Modeling of carbon monoxide oxidation process on the two-dimensional catalyst surface
dc.citation.journalTitle | Mathematical Modeling and Сomputing | |
dc.contributor.author | Kostrobij, P. | |
dc.contributor.author | Ryzha, I. | |
dc.coverage.country | UA | uk_UA |
dc.coverage.placename | Львів | uk_UA |
dc.date.accessioned | 2018-07-11T17:00:01Z | |
dc.date.available | 2018-07-11T17:00:01Z | |
dc.date.issued | 2016 | |
dc.description.abstract | In this paper the two-dimensional mathematical model for carbon monoxide (CO) oxidation on the surface of Platinum (Pt) catalyst is investigated accounting for the processes of the catalyst surface reconstruction and the effect of the substrate temperature. It is shown that the stability region for reaction of CO oxidation changes in two-dimensional case. Дослiджено двовимiрну математичну модель оксидацiї чадного газу (СО) на поверхнi платинового каталiзатора з урахуванням процесiв перебудови поверхнi каталiзатора та впливу температури пiдложки. Показано, що в двовимiрному випадку область стiйкостi реакцiї окислення СО змiнюється. | uk_UA |
dc.format.pages | 146–162 | |
dc.identifier.citation | Kostrobij P. Modeling of carbon monoxide oxidation process on the two-dimensional catalyst surface / P. Kostrobij, I. Ryzha // Mathematical Modeling and Сomputing. – 2016. – Volume 3, number 2. – Р. 146 –162. – Bibliography: 19 titles | uk_UA |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/42384 | |
dc.language.iso | en | uk_UA |
dc.publisher | Publishing House of Lviv Polytechnic National University | |
dc.relation.references | [1] Slinko M. M., Jaeger N. I. Oscillating Heterogeneous Catalytic Systems (Studies in Surface Science and Catalysis). Eds. Amsterdam: Elsevier; Vol. 86 (1994). [2] Baxter R. J., Hu P. Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116 (11), 4379–4381 (2002). [3] Wilf M., Dawson P. T. Adsorption and desorption of oxygen on the Pt(110) surface – a thermal desorption and LEED-AES Study. Surf. Sci. 65, 399–418 (1977). [4] Gomer R. Diffusion of adsorbates on metal surfaces. Reports on Progress in Physics. 53 (7), 917–1002 (1990). [5] Kellogg G. L. Direct observations of the (1 × 2) surface reconstruction on the Pt(110) plane. Phys. Rev. Lett. 55, 2168 (1985). [6] Gritsch T., Coulman D., Behm R. J., Ertl G. Mechanism of the CO-induced (1 × 2) − (1 × 1) structural transformation of Pt(110). Phys. Rev. Lett. 63, 1086 (1989). [7] Krischer K., Eiswirth M., Ertl G. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96, 9161–9172 (1992). [8] Baer M., Eiswirth M., Rotermund H. H., Ertl G. Solitary-wave phenomena in an excitable surface-reaction. Phys. Rev. Lett. 69 (6), 945–948 (1992). [9] Gasser R. P. H., Smith. E. B. A surface mobility parameter for chemisorption. Chem. Phys. Lett. 1 (10), 457–458 (1967). [10] Bertram M., Mikhailov A. S. Pattern formation on the edge of chaos: Mathematical modeling of CO oxidation on a Pt(110) surface under global delayed feedback. Phys. Rev. E. 67, 036207 (2003). [11] Bzovska I. S., Mryglod I. M. Chemical oscillations in catalytic CO oxidation reaction. Condens. Matter Phys. 13 (3), 34801:1–5 (2010). [12] Connors K. A. Chemical Kinetics: The Study of Reaction Rates in Solution. New York: VCH Publishers (1990). [13] Cisternas Y., Holmes P., Kevrekidis I. G., Li X. CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. J. Chem. Phys. 118, 3312–3328 (2003). [14] Maron S. H., Lando J. B. Fundamentals of Physical Chemistry. New York: MacMillan Publ. Comp. Inc. (1974). [15] Suchorski Y. Private comunication. [16] Shampine L. F., Reichelt M.W. The Matlab ODE suite. SIAM J. Sci. Comput. 18 (1), 1–22 (1997). [17] Patchett A. J., Meissen F., EngelW., Bradshaw A. M., Imbihl R. The anatomy of reaction diffusion fronts in the catalytic oxidation of carbon monoxide on platinum (110). Surf. Sci. 454 (1), 341–346 (2000). [18] Bzovska I. S., Mryglod I. M. Surface patterns in catalytic carbon monoxide oxidation reaction. Ukr. J. Phys. 61 (2), 134–142 (2016). [19] Spiel Ch., Vogel D., Suchorski Y., DrachselW., Schlogl R., Rupprechter G. Catalytic CO oxidation on individual (110) domains of a polycrystalline Pt foil: local reaction kinetics by PEEM. Catal. Lett. 141 (5), 625–632 (2011). | uk_UA |
dc.subject | reaction of catalytic oxidation | uk_UA |
dc.subject | reaction-diffusion model | uk_UA |
dc.subject | mathematical modelling of reaction-diffusion processes | uk_UA |
dc.subject | каталiтична реакцiя окислення | uk_UA |
dc.subject | реакцiйно-дифузiйна модель | uk_UA |
dc.subject | математичне моделювання реакцiйно-дифузiйних процесiв | uk_UA |
dc.subject.udc | 538.9 | uk_UA |
dc.title | Modeling of carbon monoxide oxidation process on the two-dimensional catalyst surface | uk_UA |
dc.title.alternative | Моделювання процесу оксидацiї чадного газу на двовимiрнiй поверхнi каталiзатора | uk_UA |
dc.type | Article | uk_UA |