Physico-Chemical Studies of the Interaction Mechanism of Double and Trivalent Iron Double Oxide Nano-Particles with Serpin Protein Ovalbumin and Water

dc.citation.epage494
dc.citation.issue3
dc.citation.spage481
dc.contributor.affiliationUkrainian Engineer Pedagogic Academy
dc.contributor.affiliationLutsk National Technical University
dc.contributor.affiliationState Biotechnological University
dc.contributor.affiliationNational University of Pharmacy
dc.contributor.authorTsykhanovska, Iryna
dc.contributor.authorRiabchykov, Mykola
dc.contributor.authorAlexandrov, Olexandr
dc.contributor.authorEvlash, Victoriya
dc.contributor.authorBryzytska, Oksana
dc.contributor.authorGubsky, Sergey
dc.contributor.authorLazareva, Tatyana
dc.contributor.authorBlahyi, Olga
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:52:01Z
dc.date.available2024-02-12T08:52:01Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractНовизною роботи є теоретичне обґрунтування й експериментальне підтвердження механізму взаємодії наночастинок Fe3O4 з H2O та овальбуміном-OVA, що проведено за допомогою комплексу фізико-хімічних досліджень. Визначено, що механізм ґрунтується на кластерофільності наночастинок і водневих, електростатичних і ван-дер-Ваальсових взаємодіях. Встановлено, що взаємодія наночастинок Fe3O4 з OVA відбувалася за механізмом статичного гасіння з утворенням міжмолекулярного нефлуоресцентного комплексу, який змінює нативну структуру OVA. Константа зв'язування змінювалася від 3,3×105 до 4,8×105 л•моль−1 залежно від значення рН середовища та температури. Термодинамічними розрахунками підтверджено спонтанність процесу зв'язування з переважанням ентальпійного фактора.
dc.description.abstractThe novelty of the work is the theoretical justification and experimental confirmation of the mechanism of interaction of Fe3O4 nanoparticles with H2O and ovalbumin-OVA, which was carried out with the help of a complex of physical and chemical studies. It was determined that the mechanism is based on the clustero-philicity of nanoparticles and hydrogen, electrostatic and van der Waals interactions. It was established that the interaction of Fe3O4 nanoparticles with OVA took place by the mechanism of static quenching with the formation of an intermolecular non-fluorescent complex that changes the native structure of OVA. The binding constant varied from 3.3×105 to 4.8×105 L•mol-1 depending on the pH value of the medium and temperature. Thermodynamic calculations confirmed the spontaneity of the binding process with the predominance of the enthalpy factor.
dc.format.extent481-494
dc.format.pages14
dc.identifier.citationPhysico-Chemical Studies of the Interaction Mechanism of Double and Trivalent Iron Double Oxide Nano-Particles with Serpin Protein Ovalbumin and Water / Iryna Tsykhanovska, Mykola Riabchykov, Olexandr Alexandrov, Victoriya Evlash, Oksana Bryzytska, Sergey Gubsky, Tatyana Lazareva, Olga Blahyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 481–494.
dc.identifier.citationenPhysico-Chemical Studies of the Interaction Mechanism of Double and Trivalent Iron Double Oxide Nano-Particles with Serpin Protein Ovalbumin and Water / Iryna Tsykhanovska, Mykola Riabchykov, Olexandr Alexandrov, Victoriya Evlash, Oksana Bryzytska, Sergey Gubsky, Tatyana Lazareva, Olga Blahyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 481–494.
dc.identifier.doidoi.org/10.23939/chcht17.03.481
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61271
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (17), 2023
dc.relation.references[1] Dron, I.; Nosovа, N.; Fihurka, N.; Bukartyk, N.; Nadashkevych, Z.; Varvarenko, S.; Samaryk, V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. Chem. Chem. Technol. 2022, 16, 220-226. https://doi.org/10.23939/chcht16.02.220
dc.relation.references[2] Goralchuk, A.; Gubsky, S.; Omelchenko, S.; Riabets, O.; Grinchenko, O.; Fedak, N.; Kotlyar, O.; Cheremska, T.; Skrynnik, V. Impact of Added Food Ingredients on Foaming and Texture of the Whipped Toppings: A Chemometric Analysis. Eur. Food Res. Technol. 2020, 246, 1955-1970. (In Ukrainian) https://doi.org/10.1007/s00217-020-03547-3
dc.relation.references[3] Bratychak, M.; Zemke, V.; Chopyk, N. The features of Rheological and Tribological Behavior of High-Viscosity Polyolefine Compositions Depending on their Content. Chem. Chem. Technol. 2021, 15, 486-492. https://doi.org/10.23939/chcht15.04.486
dc.relation.references[4] Tsykhanovska, I.; Evlash, V.; Alexandrov, A.; Lazarieva, T.; Svidlo, K.; Gontar, T.; Yurchenko, L.; Pavlotska, L. Substantiation of the Mechanism of Interaction between Biopolymers of Rye-and-wheat Flour and the Nanoparticles of the Magnetofооd. Food Additive in Order to Improve Moisture-retaining Capacity of Dough. East.-Eur. J. Enterp. Technol. 2018, 2/11 (92), 70-80. (In Ukrainian) https://doi.org/10.15587/1729-4061.2018.126358
dc.relation.references[5] Tsykhanovska, I.; Evlash, V.; Oleksandrov, O.; Gontar, T. Mechanism of Fat-Binding and Fat-Contenting of the Nanoparticles of a Food Supplement on the Basis of Double Oxide of Two– and Trivalent Iron. Ukr. Food J. 2018, 7, 702-715. https://doi.org/10.24263/2304-974X-2018-7-4-14
dc.relation.references[6] Jumadilov, Т.; Malimbayeva, Z.; Yskak, L.; Suberlyak, O.; Kondaurov, R.; Imangazy, А.; Agibayeva, L.; Akimov, А.; Khimersen, К.; Zhuzbayev, А. Comparative Characteristics of Polymethacrylic Acid Hydrogel Sorption Activity in Relation to Lanthanum Ions in Different Intergel Systems. Chem. Chem. Technol. 2022, 16, 418-431. https://doi.org/10.23939/chcht16.03.418
dc.relation.references[7] Li, J.; Pylypchuk, I.; Johansson, D.; Kessler, V.; Seisenbaeva, G.; Langton, M. Self-Assembly of Plant Protein Fibrils Interacting with Superparamagnetic Iron Oxide Nanoparticles. Scientific Reports 2019, 9, 8939. https://doi.org/10.1038/s41598-019-45437-z
dc.relation.references[8] Chavali1, M.; Nikolova, M. Metal Oxide Nanoparticles and their Applications in Nanotechnology. SN Applied Sciences 2019, 1, 607. https://doi.org/10.1007/s42452-019-0592-3
dc.relation.references[9] Tsykhanovska, I.; Stabnikova, О.; Gubsky, S. Spectroscopic Studies of Interaction of Iron Oxide Nanoparticles with Ovalbumin Molecules. Mater. Proc 2022, 9(1), 2. https://doi.org/10.3390/materproc2022009002
dc.relation.references[10] Tsykhanovska, I.; Evlash, V.; Blahyi, O. Mechanism of Water-Binding and Water-Retention of Food Additives Nanoparticles Based on Double Oxide of Two– and Trivalent Iron. Ukr. Food J. 2020, 9, 298-321. https://doi.org/10.24263/2304-974x-2020-9-2-4
dc.relation.references[11] Tsykhanovska, I.; Evlash, V.; Alexandrov, A.; Gontar, T. Dissolution Kinetics of Fe3O4 Nanoparticles in the Acid Media. Chem. Chem. Technol. 2019, 13, 170-184. https://doi.org/10.23939/chcht13.02.170
dc.relation.references[12] Tsykhanovska, I.; Evlash, V.; Alexandrov, A.; Gontar, T.; Shmatkov, D. The Study of the Interaction Mechanism of Linoleic Acid and 1-Linoleyl-2-oleoyl-3-linolenoyl-glycerol with Fe3O4 Nanoparticles. Chem. Chem. Technol. 2019, 13, 303-316. https://doi.org/10.23939/chcht13.03.303
dc.relation.references[13] Ramachandraiah, К.; Choi, M.; Hong, G. Micro– and Nano-Scaled Materials for Strategy-Based Applications in Innovative Livestock Products: A Review. Trends Food Sci Technol 2018, 71, 25. https://doi.org/10.1016/j.tifs.2017.10.017
dc.relation.references[14] Zozulya, G.; Kuntyi, О.; Mnykh, R.; Sozanskyi, М. Synthesis of Antibacterially Active Silver Nanoparticles by Galvanic Replacement on Magnesium in Solutions of Sodium Polyacrylate in an Ultrasound. Chem. Chem. Technol. 2021, 15, 493-499. https://doi.org/10.23939/chcht15.04.493
dc.relation.references[15] Deivasigamani, Р.; Ponnusamy, S.; Sathish, S.; Suresh, A. Superhigh Adsorption of Cadmium(ii) Ions onto Surface Modified Nano Zerovalent Iron Composite (cns-nzvi): Characterization, Adsorption Kinetics and Isotherm Studies. Chem. Chem. Technol. 2021, 15, 457-464. https://doi.org/10.23939/chcht15.04.457
dc.relation.references[16] Dantas, M.; Tenório, H.; Lopes, T.; Pereira, H.; Marsaioli, A.; Figueiredo, I.; Santos, J. Interactions of Tetracyclines with Ovalbumin, the Main Allergen Protein from Egg White: Spectroscopic and Electrophoretic Studies. Int. J. Biol. Macromol. 2017, 102, 505-514. https://doi.org/10.1016/j.ijbiomac.2017.04.052
dc.relation.references[17] Kashanian, F.; Habibi-Rezaei, M.; Bagherpour, A.; Seyedarabi, A.; Moosavi-Movahedi, A. Magnetic Nanoparticles as Double-Edged Swords: Concentration-Dependent Ordering or Disordering Effects on Lysozyme. RSC Adv. 2017, 7, 54813. https://doi.org/10.1039/C7RA08903A
dc.relation.references[18] Babu, S.; Neeraja, D. Experimental Study of Natural Admixture Effect on Conventional Concrete and High Volume Class F Flyash Blended Concrete. Case Stud. Constr. Mater. 2016, 6(C), 43-62. https://doi.org/10.1016/j.cscm.2016.09.003
dc.relation.references[19] Tsykhanovska I., Evlash V., Alexandrov O., Riabchykov M., Lazarieva T., Nikulina A., Blahyi O. Technology of Bakery Products Using Magnetofood as a Food Additive. In Bioenhancement and Fortification of Foods for a Healthy Diet; Paredes-López, O.; Shevchenko, O.; Stabnikov, V.; Ivanov. V., Eds.; CRC Press: Boca Raton, FL, 2022. https://doi.org/10.1201/9781003225287
dc.relation.references[20] Hussein, S.; Amir, Z.; Jan, B.; Khalil, М.; Azizi, А. Colloidal Stability of CA, SDS and PVA Coated Iron Oxide Nanoparticles (IONPs): Effect of Molar Ratio and Salinity. Polymers 2022, 14, 4787. https://doi.org/10.3390/polym14214787
dc.relation.references[21] Maestro, А.; Santini, Е.; Zabiegaj, D.; Llamas, S.; Ravera, F.; Liggieri, L.; Ortega, F.; Rubio, R.; Guzman, Е. Particle and Particle-Surfactant Mixtures at Fluid Interfaces: Assembly, Morphology, and Rheological Description. Adv. Condens. Matter Phys. 2015, 2015, ID 917516. https://dx.doi.org/10.1155/2015/917516
dc.relation.references[22] Dzwolak, W.; Kato, М.; Taniguchi, Yo. Fourier Transform Infrared Spectroscopy in High-Pressure Studies on Proteins. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology 2002, 1595, 131-144. https://doi.org/10.1016/S0167-4838(01)00340-5
dc.relation.references[23] Byler, D.; Susi, H. Examination of the Secondary Structure of Proteins by Deconvolved FTIR Spectra. Biopolymers 1986, 25, 469-487. https://doi.org/10.1002/bip.360250307
dc.relation.references[24] Midoux, P.; Wahl, P.; Auchet, J.; Monsigny, M. Fluorescence Quenching of Tryptophan by Trifluoroacetamide. Biochim. Biophys. Acta-Gen. Subj. 1984, 801, 16-25. https://doi.org/10.1016/0304-4165(84)90207-1
dc.relation.references[25] Stein, P.; Leslie, A.; Finch, J.; Carrell, R. Crystal Structure of Uncleaved Ovalbumin at 1•95 Å Resolution. J. Mol. Biol., 1991, 221, 941-959. https://doi.org/10.1016/0022-2836(91)80185-W
dc.relation.references[26] Lin, T.; Shu, L.; Hongna, B.; Xin, G. Interaction of Cyanidin-3-O-glucoside with Three Proteins. Food Chem. 2016, 196, 550-559. https://doi.org/10.1016/j.foodchem.2015.09.089
dc.relation.references[27] Lakowicz, J. Principles of Fluorescence Spectroscopy; Third Edition; Springer: New York, 2006. https://doi.org/10.1007/978-0-387-46312-4
dc.relation.references[28] Shu, Y.; Xue, W.; Xu, X.; Jia, Z.; Yao, X.; Liu, S.; Liu, L. Interaction of Erucic Acid with Bovine Serum Albumin Using a Multi-Spectroscopic Method and Molecular Docking Technique. Food Chem. 2015, 173, 31-37. https://doi.org/10.1016/j.foodchem.2014.09.164
dc.relation.references[29] Bhattacharya, M.; Mukhopadhyay, S. Structural and Dynamical Insights into the Molten-Globule Form of Ovalbumin. J. Phys. Chem. B, 2012, 116, 520-531. https://doi.org/10.1021/jp208416d
dc.relation.references[30] Blank-Shim, S.; Schwaminger, S.; Borkowska-Panek, M.; Anand, P.; Yamin, P.; Fraga-García, P.; Fink, K.; Wenzel, W.; Berensmeier, S. Binding Patterns of Homo-Peptides on Bare Magnetic Nanoparticles: Insights into Environmental Dependence. Scientific Reports 2017, 7, 14047. https://doi.org/10.1038/s41598-017-13928-6
dc.relation.references[31] Bi, S.; Song, D.; Tian, Y.; Zhou, X.; Liu, Z.; Zhang, H. Molecular Spectroscopic Study on the Interaction of Tetracyclines with Serum Albumins. Spectrochim. Acta Part A 2005, 61, 629-636. https://doi.org/10.1016/j.saa.2004.05.028
dc.relation.references[32] Kang, D.; Ryu, S.; Park, Y.; Czarnik-Matusewicz, B.; Jung, Y. PH-Induced Structural Changes of Ovalbumin Studied by 2D Correlation IR Spectroscopy. J. Mol. Struct. 2014, 1069, 299-304. https://doi.org/10.1016/j.molstruc.2014.02.061
dc.relation.references[33] Ghalandari, B.; Divsalar, A.; Saboury, A.; Parivar, K. The New Insight into Oral Drug Delivery System Based on Metal Drugs in Colon Cancer Therapy Through β-Lactoglobulin/oxali-palladium Nanocapsules. J. Photochem. Photobiol. B. 2014, 140, 255-265. https://doi.org/10.1016/j.jphotobiol.2014.08.003
dc.relation.references[34] Zhang, H.; Wu, P.; Zhu, Z.; Wang, Y. Interaction of γ-Fe2O3 Nanoparticles with Fibrinogen. Spectrochim Acta A Mol Biomol Spectrosc. 2015, 151, 40-47. https://doi.org/10.1016/j.saa.2015.06.087
dc.relation.referencesen[1] Dron, I.; Nosova, N.; Fihurka, N.; Bukartyk, N.; Nadashkevych, Z.; Varvarenko, S.; Samaryk, V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. Chem. Chem. Technol. 2022, 16, 220-226. https://doi.org/10.23939/chcht16.02.220
dc.relation.referencesen[2] Goralchuk, A.; Gubsky, S.; Omelchenko, S.; Riabets, O.; Grinchenko, O.; Fedak, N.; Kotlyar, O.; Cheremska, T.; Skrynnik, V. Impact of Added Food Ingredients on Foaming and Texture of the Whipped Toppings: A Chemometric Analysis. Eur. Food Res. Technol. 2020, 246, 1955-1970. (In Ukrainian) https://doi.org/10.1007/s00217-020-03547-3
dc.relation.referencesen[3] Bratychak, M.; Zemke, V.; Chopyk, N. The features of Rheological and Tribological Behavior of High-Viscosity Polyolefine Compositions Depending on their Content. Chem. Chem. Technol. 2021, 15, 486-492. https://doi.org/10.23939/chcht15.04.486
dc.relation.referencesen[4] Tsykhanovska, I.; Evlash, V.; Alexandrov, A.; Lazarieva, T.; Svidlo, K.; Gontar, T.; Yurchenko, L.; Pavlotska, L. Substantiation of the Mechanism of Interaction between Biopolymers of Rye-and-wheat Flour and the Nanoparticles of the Magnetofood. Food Additive in Order to Improve Moisture-retaining Capacity of Dough. East.-Eur. J. Enterp. Technol. 2018, 2/11 (92), 70-80. (In Ukrainian) https://doi.org/10.15587/1729-4061.2018.126358
dc.relation.referencesen[5] Tsykhanovska, I.; Evlash, V.; Oleksandrov, O.; Gontar, T. Mechanism of Fat-Binding and Fat-Contenting of the Nanoparticles of a Food Supplement on the Basis of Double Oxide of Two– and Trivalent Iron. Ukr. Food J. 2018, 7, 702-715. https://doi.org/10.24263/2304-974X-2018-7-4-14
dc.relation.referencesen[6] Jumadilov, T.; Malimbayeva, Z.; Yskak, L.; Suberlyak, O.; Kondaurov, R.; Imangazy, A.; Agibayeva, L.; Akimov, A.; Khimersen, K.; Zhuzbayev, A. Comparative Characteristics of Polymethacrylic Acid Hydrogel Sorption Activity in Relation to Lanthanum Ions in Different Intergel Systems. Chem. Chem. Technol. 2022, 16, 418-431. https://doi.org/10.23939/chcht16.03.418
dc.relation.referencesen[7] Li, J.; Pylypchuk, I.; Johansson, D.; Kessler, V.; Seisenbaeva, G.; Langton, M. Self-Assembly of Plant Protein Fibrils Interacting with Superparamagnetic Iron Oxide Nanoparticles. Scientific Reports 2019, 9, 8939. https://doi.org/10.1038/s41598-019-45437-z
dc.relation.referencesen[8] Chavali1, M.; Nikolova, M. Metal Oxide Nanoparticles and their Applications in Nanotechnology. SN Applied Sciences 2019, 1, 607. https://doi.org/10.1007/s42452-019-0592-3
dc.relation.referencesen[9] Tsykhanovska, I.; Stabnikova, O.; Gubsky, S. Spectroscopic Studies of Interaction of Iron Oxide Nanoparticles with Ovalbumin Molecules. Mater. Proc 2022, 9(1), 2. https://doi.org/10.3390/materproc2022009002
dc.relation.referencesen[10] Tsykhanovska, I.; Evlash, V.; Blahyi, O. Mechanism of Water-Binding and Water-Retention of Food Additives Nanoparticles Based on Double Oxide of Two– and Trivalent Iron. Ukr. Food J. 2020, 9, 298-321. https://doi.org/10.24263/2304-974x-2020-9-2-4
dc.relation.referencesen[11] Tsykhanovska, I.; Evlash, V.; Alexandrov, A.; Gontar, T. Dissolution Kinetics of Fe3O4 Nanoparticles in the Acid Media. Chem. Chem. Technol. 2019, 13, 170-184. https://doi.org/10.23939/chcht13.02.170
dc.relation.referencesen[12] Tsykhanovska, I.; Evlash, V.; Alexandrov, A.; Gontar, T.; Shmatkov, D. The Study of the Interaction Mechanism of Linoleic Acid and 1-Linoleyl-2-oleoyl-3-linolenoyl-glycerol with Fe3O4 Nanoparticles. Chem. Chem. Technol. 2019, 13, 303-316. https://doi.org/10.23939/chcht13.03.303
dc.relation.referencesen[13] Ramachandraiah, K.; Choi, M.; Hong, G. Micro– and Nano-Scaled Materials for Strategy-Based Applications in Innovative Livestock Products: A Review. Trends Food Sci Technol 2018, 71, 25. https://doi.org/10.1016/j.tifs.2017.10.017
dc.relation.referencesen[14] Zozulya, G.; Kuntyi, O.; Mnykh, R.; Sozanskyi, M. Synthesis of Antibacterially Active Silver Nanoparticles by Galvanic Replacement on Magnesium in Solutions of Sodium Polyacrylate in an Ultrasound. Chem. Chem. Technol. 2021, 15, 493-499. https://doi.org/10.23939/chcht15.04.493
dc.relation.referencesen[15] Deivasigamani, R.; Ponnusamy, S.; Sathish, S.; Suresh, A. Superhigh Adsorption of Cadmium(ii) Ions onto Surface Modified Nano Zerovalent Iron Composite (cns-nzvi): Characterization, Adsorption Kinetics and Isotherm Studies. Chem. Chem. Technol. 2021, 15, 457-464. https://doi.org/10.23939/chcht15.04.457
dc.relation.referencesen[16] Dantas, M.; Tenório, H.; Lopes, T.; Pereira, H.; Marsaioli, A.; Figueiredo, I.; Santos, J. Interactions of Tetracyclines with Ovalbumin, the Main Allergen Protein from Egg White: Spectroscopic and Electrophoretic Studies. Int. J. Biol. Macromol. 2017, 102, 505-514. https://doi.org/10.1016/j.ijbiomac.2017.04.052
dc.relation.referencesen[17] Kashanian, F.; Habibi-Rezaei, M.; Bagherpour, A.; Seyedarabi, A.; Moosavi-Movahedi, A. Magnetic Nanoparticles as Double-Edged Swords: Concentration-Dependent Ordering or Disordering Effects on Lysozyme. RSC Adv. 2017, 7, 54813. https://doi.org/10.1039/P.7RA08903A
dc.relation.referencesen[18] Babu, S.; Neeraja, D. Experimental Study of Natural Admixture Effect on Conventional Concrete and High Volume Class F Flyash Blended Concrete. Case Stud. Constr. Mater. 2016, 6(C), 43-62. https://doi.org/10.1016/j.cscm.2016.09.003
dc.relation.referencesen[19] Tsykhanovska I., Evlash V., Alexandrov O., Riabchykov M., Lazarieva T., Nikulina A., Blahyi O. Technology of Bakery Products Using Magnetofood as a Food Additive. In Bioenhancement and Fortification of Foods for a Healthy Diet; Paredes-López, O.; Shevchenko, O.; Stabnikov, V.; Ivanov. V., Eds.; CRC Press: Boca Raton, FL, 2022. https://doi.org/10.1201/9781003225287
dc.relation.referencesen[20] Hussein, S.; Amir, Z.; Jan, B.; Khalil, M.; Azizi, A. Colloidal Stability of CA, SDS and PVA Coated Iron Oxide Nanoparticles (IONPs): Effect of Molar Ratio and Salinity. Polymers 2022, 14, 4787. https://doi.org/10.3390/polym14214787
dc.relation.referencesen[21] Maestro, A.; Santini, E.; Zabiegaj, D.; Llamas, S.; Ravera, F.; Liggieri, L.; Ortega, F.; Rubio, R.; Guzman, E. Particle and Particle-Surfactant Mixtures at Fluid Interfaces: Assembly, Morphology, and Rheological Description. Adv. Condens. Matter Phys. 2015, 2015, ID 917516. https://dx.doi.org/10.1155/2015/917516
dc.relation.referencesen[22] Dzwolak, W.; Kato, M.; Taniguchi, Yo. Fourier Transform Infrared Spectroscopy in High-Pressure Studies on Proteins. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology 2002, 1595, 131-144. https://doi.org/10.1016/S0167-4838(01)00340-5
dc.relation.referencesen[23] Byler, D.; Susi, H. Examination of the Secondary Structure of Proteins by Deconvolved FTIR Spectra. Biopolymers 1986, 25, 469-487. https://doi.org/10.1002/bip.360250307
dc.relation.referencesen[24] Midoux, P.; Wahl, P.; Auchet, J.; Monsigny, M. Fluorescence Quenching of Tryptophan by Trifluoroacetamide. Biochim. Biophys. Acta-Gen. Subj. 1984, 801, 16-25. https://doi.org/10.1016/0304-4165(84)90207-1
dc.relation.referencesen[25] Stein, P.; Leslie, A.; Finch, J.; Carrell, R. Crystal Structure of Uncleaved Ovalbumin at 1•95 Å Resolution. J. Mol. Biol., 1991, 221, 941-959. https://doi.org/10.1016/0022-2836(91)80185-W
dc.relation.referencesen[26] Lin, T.; Shu, L.; Hongna, B.; Xin, G. Interaction of Cyanidin-3-O-glucoside with Three Proteins. Food Chem. 2016, 196, 550-559. https://doi.org/10.1016/j.foodchem.2015.09.089
dc.relation.referencesen[27] Lakowicz, J. Principles of Fluorescence Spectroscopy; Third Edition; Springer: New York, 2006. https://doi.org/10.1007/978-0-387-46312-4
dc.relation.referencesen[28] Shu, Y.; Xue, W.; Xu, X.; Jia, Z.; Yao, X.; Liu, S.; Liu, L. Interaction of Erucic Acid with Bovine Serum Albumin Using a Multi-Spectroscopic Method and Molecular Docking Technique. Food Chem. 2015, 173, 31-37. https://doi.org/10.1016/j.foodchem.2014.09.164
dc.relation.referencesen[29] Bhattacharya, M.; Mukhopadhyay, S. Structural and Dynamical Insights into the Molten-Globule Form of Ovalbumin. J. Phys. Chem. B, 2012, 116, 520-531. https://doi.org/10.1021/jp208416d
dc.relation.referencesen[30] Blank-Shim, S.; Schwaminger, S.; Borkowska-Panek, M.; Anand, P.; Yamin, P.; Fraga-García, P.; Fink, K.; Wenzel, W.; Berensmeier, S. Binding Patterns of Homo-Peptides on Bare Magnetic Nanoparticles: Insights into Environmental Dependence. Scientific Reports 2017, 7, 14047. https://doi.org/10.1038/s41598-017-13928-6
dc.relation.referencesen[31] Bi, S.; Song, D.; Tian, Y.; Zhou, X.; Liu, Z.; Zhang, H. Molecular Spectroscopic Study on the Interaction of Tetracyclines with Serum Albumins. Spectrochim. Acta Part A 2005, 61, 629-636. https://doi.org/10.1016/j.saa.2004.05.028
dc.relation.referencesen[32] Kang, D.; Ryu, S.; Park, Y.; Czarnik-Matusewicz, B.; Jung, Y. PH-Induced Structural Changes of Ovalbumin Studied by 2D Correlation IR Spectroscopy. J. Mol. Struct. 2014, 1069, 299-304. https://doi.org/10.1016/j.molstruc.2014.02.061
dc.relation.referencesen[33] Ghalandari, B.; Divsalar, A.; Saboury, A.; Parivar, K. The New Insight into Oral Drug Delivery System Based on Metal Drugs in Colon Cancer Therapy Through b-Lactoglobulin/oxali-palladium Nanocapsules. J. Photochem. Photobiol. B. 2014, 140, 255-265. https://doi.org/10.1016/j.jphotobiol.2014.08.003
dc.relation.referencesen[34] Zhang, H.; Wu, P.; Zhu, Z.; Wang, Y. Interaction of g-Fe2O3 Nanoparticles with Fibrinogen. Spectrochim Acta A Mol Biomol Spectrosc. 2015, 151, 40-47. https://doi.org/10.1016/j.saa.2015.06.087
dc.relation.urihttps://doi.org/10.23939/chcht16.02.220
dc.relation.urihttps://doi.org/10.1007/s00217-020-03547-3
dc.relation.urihttps://doi.org/10.23939/chcht15.04.486
dc.relation.urihttps://doi.org/10.15587/1729-4061.2018.126358
dc.relation.urihttps://doi.org/10.24263/2304-974X-2018-7-4-14
dc.relation.urihttps://doi.org/10.23939/chcht16.03.418
dc.relation.urihttps://doi.org/10.1038/s41598-019-45437-z
dc.relation.urihttps://doi.org/10.1007/s42452-019-0592-3
dc.relation.urihttps://doi.org/10.3390/materproc2022009002
dc.relation.urihttps://doi.org/10.24263/2304-974x-2020-9-2-4
dc.relation.urihttps://doi.org/10.23939/chcht13.02.170
dc.relation.urihttps://doi.org/10.23939/chcht13.03.303
dc.relation.urihttps://doi.org/10.1016/j.tifs.2017.10.017
dc.relation.urihttps://doi.org/10.23939/chcht15.04.493
dc.relation.urihttps://doi.org/10.23939/chcht15.04.457
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2017.04.052
dc.relation.urihttps://doi.org/10.1039/C7RA08903A
dc.relation.urihttps://doi.org/10.1016/j.cscm.2016.09.003
dc.relation.urihttps://doi.org/10.1201/9781003225287
dc.relation.urihttps://doi.org/10.3390/polym14214787
dc.relation.urihttps://dx.doi.org/10.1155/2015/917516
dc.relation.urihttps://doi.org/10.1016/S0167-4838(01)00340-5
dc.relation.urihttps://doi.org/10.1002/bip.360250307
dc.relation.urihttps://doi.org/10.1016/0304-4165(84)90207-1
dc.relation.urihttps://doi.org/10.1016/0022-2836(91)80185-W
dc.relation.urihttps://doi.org/10.1016/j.foodchem.2015.09.089
dc.relation.urihttps://doi.org/10.1007/978-0-387-46312-4
dc.relation.urihttps://doi.org/10.1016/j.foodchem.2014.09.164
dc.relation.urihttps://doi.org/10.1021/jp208416d
dc.relation.urihttps://doi.org/10.1038/s41598-017-13928-6
dc.relation.urihttps://doi.org/10.1016/j.saa.2004.05.028
dc.relation.urihttps://doi.org/10.1016/j.molstruc.2014.02.061
dc.relation.urihttps://doi.org/10.1016/j.jphotobiol.2014.08.003
dc.relation.urihttps://doi.org/10.1016/j.saa.2015.06.087
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Tsykhanovska I., Riabchykov M., Alexandrov O., Evlash V., Bryzytska O., Gubsky S., Lazareva T., Blahiy O., 2023
dc.subjectнаночастинки Fe3O4
dc.subjectвода
dc.subjectOVA
dc.subjectхемосорбція
dc.subjectакваасоціати
dc.subjectFe3O4 nanoparticles
dc.subjectwater
dc.subjectOVA
dc.subjectbinding
dc.subjectwater absorption
dc.subjectwater retention
dc.titlePhysico-Chemical Studies of the Interaction Mechanism of Double and Trivalent Iron Double Oxide Nano-Particles with Serpin Protein Ovalbumin and Water
dc.title.alternativeФізико-хімічні дослідження механізму взаємодії наночастинок подвійного оксиду дво- та тривалентного феруму з серпіновим білком-овальбуміном і водою
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v17n3_Tsykhanovska_I-Physico_Chemical_Studies_481-494.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v17n3_Tsykhanovska_I-Physico_Chemical_Studies_481-494__COVER.png
Size:
548.59 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: