Extraneous diffusion kinetics of ammonium ions adsorption in the presence of other ions

dc.citation.epage38
dc.citation.issue1
dc.citation.spage34
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationPzeszów University of Technology
dc.contributor.authorSabadash, Vira
dc.contributor.authorGumnitsky, Jaroslaw
dc.contributor.authorPetrus, Roman
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-05-04T08:06:36Z
dc.date.available2023-05-04T08:06:36Z
dc.date.created2022-06-01
dc.date.issued2022-06-01
dc.description.abstractThe article presents the results of the study of the kinetics of ions adsorption from multi-component mixtures. The isotherms of sorption of ammonium nitrogen in the presence of phosphates indicate a decrease in the exchange capacity of zeolite due to its competition for active absorption centres. This study was carried out with two ions of inorganic nature. In the presence of the third organic component in the solution (protein substance – albumin), the sorption capacity of zeolite decreases even more in comparison with ammonium ions. It was found that in the presence of phosphates, the equilibrium capacity of zeolite towards ammonium decreases by about 30 %; in the three-component system the reduction reaches about 70 %.
dc.format.extent34-38
dc.format.pages5
dc.identifier.citationSabadash V. Extraneous diffusion kinetics of ammonium ions adsorption in the presence of other ions / Vira Sabadash, Jaroslaw Gumnitsky, Roman Petrus // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 1. — P. 34–38.
dc.identifier.citationenSabadash V. Extraneous diffusion kinetics of ammonium ions adsorption in the presence of other ions / Vira Sabadash, Jaroslaw Gumnitsky, Roman Petrus // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 7. — No 1. — P. 34–38.
dc.identifier.doidoi.org/10.23939/ep2022.01.034
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59017
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 1 (7), 2022
dc.relation.referencesBernal, M. P., Lopez-Real, J. M., & Scott, K. M. (1993).
dc.relation.referencesApplication of natural zeolites for the reduction of
dc.relation.referencesammonia emissions during the composting of organic
dc.relation.referenceswastes in a laboratory composting simulator. Bioresource
dc.relation.referencesTechnology, 43(1), 35–39. doi: https://doi.org/10.1016/0960-8524(93)90079-Q
dc.relation.referencesde Haro Martí, M. E., Neibling, W. H., Chen, L., & Chahine, M.
dc.relation.references(2020). On-farm testing of a zeolite filter to capture
dc.relation.referencesammonia and odors from a dairy manure flushing
dc.relation.referencessystem. Transactions of the ASABE, 63(3), 597–607. doi:
dc.relation.referenceshttps://doi: 10.13031/trans.13556
dc.relation.referencesHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019).
dc.relation.referencesStatics and kinetics of albumin adsorption by natural
dc.relation.referenceszeolite. Chemistry & Chemical Technology, 13(1), 95–100.
dc.relation.referencesdoi: https://doi.org/10.23939/chcht13.01.095
dc.relation.referencesLin, H., Wu, X., & Zhu, J. (2016). Kinetics, equilibrium, and
dc.relation.referencesthermodynamics of ammonium sorption from swine
dc.relation.referencesmanure by natural chabazite. Separation Science and
dc.relation.referencesTechnology, 51(2), 202–213. doi: https://doi.org/10.1080/01496395.2015.1086379
dc.relation.referencesMuscarella, S. M., Badalucco, L., Cano, B., Laudicina, V. A.,
dc.relation.references& Mannina, G. (2021). Ammonium adsorption, desorption
dc.relation.referencesand recovery by acid and alkaline treated zeolite.
dc.relation.referencesBioresource Technology, 341, 125812. doi: https://doi.org/10.1016/j.biortech.2021.125812
dc.relation.referencesSabadash, V., Gumnitsky, Y., & Liuta, O. (2020). Investigation of
dc.relation.referencesthe process of ammonium ion adsorption by natural and
dc.relation.referencessynthetic sorbents by methods of multidimensional cluster
dc.relation.referencesanalysis. Environmental Problems, 5(2), 2020, 113–118.
dc.relation.referencesdoi: https://doi.org/10.23939/ep2020.02.113
dc.relation.referencesSabadash, V., Gumnitsky, J., Lyuta, O., & Pochapska, I.
dc.relation.references(2018). Thermodynamics of (NH4+) cation adsorption
dc.relation.referencesunder static conditions. Chemistry & Chemical
dc.relation.referencesTechnology, 12(2), 143–146. doi: https://doi.org/10.23939/chcht12.02.143
dc.relation.referencesSabadash, V., Gumnitsky, J., & Hertsyk, T (2018). Thermodynamic
dc.relation.referencesstudies on the adsorption behavior of ammonium on
dc.relation.referenceszeolite. Proceedings of the 8th International Youth Science
dc.relation.referencesForum “Litteris et Artibus”, 22–24 November, 2018, Lviv:
dc.relation.referencesLviv Polytechnic National University, 2018, pp. 190–193.
dc.relation.referencesdoi: https://doi.org/10.23939/lea2018.01.190
dc.relation.referencesSoudejani, H. T., Kazemian, H., Inglezakis, V. J., & Zorpas, A. A.
dc.relation.references(2019). Application of zeolites in organic waste composting:
dc.relation.referencesA review. Biocatalysis and Agricultural Biotechnology, 22, 101396. doi: https://doi.org/10.1016/j.bcab.2019.101396
dc.relation.referencesWang, X., Bai, Z., Yao, Y., Gao, B., Chadwick, D., Chen, Q.,
dc.relation.references& Ma, L. (2018). Composting with negative pressure aeration
dc.relation.referencesfor the mitigation of ammonia emissions and global
dc.relation.referenceswarming potential. Journal of Cleaner Production, 195, 448–457. doi: https://doi.org/10.1016/j.jclepro.2018.05.146
dc.relation.referencesWu, K., Li, Y., Liu, T., Zhang, N., Wang, M., Yang, S., & Jin, P.
dc.relation.references(2019). Evaluation of the adsorption of ammoniumnitrogen and phosphate on a granular composite adsorbent
dc.relation.referencesderived from zeolite. Environmental Science and Pollution
dc.relation.referencesResearch, 26(17), 17632–17643. doi: https://doi.org/10.1007/s11356-019-05069-2
dc.relation.referencesenBernal, M. P., Lopez-Real, J. M., & Scott, K. M. (1993).
dc.relation.referencesenApplication of natural zeolites for the reduction of
dc.relation.referencesenammonia emissions during the composting of organic
dc.relation.referencesenwastes in a laboratory composting simulator. Bioresource
dc.relation.referencesenTechnology, 43(1), 35–39. doi: https://doi.org/10.1016/0960-8524(93)90079-Q
dc.relation.referencesende Haro Martí, M. E., Neibling, W. H., Chen, L., & Chahine, M.
dc.relation.referencesen(2020). On-farm testing of a zeolite filter to capture
dc.relation.referencesenammonia and odors from a dairy manure flushing
dc.relation.referencesensystem. Transactions of the ASABE, 63(3), 597–607. doi:
dc.relation.referencesenhttps://doi: 10.13031/trans.13556
dc.relation.referencesenHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019).
dc.relation.referencesenStatics and kinetics of albumin adsorption by natural
dc.relation.referencesenzeolite. Chemistry & Chemical Technology, 13(1), 95–100.
dc.relation.referencesendoi: https://doi.org/10.23939/chcht13.01.095
dc.relation.referencesenLin, H., Wu, X., & Zhu, J. (2016). Kinetics, equilibrium, and
dc.relation.referencesenthermodynamics of ammonium sorption from swine
dc.relation.referencesenmanure by natural chabazite. Separation Science and
dc.relation.referencesenTechnology, 51(2), 202–213. doi: https://doi.org/10.1080/01496395.2015.1086379
dc.relation.referencesenMuscarella, S. M., Badalucco, L., Cano, B., Laudicina, V. A.,
dc.relation.referencesen& Mannina, G. (2021). Ammonium adsorption, desorption
dc.relation.referencesenand recovery by acid and alkaline treated zeolite.
dc.relation.referencesenBioresource Technology, 341, 125812. doi: https://doi.org/10.1016/j.biortech.2021.125812
dc.relation.referencesenSabadash, V., Gumnitsky, Y., & Liuta, O. (2020). Investigation of
dc.relation.referencesenthe process of ammonium ion adsorption by natural and
dc.relation.referencesensynthetic sorbents by methods of multidimensional cluster
dc.relation.referencesenanalysis. Environmental Problems, 5(2), 2020, 113–118.
dc.relation.referencesendoi: https://doi.org/10.23939/ep2020.02.113
dc.relation.referencesenSabadash, V., Gumnitsky, J., Lyuta, O., & Pochapska, I.
dc.relation.referencesen(2018). Thermodynamics of (NH4+) cation adsorption
dc.relation.referencesenunder static conditions. Chemistry & Chemical
dc.relation.referencesenTechnology, 12(2), 143–146. doi: https://doi.org/10.23939/chcht12.02.143
dc.relation.referencesenSabadash, V., Gumnitsky, J., & Hertsyk, T (2018). Thermodynamic
dc.relation.referencesenstudies on the adsorption behavior of ammonium on
dc.relation.referencesenzeolite. Proceedings of the 8th International Youth Science
dc.relation.referencesenForum "Litteris et Artibus", 22–24 November, 2018, Lviv:
dc.relation.referencesenLviv Polytechnic National University, 2018, pp. 190–193.
dc.relation.referencesendoi: https://doi.org/10.23939/lea2018.01.190
dc.relation.referencesenSoudejani, H. T., Kazemian, H., Inglezakis, V. J., & Zorpas, A. A.
dc.relation.referencesen(2019). Application of zeolites in organic waste composting:
dc.relation.referencesenA review. Biocatalysis and Agricultural Biotechnology, 22, 101396. doi: https://doi.org/10.1016/j.bcab.2019.101396
dc.relation.referencesenWang, X., Bai, Z., Yao, Y., Gao, B., Chadwick, D., Chen, Q.,
dc.relation.referencesen& Ma, L. (2018). Composting with negative pressure aeration
dc.relation.referencesenfor the mitigation of ammonia emissions and global
dc.relation.referencesenwarming potential. Journal of Cleaner Production, 195, 448–457. doi: https://doi.org/10.1016/j.jclepro.2018.05.146
dc.relation.referencesenWu, K., Li, Y., Liu, T., Zhang, N., Wang, M., Yang, S., & Jin, P.
dc.relation.referencesen(2019). Evaluation of the adsorption of ammoniumnitrogen and phosphate on a granular composite adsorbent
dc.relation.referencesenderived from zeolite. Environmental Science and Pollution
dc.relation.referencesenResearch, 26(17), 17632–17643. doi: https://doi.org/10.1007/s11356-019-05069-2
dc.relation.urihttps://doi.org/10.1016/0960-8524(93)90079-Q
dc.relation.urihttps://doi:
dc.relation.urihttps://doi.org/10.23939/chcht13.01.095
dc.relation.urihttps://doi.org/10.1080/01496395.2015.1086379
dc.relation.urihttps://doi.org/10.1016/j.biortech.2021.125812
dc.relation.urihttps://doi.org/10.23939/ep2020.02.113
dc.relation.urihttps://doi.org/10.23939/chcht12.02.143
dc.relation.urihttps://doi.org/10.23939/lea2018.01.190
dc.relation.urihttps://doi.org/10.1016/j.bcab.2019.101396
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2018.05.146
dc.relation.urihttps://doi.org/10.1007/s11356-019-05069-2
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Sabadash V., Gumnitsky J., Petrus R., 2022
dc.subjectadsorption
dc.subjectsorbents
dc.subjectwastewaters
dc.subjectammonium ions
dc.subjectalbumin
dc.subjectphosphates
dc.titleExtraneous diffusion kinetics of ammonium ions adsorption in the presence of other ions
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v7n1_Sabadash_V-Extraneous_diffusion_kinetics_34-38.pdf
Size:
219.52 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v7n1_Sabadash_V-Extraneous_diffusion_kinetics_34-38__COVER.png
Size:
1.11 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: