Синтез та прогнозування біологічної активності нових гетероциклічних n-похідних нафтохінону

dc.citation.epage75
dc.citation.issue1
dc.citation.spage69
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationІнститут органічної хімії НАН України
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationInstitute of Organic Chemistry NAS of Ukraine
dc.contributor.authorПоліш, Н. В.
dc.contributor.authorМарінцова, Н. Г.
dc.contributor.authorЖурахівська, Л. Р.
dc.contributor.authorНовіков, В. П.
dc.contributor.authorВовк, М. В.
dc.contributor.authorPolish, N. V.
dc.contributor.authorMarintsova, N. G.
dc.contributor.authorZhurakhivska, L. R.
dc.contributor.authorNovikov, V. P.
dc.contributor.authorVovk, M. V.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2020-02-28T13:09:25Z
dc.date.available2020-02-28T13:09:25Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractЗ метою пошуку нових перспективних субстанцій із широким спектром біологічної активності було синтезовано гетероциклічні N-похідні 1,4-дихлоронафтохінону і визначено їх лікоподібні (“drug-like”) характеристики. Запропоновано зручні та ефективні методики синтезу нових амінопіразол похідних на основі дихлорнафтохінону. Здійснено фізико-хімічне дослідження та попереднє комп’ютерне прогнозування біологічної активності продуктів. Підтверджено будову одержаних нових гетероциклічних сполук та визначено їхні характеристики із використанням елементного аналізу, ІЧ- та ПМР-спектроскопії.
dc.description.abstractIn order to find new promising substances with a wide spectrum of biological activity, heterocyclic N-derivatives of 1,4-dichloronaphthoquinone were synthesized. Convenient and effective methods of synthesis of new aminopyrazole derivatives based on dichloronaphthoquinone are proposed. The physical-chemical research and the previous computer forecasting of the biological activity of products are carried out. The structure of the obtained new heterocyclic compounds was confirmed and their characteristics are presented using elemental analysis, IR and NMR spectroscopy.
dc.format.extent69-75
dc.format.pages7
dc.identifier.citationСинтез та прогнозування біологічної активності нових гетероциклічних n-похідних нафтохінону / Н. В. Поліш, Н. Г. Марінцова, Л. Р. Журахівська, В. П. Новіков, М. В. Вовк // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 1. — С. 69–75.
dc.identifier.citationenSynthesis and prediction of the biological activity of heterocyclic n-derivatives naphthoquinone / N. V. Polish, N. G. Marintsova, L. R. Zhurakhivska, V. P. Novikov, M. V. Vovk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 1. — P. 69–75.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46359
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (2), 2019
dc.relation.references1. Phillips, R. M., Jaffar, M., Maitland, D. J., Loadman, P. M., Shnyder, S. D., Steans, G., & Stratford, I. J. (2004). Pharmacological and biological evaluation of a series of substituted 1, 4-naphthoquinone bioreductive drugs. Biochemical pharmacology, 68(11), 2107–2116.
dc.relation.references2. Tandon, V. K., Singh, R. V., & Yadav, D. B. (2004). Synthesis and evaluation of novel 1, 4- naphthoquinone derivatives as antiviral, antifungal and anticancer agents. Bioorganic & medicinal chemistry letters, 14(11), 2901–2904.
dc.relation.references3. Hassan, A. A., Mohamed, N. K., Ibrahim, Y. R., & Mourad, A. F. E. (1993). Chemical Interactions between Aminopyrazoles and 2, 3. Dicyano-1, 4-naphthoquinone. Liebigs Annalen der Chemie, 1993(6), 695–697.
dc.relation.references4. Ibis, C., Tuyun, A. F., Bahar, H., Ayla, S. S., Stasevych, M. V., Musyanovych, R. Y., & Novikov, V. (2014). Nucleophilic substitution reactions of 1, 4- naphthoquinone and biologic properties of novel S-, S, S-, N-, and N, S-substituted 1, 4-naphthoquinone derivatives. Medicinal Chemistry Research, 23(4), 2140–2149.
dc.relation.references5. Al-Adiwish, W. M., Tahir, M. I. M., Siti- Noor-Adnalizawati, A., Hashim, S. F., Ibrahim, N., & Yaacob, W. A. (2013). Synthesis, antibacterial activity and cytotoxicity of new fused pyrazolo [1, 5-a] pyrimidine and pyrazolo [5, 1-c][1, 2, 4] triazine derivatives from new 5-aminopyrazoles. European journal of medicinal chemistry, 64, 464–476.
dc.relation.references6. Nitulescu, G., Draghici, C., & Olaru, O. (2013). New potential antitumor pyrazole derivatives: Synthesis and cytotoxic evaluation. International journal of molecular sciences, 14(11), 21805–21818.
dc.relation.references7. Heravi, M. M., & Talaei, B. (2015). Ketenes as privileged synthons in the syntheses of heterocyclic compounds Part 2: Five-membered heterocycles. In Advances in heterocyclic chemistry (Vol. 114, pp. 147-225). Academic Press.
dc.relation.references8. qfb, s. d. n. f. (2014). naphthoquinones: biological properties and synthesis of lawsone and derivatives-a structured review/naftoquinonas: propiedades biológicas y síntesis de lawsona y derivados-una revisión estructurada. Vitae, 21(3), 248.
dc.relation.references9. Wellington, K. W. (2015). Understanding cancer and the anticancer activities of naphthoquinones–a review. RSC Advances, 5(26), 20309-20338.
dc.relation.references10. El-Najjar, N., Gali-Muhtasib, H., Ketola, R. A., Vuorela, P., Urtti, A., & Vuorela, H. (2011). The chemical and biological activities of quinones: overview and implications in analytical detection. Phytochemistry Reviews, 10(3), 353.
dc.relation.references11. Liu, F. (2012). Synthesis of natural products and small molecules using quinones.
dc.relation.references12. Ansari, A., Ali, A., & Asif, M. (2017). biologically active pyrazole derivatives. New Journal of Chemistry, 41(1), 16-41.
dc.relation.references13. Li, Y. R., Li, C., Liu, J. C., Guo, M., Zhang, T. Y., Sun, L. P., & Piao, H. R. (2015). Synthesis and biological evaluation of 1, 3-diaryl pyrazole derivatives as potential antibacterial and antiinflammatory agents. Bioorganic & medicinal chemistry letters, 25(22), 5052–5057.
dc.relation.references14. Filimonov, D. A., Druzhilovskiy, D. S., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Dmitriev, A. V., & Poroikov, V. V. (2018). Computeraided prediction of biological activity spectra for chemical compounds: opportunities and limitations. Biomedical Chemistry: Research and Methods, 1(1), e00004-e00004.
dc.relation.references15. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 64, 4–17.
dc.relation.referencesen1. Phillips, R. M., Jaffar, M., Maitland, D. J., Loadman, P. M., Shnyder, S. D., Steans, G., & Stratford, I. J. (2004). Pharmacological and biological evaluation of a series of substituted 1, 4-naphthoquinone bioreductive drugs. Biochemical pharmacology, 68(11), 2107–2116.
dc.relation.referencesen2. Tandon, V. K., Singh, R. V., & Yadav, D. B. (2004). Synthesis and evaluation of novel 1, 4- naphthoquinone derivatives as antiviral, antifungal and anticancer agents. Bioorganic & medicinal chemistry letters, 14(11), 2901–2904.
dc.relation.referencesen3. Hassan, A. A., Mohamed, N. K., Ibrahim, Y. R., & Mourad, A. F. E. (1993). Chemical Interactions between Aminopyrazoles and 2, 3. Dicyano-1, 4-naphthoquinone. Liebigs Annalen der Chemie, 1993(6), 695–697.
dc.relation.referencesen4. Ibis, C., Tuyun, A. F., Bahar, H., Ayla, S. S., Stasevych, M. V., Musyanovych, R. Y., & Novikov, V. (2014). Nucleophilic substitution reactions of 1, 4- naphthoquinone and biologic properties of novel S-, S, S-, N-, and N, S-substituted 1, 4-naphthoquinone derivatives. Medicinal Chemistry Research, 23(4), 2140–2149.
dc.relation.referencesen5. Al-Adiwish, W. M., Tahir, M. I. M., Siti- Noor-Adnalizawati, A., Hashim, S. F., Ibrahim, N., & Yaacob, W. A. (2013). Synthesis, antibacterial activity and cytotoxicity of new fused pyrazolo [1, 5-a] pyrimidine and pyrazolo [5, 1-c][1, 2, 4] triazine derivatives from new 5-aminopyrazoles. European journal of medicinal chemistry, 64, 464–476.
dc.relation.referencesen6. Nitulescu, G., Draghici, C., & Olaru, O. (2013). New potential antitumor pyrazole derivatives: Synthesis and cytotoxic evaluation. International journal of molecular sciences, 14(11), 21805–21818.
dc.relation.referencesen7. Heravi, M. M., & Talaei, B. (2015). Ketenes as privileged synthons in the syntheses of heterocyclic compounds Part 2: Five-membered heterocycles. In Advances in heterocyclic chemistry (Vol. 114, pp. 147-225). Academic Press.
dc.relation.referencesen8. qfb, s. d. n. f. (2014). naphthoquinones: biological properties and synthesis of lawsone and derivatives-a structured review/naftoquinonas: propiedades biológicas y síntesis de lawsona y derivados-una revisión estructurada. Vitae, 21(3), 248.
dc.relation.referencesen9. Wellington, K. W. (2015). Understanding cancer and the anticancer activities of naphthoquinones–a review. RSC Advances, 5(26), 20309-20338.
dc.relation.referencesen10. El-Najjar, N., Gali-Muhtasib, H., Ketola, R. A., Vuorela, P., Urtti, A., & Vuorela, H. (2011). The chemical and biological activities of quinones: overview and implications in analytical detection. Phytochemistry Reviews, 10(3), 353.
dc.relation.referencesen11. Liu, F. (2012). Synthesis of natural products and small molecules using quinones.
dc.relation.referencesen12. Ansari, A., Ali, A., & Asif, M. (2017). biologically active pyrazole derivatives. New Journal of Chemistry, 41(1), 16-41.
dc.relation.referencesen13. Li, Y. R., Li, C., Liu, J. C., Guo, M., Zhang, T. Y., Sun, L. P., & Piao, H. R. (2015). Synthesis and biological evaluation of 1, 3-diaryl pyrazole derivatives as potential antibacterial and antiinflammatory agents. Bioorganic & medicinal chemistry letters, 25(22), 5052–5057.
dc.relation.referencesen14. Filimonov, D. A., Druzhilovskiy, D. S., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Dmitriev, A. V., & Poroikov, V. V. (2018). Computeraided prediction of biological activity spectra for chemical compounds: opportunities and limitations. Biomedical Chemistry: Research and Methods, 1(1), e00004-e00004.
dc.relation.referencesen15. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 64, 4–17.
dc.subject1
dc.subject4-нафтохінон
dc.subjectаміни
dc.subjectпіразол
dc.subjectреакція нуклеофільного заміщення
dc.subjectлікоподібні характеристики
dc.subjectпараметри Ліпінського
dc.subjectPASS Online
dc.subject1
dc.subject4-naphthoquinone
dc.subjectamines
dc.subjectpirazole
dc.subjectnucleophilic substitution reaction
dc.subjectdrug-like parameters
dc.subjectLipinski's parameters
dc.subjectPASS Online
dc.titleСинтез та прогнозування біологічної активності нових гетероциклічних n-похідних нафтохінону
dc.title.alternativeSynthesis and prediction of the biological activity of heterocyclic n-derivatives naphthoquinone
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v2n1_Polish_N_V-Synthesis_and_prediction_69-75.pdf
Size:
746.55 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v2n1_Polish_N_V-Synthesis_and_prediction_69-75__COVER.png
Size:
409.33 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Plain Text
Description: