Synthesis of Tween-Coated Silver Nanoparticles by a Plasma-Chemical Method: Catalytic and Antimicrobial Activities
dc.citation.epage | 303 | |
dc.citation.issue | 3 | |
dc.citation.spage | 297 | |
dc.contributor.affiliation | Ukrainian State University of Chemical Technology | |
dc.contributor.affiliation | National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” | |
dc.contributor.author | Skiba, Margarita | |
dc.contributor.author | Vorobyova, Viktoria | |
dc.contributor.author | Kovalenko, Igor | |
dc.contributor.author | Shakun, Anastasiia | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T08:54:39Z | |
dc.date.available | 2024-01-09T08:54:39Z | |
dc.date.created | 2020-03-16 | |
dc.date.issued | 2020-03-16 | |
dc.description.abstract | Стабільні наночастинки срібла було синтезовано простим, екологічно чистим, плазмохімічним методом з використанням нейонногенного Твін-80 (поліоксіетилен-(80)-сорбітан моноолеат) як стабілізуючого агента. Досліджено вплив концентрації Твін 80 на ефективність формування наночастинок срібла, їх середній розмір і стабільність. Синтезовані наночастинки срібла проявляють антибактеріальну активність на двох штамах бактерій. Наночастинки срібла показали високу каталітичну активність щодо відновлення п-нітрофенолу (4-НФ) до амінофенолу (4-АФ) у присутності NaBH4. | |
dc.description.abstract | Stable silver nanoparticles were rapidly synthesized by simple, eco-friendly atmospheric pressure plasma method using non-ionic Tween 80 (polyoxyethylene-( 80)-sorbitan monooleate) as capping agent. Influences of Tween 80 concentration on the formation efficiency of silver nanoparticle, their average size and stability have been studied. The synthesized silver nanoparticles had significant antibacterial activity on two strains of Gram bacteria. The AuNPs showed excellent catalytic activity for the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) in the presence of NaBH4. | |
dc.format.extent | 297-303 | |
dc.format.pages | 7 | |
dc.identifier.citation | Synthesis of Tween-Coated Silver Nanoparticles by a Plasma-Chemical Method: Catalytic and Antimicrobial Activities / Margarita Skiba, Viktoria Vorobyova, Igor Kovalenko, Anastasiia Shakun // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 3. — P. 297–303. | |
dc.identifier.citationen | Synthesis of Tween-Coated Silver Nanoparticles by a Plasma-Chemical Method: Catalytic and Antimicrobial Activities / Margarita Skiba, Viktoria Vorobyova, Igor Kovalenko, Anastasiia Shakun // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 3. — P. 297–303. | |
dc.identifier.doi | doi.org/10.23939/chcht14.03.297 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60680 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (14), 2020 | |
dc.relation.references | [1] Zhang X., Liu Z., Shen W., Gurunathan S.: Int. J. Mol. Sci., 2016, 17, 1534. https://doi.org/10.3390/ijms17091534 | |
dc.relation.references | [2] Abdelghany T., Al-Rajhi A., Al AbboudM. et al.: BioNanoSci., 2017, 8, 5. https://doi.org/10.1007/s12668-017-0413-3 | |
dc.relation.references | [3] Saito G., Akiyama T.: J. Nanomater., 2015, 16, 1. https://doi.org/10.1155/2015/123696 | |
dc.relation.references | [4]Mariotti D., Sankaran R.: J. Phys. D Appl. Phys., 2010, 43, 323001. https://doi.org/10.1088/0022-3727/43/32/323001 | |
dc.relation.references | [5] Jin S., Kim S., Lee S., Kim J.: J. Nanosci. Nanotechnol., 2014, 14, 8094. https://doi.org/10.1166/jnn.2014.9428 | |
dc.relation.references | [6] Hofft O., Endres F.: Phys. Chem. Chem. Phys., 2011, 13, 13472. https://doi.org/10.1039/C1CP20501C | |
dc.relation.references | [7] Lee S.-J., Lee H., Jeon K.-J. et al.: Nanoscale Res. Lett, 2016, 11, 344. https://doi.org/10.1186/s11671-016-1557-8 | |
dc.relation.references | [8] Saito G., Akiyama T.: J. Nanomater., 2015, 16, 1. https://doi.org/10.1155/2015/123696 | |
dc.relation.references | [9] Kelgenbaeva Z., Omurzak E., Ihara H. et al.: Phys. Status Solidi A, 2015, 212, 2951. https://doi.org/10.1002/pssa.201532502 | |
dc.relation.references | [10] Nakasugi Y., Saito G., Yamashita T., Akiyama T.: J. Appl. Phys., 2014, 115, 123303. https://doi.org/10.1063/1.4869126 | |
dc.relation.references | [11] Sabzehparvar M., Kiani F., Tabrizi N.:Mater. Today: Proceed., 2018, 5, 15821. https://doi.org/10.1016/j.matpr.2018.05.080 | |
dc.relation.references | [12] Lin L., Starostin S., Hessel V., Wang Q.: Chem. Eng. Sci., 2017, 168, 360. https://doi.org/10.1016/j.ces.2017.05.008 | |
dc.relation.references | [13] Hu Y., Li L., Zhang L., Lv Y.: Sensor. Actuat. B-Chem., 2017, 239, 1177. https://doi.org/10.1016/j.snb.2016.08.082 | |
dc.relation.references | [14] Pivovarov A., Kravchenko A., Tishchenko A. et al.: Russ. J. Gen. Chem., 2015, 85, 1339. https://doi.org/10.1134/s1070363215050497. | |
dc.relation.references | [15] SkibaM., Pivovarov A., Makarova A. et al.: East.-Eur. J. Enterprise Technol., 2017, 6, 59. https://doi.org/10.15587/1729-4061.2017.118914 | |
dc.relation.references | [16] Pivovarov О., Skіba М., Makarova А. et al.: Vopr. Khim. Khim. Tekhnol., 2017, 6, 82. | |
dc.relation.references | [17] SkibaM., Pivovarov A., Makarova A., Vorobyova V.: East.-Eur. J. Enterprise Technol., 2018, 2, 4. https://doi.org/10.15587/1729-4061.2018.127103 | |
dc.relation.references | [18] SkibaM., Pivovarov A., Makarova A. et al.: Сhem. J. Moldova, 2018, 13, 7. https://doi.org/10.19261cjm.2018.475 | |
dc.relation.references | [19] Skіba М., Pivovarov О., Makarova А., Parkhomenko V.: Vopr. Khim. Khim. Tekhnol., 2018, 3, 113. | |
dc.relation.references | [20] Skіba М., Vorobyova V., Pivovarov О. et al.: East.-Eur. J. Enterprise Technol., 2018, 5-6 . 51. https://doi.org/10.15587/1729-4061.2018.144602 | |
dc.relation.references | [21] Li H., Zhang A., Hu Y. et al.: Nanoscale Res. Lett., 2012, 7, 612. https://doi.org/10.1186/1556-276X-7-612 | |
dc.relation.references | [22] Le Ouay B., Stellacci F.: Nano Today, 2015, 10, 339. https://doi.org/10.1016/j.colsurfb.2018.06.027 | |
dc.relation.references | [23] Singha J., Mehta A., RawataM., Basu S.: J. Environ. Chem. Eng., 2018, 6, 1468. https://doi.org/10.1016/j.jece.2018.01.054 | |
dc.relation.references | [24] Joseph D., Lee H., Huh Y., Han Y.:Mater. Design, 2018, 160, 169. https://doi.org/10.1016/j.matdes.2018.09.003 | |
dc.relation.references | [25] Gangula A., Podila R., Karanam L. et al.: Langmuir, 2011, 27, 15268. https://doi.org/10.1021/la2034559 | |
dc.relation.references | [26] Sondi I., Salopek-Sondi B.: J. Colloid Interf. Sci., 2004, 275, 177. https://doi.org/10.1016/j.jcis.2004.02.012 | |
dc.relation.references | [27] Feng Q., Wu J., Chen G. et al.: J. Biomed. Mater. Res., 2000, 52, 662. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 | |
dc.relation.referencesen | [1] Zhang X., Liu Z., Shen W., Gurunathan S., Int. J. Mol. Sci., 2016, 17, 1534. https://doi.org/10.3390/ijms17091534 | |
dc.relation.referencesen | [2] Abdelghany T., Al-Rajhi A., Al AbboudM. et al., BioNanoSci., 2017, 8, 5. https://doi.org/10.1007/s12668-017-0413-3 | |
dc.relation.referencesen | [3] Saito G., Akiyama T., J. Nanomater., 2015, 16, 1. https://doi.org/10.1155/2015/123696 | |
dc.relation.referencesen | [4]Mariotti D., Sankaran R., J. Phys. D Appl. Phys., 2010, 43, 323001. https://doi.org/10.1088/0022-3727/43/32/323001 | |
dc.relation.referencesen | [5] Jin S., Kim S., Lee S., Kim J., J. Nanosci. Nanotechnol., 2014, 14, 8094. https://doi.org/10.1166/jnn.2014.9428 | |
dc.relation.referencesen | [6] Hofft O., Endres F., Phys. Chem. Chem. Phys., 2011, 13, 13472. https://doi.org/10.1039/P.1CP20501C | |
dc.relation.referencesen | [7] Lee S.-J., Lee H., Jeon K.-J. et al., Nanoscale Res. Lett, 2016, 11, 344. https://doi.org/10.1186/s11671-016-1557-8 | |
dc.relation.referencesen | [8] Saito G., Akiyama T., J. Nanomater., 2015, 16, 1. https://doi.org/10.1155/2015/123696 | |
dc.relation.referencesen | [9] Kelgenbaeva Z., Omurzak E., Ihara H. et al., Phys. Status Solidi A, 2015, 212, 2951. https://doi.org/10.1002/pssa.201532502 | |
dc.relation.referencesen | [10] Nakasugi Y., Saito G., Yamashita T., Akiyama T., J. Appl. Phys., 2014, 115, 123303. https://doi.org/10.1063/1.4869126 | |
dc.relation.referencesen | [11] Sabzehparvar M., Kiani F., Tabrizi N.:Mater. Today: Proceed., 2018, 5, 15821. https://doi.org/10.1016/j.matpr.2018.05.080 | |
dc.relation.referencesen | [12] Lin L., Starostin S., Hessel V., Wang Q., Chem. Eng. Sci., 2017, 168, 360. https://doi.org/10.1016/j.ces.2017.05.008 | |
dc.relation.referencesen | [13] Hu Y., Li L., Zhang L., Lv Y., Sensor. Actuat. B-Chem., 2017, 239, 1177. https://doi.org/10.1016/j.snb.2016.08.082 | |
dc.relation.referencesen | [14] Pivovarov A., Kravchenko A., Tishchenko A. et al., Russ. J. Gen. Chem., 2015, 85, 1339. https://doi.org/10.1134/s1070363215050497. | |
dc.relation.referencesen | [15] SkibaM., Pivovarov A., Makarova A. et al., East.-Eur. J. Enterprise Technol., 2017, 6, 59. https://doi.org/10.15587/1729-4061.2017.118914 | |
dc.relation.referencesen | [16] Pivovarov O., Skiba M., Makarova A. et al., Vopr. Khim. Khim. Tekhnol., 2017, 6, 82. | |
dc.relation.referencesen | [17] SkibaM., Pivovarov A., Makarova A., Vorobyova V., East.-Eur. J. Enterprise Technol., 2018, 2, 4. https://doi.org/10.15587/1729-4061.2018.127103 | |
dc.relation.referencesen | [18] SkibaM., Pivovarov A., Makarova A. et al., Shem. J. Moldova, 2018, 13, 7. https://doi.org/10.19261cjm.2018.475 | |
dc.relation.referencesen | [19] Skiba M., Pivovarov O., Makarova A., Parkhomenko V., Vopr. Khim. Khim. Tekhnol., 2018, 3, 113. | |
dc.relation.referencesen | [20] Skiba M., Vorobyova V., Pivovarov O. et al., East.-Eur. J. Enterprise Technol., 2018, 5-6 . 51. https://doi.org/10.15587/1729-4061.2018.144602 | |
dc.relation.referencesen | [21] Li H., Zhang A., Hu Y. et al., Nanoscale Res. Lett., 2012, 7, 612. https://doi.org/10.1186/1556-276X-7-612 | |
dc.relation.referencesen | [22] Le Ouay B., Stellacci F., Nano Today, 2015, 10, 339. https://doi.org/10.1016/j.colsurfb.2018.06.027 | |
dc.relation.referencesen | [23] Singha J., Mehta A., RawataM., Basu S., J. Environ. Chem. Eng., 2018, 6, 1468. https://doi.org/10.1016/j.jece.2018.01.054 | |
dc.relation.referencesen | [24] Joseph D., Lee H., Huh Y., Han Y.:Mater. Design, 2018, 160, 169. https://doi.org/10.1016/j.matdes.2018.09.003 | |
dc.relation.referencesen | [25] Gangula A., Podila R., Karanam L. et al., Langmuir, 2011, 27, 15268. https://doi.org/10.1021/la2034559 | |
dc.relation.referencesen | [26] Sondi I., Salopek-Sondi B., J. Colloid Interf. Sci., 2004, 275, 177. https://doi.org/10.1016/j.jcis.2004.02.012 | |
dc.relation.referencesen | [27] Feng Q., Wu J., Chen G. et al., J. Biomed. Mater. Res., 2000, 52, 662. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 | |
dc.relation.uri | https://doi.org/10.3390/ijms17091534 | |
dc.relation.uri | https://doi.org/10.1007/s12668-017-0413-3 | |
dc.relation.uri | https://doi.org/10.1155/2015/123696 | |
dc.relation.uri | https://doi.org/10.1088/0022-3727/43/32/323001 | |
dc.relation.uri | https://doi.org/10.1166/jnn.2014.9428 | |
dc.relation.uri | https://doi.org/10.1039/C1CP20501C | |
dc.relation.uri | https://doi.org/10.1186/s11671-016-1557-8 | |
dc.relation.uri | https://doi.org/10.1002/pssa.201532502 | |
dc.relation.uri | https://doi.org/10.1063/1.4869126 | |
dc.relation.uri | https://doi.org/10.1016/j.matpr.2018.05.080 | |
dc.relation.uri | https://doi.org/10.1016/j.ces.2017.05.008 | |
dc.relation.uri | https://doi.org/10.1016/j.snb.2016.08.082 | |
dc.relation.uri | https://doi.org/10.1134/s1070363215050497 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2017.118914 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2018.127103 | |
dc.relation.uri | https://doi.org/10.19261cjm.2018.475 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2018.144602 | |
dc.relation.uri | https://doi.org/10.1186/1556-276X-7-612 | |
dc.relation.uri | https://doi.org/10.1016/j.colsurfb.2018.06.027 | |
dc.relation.uri | https://doi.org/10.1016/j.jece.2018.01.054 | |
dc.relation.uri | https://doi.org/10.1016/j.matdes.2018.09.003 | |
dc.relation.uri | https://doi.org/10.1021/la2034559 | |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2004.02.012 | |
dc.relation.uri | https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Skіba M., Vorobyova V., Kovalenko I., Shakun A., 2020 | |
dc.subject | наночастинки срібла | |
dc.subject | плазмовий розряд | |
dc.subject | Твін-80 | |
dc.subject | антибактеріальна дія | |
dc.subject | каталітичне відновлення | |
dc.subject | 4-нітрофенол | |
dc.subject | silver nanoparticles | |
dc.subject | plasma discharge | |
dc.subject | Tween 80 | |
dc.subject | antibacterial | |
dc.subject | catalytic reduction | |
dc.subject | 4-nitrophenol | |
dc.title | Synthesis of Tween-Coated Silver Nanoparticles by a Plasma-Chemical Method: Catalytic and Antimicrobial Activities | |
dc.title.alternative | Одержання наночастинок срібла стабілізованих Твіном плазмохімічним способом: каталітичні та антимікробні властивості | |
dc.type | Article |
Files
License bundle
1 - 1 of 1