Estimation in short-panel data models with bilinear errors

dc.citation.epage692
dc.citation.issue3
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage682
dc.contributor.affiliationУніверситет Хасана ІІ Касабланки
dc.contributor.affiliationУніверситет Абдельмалек Ессааді Тетуан
dc.contributor.affiliationРегіональний центр освіти та професійної підготовки, Танжер
dc.contributor.affiliationHassan II University of Casablanca
dc.contributor.affiliationAbdelmalek Essaadi University Tetouan
dc.contributor.affiliationRegional Center for Education and Training Trades, Tangier
dc.contributor.authorЛмакрі, А.
dc.contributor.authorАхаріф, А.
dc.contributor.authorМеллук, А.
dc.contributor.authorLmakri, A.
dc.contributor.authorAkharif, A.
dc.contributor.authorMellouk, A.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T12:17:37Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ роботі розробляється асимптотична теорія для оцінювання в моделях коротких панельних даних з білінійною помилкою. Запропоновано порівняльне дослідження шляхом моделювання між декількома оцінками (адаптивними, звичайними та зваженим методом найменших квадратів) для коефіцієнтів моделей панельних даних, коли помилки є білінійними послідовно корельованими. Як наслідок властивості рівномірної локальної асимптотичної нормальності отримано адаптивні оцінки параметрів. Накінець, проілюстровано продуктивність запропонованих оцінювачів за допомогою моделювання методом Монте–Карло. Показано, що адаптивні оцінки ефективніші, ніж зважені та звичайні оцінки методом найменших квадратів.
dc.description.abstractMany estimation methods have been proposed for the parameters of the regression models with serially correlated errors. In this work, we develop an asymptotic theory for estimation in the short panel data models with bilinear error. We propose a comparative study by simulation between several estimators (adaptive, ordinary and weighted least squares) for the coefficients of panel data models when the errors are bilinear serially correlated. As a consequence of the uniform local asymptotic normality property, we obtain adaptive estimates of the parameters. Finally, we illustrate the performance of the proposed estimators via Monte Carlo simulation study. We show that the adaptive estimates are more efficient than the weighted and ordinary least squares estimates.
dc.format.extent682-692
dc.format.pages11
dc.identifier.citationLmakri A. Estimation in short-panel data models with bilinear errors / A. Lmakri, A. Akharif, A. Mellouk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 682–692.
dc.identifier.citationenLmakri A. Estimation in short-panel data models with bilinear errors / A. Lmakri, A. Akharif, A. Mellouk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 682–692.
dc.identifier.doidoi.org/10.23939/mmc2023.03.682
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63541
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 3 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 3 (10), 2023
dc.relation.references[1] Lillard L. A., Willis R. J. Dynamic aspects of learning mobility. Econometrica. 46 (5), 985–1012 (1978).
dc.relation.references[2] Bhargava A., Franzini L., Narendranathan W. Serial correlation and the fixed effects model. The Review of Economic Studies. 49 (4), 533–549 (1982).
dc.relation.references[3] Nicholls D. F., Pagan A. R., Terrell R. D. The estimation and use of models with moving average disturbance terms: A survey. International Economic Review. 16 (1), 113–134 (1975).
dc.relation.references[4] Abonazel M. R. Different estimators for stochastic parameter panel data models with serially correlated errors. Journal of Statistics Applications & Probability. 7 (3), 423–434 (2018).
dc.relation.references[5] Baltagi B., Li Q. Testing AR(1) against MA(1) disturbances in an error component model. Journal of Econometrics. 68 (1), 133–151 (1995).
dc.relation.references[6] Allal J., El Melhaoui S. Tests de rangs adaptatifs pour les mod`eles de r´egression lin´eaire avec erreurs ARMA. Annales des Sciences Math´ematiques du Qu´ebec. 30, 29–54 (2006).
dc.relation.references[7] Dutta H. Large sample tests for a regression model with autoregressive conditional heteroscedastic errors. Communications in Statistics – Theory and Methods. 28 (1), 105–117 (1999).
dc.relation.references[8] Elmezouar Z. C., Kadi A. M., Gabr M. M. Linear regression with bilinear time series errors. PanAmerican Mathematical Journal. 22 (1), 1–13 (2012).
dc.relation.references[9] Hallin M., Taniguchi M., Serroukh A., Choy K. Local asymptotic normality for regression models with long-memory disturbance. The Annals of Statistics. 27 (6), 2054–2080 (1999).
dc.relation.references[10] Hwang S. Y., Basawa I. V. Asymptotic optimal inference for a class of nonlinear time series models. Stochastic Processes and their Applications. 46 (1), 91–113 (1993).
dc.relation.references[11] Ling S., Peng L., Zhu F. Inference for a special bilinear time series model. Journal of Time Series Analysis. 36 (1), 61–66 (2015).
dc.relation.references[12] Jiang J. Linear and Generalized Linear Mixed Models and Their Applications. Springer, New York (2007).
dc.relation.references[13] Lmakri A., Akharif A., Mellouk A. Optimal detection of bilinear dependence in short panels of regression data. Revista Colombiana de Estad´ıstica. 43 (2), 143–171 (2020).
dc.relation.references[14] Drost F. C., Klaassen C. A. J. Efficient estimation in semiparametric GARCH models. Journal of Econometrics. 81 (1), 193–221 (1997).
dc.relation.references[15] Ling S., McAleer M. Adaptive estimation in nonstationry ARMA models with GARCH noises. The Annals of Statistics. 31 (2), 642–674 (2003).
dc.relation.references[16] Le Cam L., Yang G. L. Asymptotics in Statistics. Springer, US (1990).
dc.relation.references[17] H´ajek J. A. Characterization of limiting distributions of regular estimates. Zeitschrift f¨ur Wahrscheinlichkeitstheorie und Verwandte Gebiete. 14, 323–330 (1970).
dc.relation.references[18] Rao C. R. Linear Statistical Inference and Its Applications. Wiley, New York (1965).
dc.relation.references[19] Schick A. On efficient estimation in regression models. The Annals of Statistics. 21 (3), 1486–1521 (1993).
dc.relation.references[20] Koul H. L., Schick A. Efficient estimation in nonlinear autoregressive time series models. Bernoulli. 3, 247–277 (1997).
dc.relation.referencesen[1] Lillard L. A., Willis R. J. Dynamic aspects of learning mobility. Econometrica. 46 (5), 985–1012 (1978).
dc.relation.referencesen[2] Bhargava A., Franzini L., Narendranathan W. Serial correlation and the fixed effects model. The Review of Economic Studies. 49 (4), 533–549 (1982).
dc.relation.referencesen[3] Nicholls D. F., Pagan A. R., Terrell R. D. The estimation and use of models with moving average disturbance terms: A survey. International Economic Review. 16 (1), 113–134 (1975).
dc.relation.referencesen[4] Abonazel M. R. Different estimators for stochastic parameter panel data models with serially correlated errors. Journal of Statistics Applications & Probability. 7 (3), 423–434 (2018).
dc.relation.referencesen[5] Baltagi B., Li Q. Testing AR(1) against MA(1) disturbances in an error component model. Journal of Econometrics. 68 (1), 133–151 (1995).
dc.relation.referencesen[6] Allal J., El Melhaoui S. Tests de rangs adaptatifs pour les mod`eles de r´egression lin´eaire avec erreurs ARMA. Annales des Sciences Math´ematiques du Qu´ebec. 30, 29–54 (2006).
dc.relation.referencesen[7] Dutta H. Large sample tests for a regression model with autoregressive conditional heteroscedastic errors. Communications in Statistics – Theory and Methods. 28 (1), 105–117 (1999).
dc.relation.referencesen[8] Elmezouar Z. C., Kadi A. M., Gabr M. M. Linear regression with bilinear time series errors. PanAmerican Mathematical Journal. 22 (1), 1–13 (2012).
dc.relation.referencesen[9] Hallin M., Taniguchi M., Serroukh A., Choy K. Local asymptotic normality for regression models with long-memory disturbance. The Annals of Statistics. 27 (6), 2054–2080 (1999).
dc.relation.referencesen[10] Hwang S. Y., Basawa I. V. Asymptotic optimal inference for a class of nonlinear time series models. Stochastic Processes and their Applications. 46 (1), 91–113 (1993).
dc.relation.referencesen[11] Ling S., Peng L., Zhu F. Inference for a special bilinear time series model. Journal of Time Series Analysis. 36 (1), 61–66 (2015).
dc.relation.referencesen[12] Jiang J. Linear and Generalized Linear Mixed Models and Their Applications. Springer, New York (2007).
dc.relation.referencesen[13] Lmakri A., Akharif A., Mellouk A. Optimal detection of bilinear dependence in short panels of regression data. Revista Colombiana de Estad´ıstica. 43 (2), 143–171 (2020).
dc.relation.referencesen[14] Drost F. C., Klaassen C. A. J. Efficient estimation in semiparametric GARCH models. Journal of Econometrics. 81 (1), 193–221 (1997).
dc.relation.referencesen[15] Ling S., McAleer M. Adaptive estimation in nonstationry ARMA models with GARCH noises. The Annals of Statistics. 31 (2), 642–674 (2003).
dc.relation.referencesen[16] Le Cam L., Yang G. L. Asymptotics in Statistics. Springer, US (1990).
dc.relation.referencesen[17] H´ajek J. A. Characterization of limiting distributions of regular estimates. Zeitschrift f¨ur Wahrscheinlichkeitstheorie und Verwandte Gebiete. 14, 323–330 (1970).
dc.relation.referencesen[18] Rao C. R. Linear Statistical Inference and Its Applications. Wiley, New York (1965).
dc.relation.referencesen[19] Schick A. On efficient estimation in regression models. The Annals of Statistics. 21 (3), 1486–1521 (1993).
dc.relation.referencesen[20] Koul H. L., Schick A. Efficient estimation in nonlinear autoregressive time series models. Bernoulli. 3, 247–277 (1997).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectадаптивна оцінка
dc.subjectбілінійні моделі
dc.subjectпанельні регресійні моделі
dc.subjectзважені найменші квадрати
dc.subjectзвичайні найменші квадрати
dc.subjectadaptive estimate
dc.subjectbilinear models
dc.subjectpanel regression models
dc.subjectweighted least squares
dc.subjectordinary least squares
dc.titleEstimation in short-panel data models with bilinear errors
dc.title.alternativeОцінка в короткопанельних моделях даних з білінійними помилками
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n3_Lmakri_A-Estimation_in_short_panel_682-692.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n3_Lmakri_A-Estimation_in_short_panel_682-692__COVER.png
Size:
465.43 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: