xue, X., Tian, H., & Zhang, L. (2022). Research on the Obstacle-Avoidance Steering Control Strategy of Tracked Inspection Robots. Applied Sciences, 12(20), 10526. doi: 10.3390/app122010526 (in English). https://doi.org/10.3390/app122010526 | |
dc.relation.referencesen | 19. Bang, H.-S., Lee, C.-J., Park, M.-H., Cho, J.-H., & Kim, Y.-T. (2022). Outdoor Navigation System of Caterpillar Mobile Robot Based on Multiple Sensors. Journal of Korean Institute of Intelligent Systems, 32(2), 93-100. doi: 10.5391/JKIIS.2022.32.2.93 (in English). https://doi.org/10.5391/JKIIS.2022.32.2.93 | |
dc.relation.referencesen | 20. Pandey, A., Singh, S., Kumar, P., Pothal, L. K., & Mohanty, R. L. (2022). Design and Analysis of All-Terrain Differential-Driven Caterpillar-Wheeled Based Unmanned Fire Extinguisher Robot. Journal of Applied Research and Technology, 20(5), 529-535. doi: 10.22201/icat.24486736e.2022.20.5.1389 (in English). https://doi.org/10.22201/icat.24486736e.2022.20.5.1389 | |
dc.relation.referencesen | 21. Li, H., Cui, J., Ma, Y., Tan, J., Cao, X., Yin, C., & Jiang, Z. (2023). Design and Implementation of Autonomous Navigation System Based on Tracked Mobile Robot. Communications in Computer and Information Science. 1787, 329-350. doi: 10.1007/978-981-99-0617-8_23 (in English). https://doi.org/10.1007/978-981-99-0617-8_23 | |
dc.relation.referencesen | 22. Zhao, J., Zhang, J., Liu, H., Wang, J., & Chen, Z. (2023). Path planning for a tracked robot traversing uneven terrains based on tip‐over stability. Asian Journal of Control, 25(5), 3569-3583. doi: 10.1002/asjc.3048 (in English). https://doi.org/10.1002/asjc.3048 | |
dc.relation.referencesen | 23. Shafaei, S. M., & Mousazadeh, H. (2023). Experimental comparison of locomotion system performance of ground mobile robots in agricultural drawbar works. Smart Agricultural Technology, 3, 100131. doi: 10.1016/j.atech.2022.100131 (in English). https://doi.org/10.1016/j.atech.2022.100131 | |
dc.relation.referencesen | 24. Petrişor, S. M., Simion, M., Bârsan, G., & Hancu, O. (2023). Humanitarian Demining Serial-Tracked Robot: Design and Dynamic Modeling. Machines, 11(5), 548. doi: 10.3390/machines11050548 (in English). https://doi.org/10.3390/machines11050548 | |
dc.relation.referencesen | 25. Ugenti, A., Galati, R., Mantriota, G., & Reina, G. (2023). Analysis of an all-terrain tracked robot with innovative suspension system. Mechanism and Machine Theory, 182, 105237. doi: 10.1016/j.mechmachtheory.2023.105237 (in English). https://doi.org/10.1016/j.mechmachtheory.2023.105237 | |
dc.relation.uri | https://doi.org/10.23919/JSEE.2023.000051 | |
dc.relation.uri | https://doi.org/10.3390/app13137547 | |
dc.relation.uri | https://doi.org/10.3390/drones7030211 | |
dc.relation.uri | https://doi.org/10.3390/machines10080648 | |
dc.relation.uri | https://doi.org/10.1109/ACCESS.2023.3286871 | |
dc.relation.uri | https://www.sarna.net/news/swords-combat-robot-opens-possibilities-perha.. | |
dc.relation.uri | https://www.azorobotics.com/equipment-details.aspx?EquipID=412 | |
dc.relation.uri | https://www.army-technology.com/projects/centaur-unmanned-ground-vehicle/ | |
dc.relation.uri | https://esut.de/2019/03/meldungen/land/11637/eod-roboter-teodor-evo/ | |
dc.relation.uri | https://www.avinc.com/media_center/assets/unmanned-ground-vehicles/telemax-evo | |
dc.relation.uri | https://blog.robotiq.com/clearpath-grizzly-and-husky-more-felxible-than-ever | |
dc.relation.uri | https://doi.org/10.23939/ujmems2021.03-04.001 | |
dc.relation.uri | https://doi.org/10.21595/vp.2023.23513 | |
dc.relation.uri | https://doi.org/10.1155/2018/4816712 | |
dc.relation.uri | https://doi.org/10.15598/aeee.v19i1.4006 | |
dc.relation.uri | https://doi.org/10.21595/rsa.2022.22336 | |
dc.relation.uri | https://doi.org/10.3390/s22145086 | |
dc.relation.uri | https://doi.org/10.3390/app122010526 | |
dc.relation.uri | https://doi.org/10.5391/JKIIS.2022.32.2.93 | |
dc.relation.uri | https://doi.org/10.22201/icat.24486736e.2022.20.5.1389 | |
dc.relation.uri | https://doi.org/10.1007/978-981-99-0617-8_23 | |
dc.relation.uri | https://doi.org/10.1002/asjc.3048 | |
dc.relation.uri | https://doi.org/10.1016/j.atech.2022.100131 | |
dc.relation.uri | https://doi.org/10.3390/machines11050548 | |
dc.relation.uri | https://doi.org/10.1016/j.mechmachtheory.2023.105237 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © V. Korendiy, O. Kachur, M. Boikiv, Yu. Novitskyi, O. Yaniv, 2023 | |
dc.subject | мобільний робот | |
dc.subject | роботизований комплекс | |
dc.subject | гусеничне шасі | |
dc.subject | розміновування територій | |
dc.subject | кінематика маніпулятора | |
dc.subject | робоча зона маніпулятора | |
dc.subject | рух по пересіченій місцевості | |
dc.subject | mobile robot | |
dc.subject | robotic complex | |
dc.subject | tracked chassis | |
dc.subject | territory demining | |
dc.subject | manipulator kinematics | |
dc.subject | manipulator working area | |
dc.subject | motion over rough terrain | |
dc.title | Analysis of kinematic characteristics of a mobile caterpillar robot with a SCARA-type manipulator | |
dc.title.alternative | Аналіз кінематичних характеристик мобільної гусеничної платформи з маніпулятором типу SCARA | |
dc.type | Article |
Files
License bundle
1 - 1 of 1