Особливості модифікування крохмалю для створення полімерних композитів
dc.citation.epage | 149 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Chemistry, Technology and Application of Substances | |
dc.citation.spage | 145 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Куліш, Б. І. | |
dc.contributor.author | Левицький, Б. В. | |
dc.contributor.author | Масюк, А. С. | |
dc.contributor.author | Левицький, В. Є. | |
dc.contributor.author | Земке, В. М. | |
dc.contributor.author | Kulish, B. I. | |
dc.contributor.author | Levytskyi, B. V. | |
dc.contributor.author | Masyuk, A. S. | |
dc.contributor.author | Levytskyi, V. Ye. | |
dc.contributor.author | Zemke, V. M. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-05T08:12:28Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Досліджено фізико-хімічні закономірності взаємодій у системі крохмаль–гліцерин–епоксидована соєва олива під дією ультразвуку. На підставі реологічних кривих виявлено вплив пластифікаторів на в’язкість систем гліцерин–крохмаль залежно від швидкості зсуву, часу витримки за певної температури та природи крохмалю. На підставі ІЧ спектроскопічних досліджень підтвержено наявність взаємодій між компонентами системи. За допомогою вологопоглинання визначено вплив природи пластифікатора на гідрофільність модифікованого крохмалю. | |
dc.description.abstract | The physicochemical regularities of interactions in the starch-glycerol-epoxidized soybean oil system under the influence of ultrasound were investigated. On the basis of rheological curves, the effect of plasticizers on the viscosity of glycerin-starch systems was revealed, depending on the shear rate, time of exposure at temperature, and the nature of starch. On the basis of IR spectroscopic studies, the existence of interactions between the components of the system was confirmed. With the help of moisture absorption, the influence of the nature of the plasticizer on the hydrophilicity of the modified starch was determined. | |
dc.format.extent | 145-149 | |
dc.format.pages | 5 | |
dc.identifier.citation | Особливості модифікування крохмалю для створення полімерних композитів / Б. І. Куліш, Б. В. Левицький, А. С. Масюк, В. Є. Левицький, В. М. Земке // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Том 6. — № 2. — С. 145–149. | |
dc.identifier.citationen | Features of starch modification for the creation of polymer composites / B. I. Kulish, B. V. Levytskyi, A. S. Masyuk, V. Ye. Levytskyi, V. M. Zemke // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 145–149. | |
dc.identifier.doi | doi.org/10.23939/ctas2023.02.145 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63676 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (6), 2023 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (6), 2023 | |
dc.relation.references | 1. Lee Tin Sin, Bee Soo Tueen Polylactic Acid 2nd Edition. A Practical Guide for the Processing, Manufacturing, and Applications of PLA. - Oxford:William Andrew, 2019. - 422 p. | |
dc.relation.references | 2. Maria Laura, Di Lorenzo RenéAndrosch Industrial Applications of Poly(lactic acid). - Cham:Springer, 2018. -228 p. https://doi.org/10.1007/978-3-319-75459-8 | |
dc.relation.references | 3. Ranakoti, L.; Gangil, B.; Mishra, S.K.; Singh, T.; Sharma, S.; Ilyas, R.A.; El-Khatib, S. (2022) Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials. 15, 4312. https://doi.org/10.3390/ma15124312 | |
dc.relation.references | 4. Casalini T, Rossi F, Castrovinci A and Perale G (2019) A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front. Bioeng. Biotechnol. 7:259. doi: 10.3389/fbioe.2019.00259 https://doi.org/10.3389/fbioe.2019.00259 | |
dc.relation.references | 5. Kotiba Hamada, Mosab Kaseemb, Muhammad Ayyoobd, Jinho Jooa, Fawaz Deric (2018) Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science. 85. Р. 83-127. https://doi.org/10.1016/j.progpolymsci.2018.07.001 | |
dc.relation.references | 6. Jayarathna, S. Andersson, M.; Andersson, R. (2022) Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers, 14, 4557. https://doi.org/10.3390/polym14214557 | |
dc.relation.references | 7. M. Yu, Y. Zheng and J. Tian (2020) Study on the biodegradability of modified starch/polylactic acid (PLA) composite materials, RSC Adv., 10, 26298 DOI: 10.1039/D0RA00274G https://doi.org/10.1039/D0RA00274G | |
dc.relation.references | 8. Farahnaky, A., Saberi, B. and Majzoobi, M. (2013), Glycerol on Properties of Wheat Starch Films. J Texture Stud, 44: 176-186. https://doi.org/10.1111/jtxs.12007 | |
dc.relation.references | 9. Zhu Xiong, Yong Yang, Jianxiang Feng, Xiaomin Zhang, Chuanzhi Zhang, Zhaobin Tang, Jin Zhu (2013) Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil, Carbohydrate Polymers, 92, 810-816. https://doi.org/10.1016/j.carbpol.2012.09.007 | |
dc.relation.references | 10. Muller J, González-Martínez C, Chiralt A. (2017) Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials (Basel), 10(8), 952. doi: 10.3390/ma10080952. https://doi.org/10.3390/ma10080952 | |
dc.relation.references | 11. Kulish B.I., Kechur D.I., Masyuk A.S., Levytskyi V.E. (2022) Peculiarities of the effect of epoxidized soybean oil on the properties of polylactide materials, Chemistry, technology of substances and their application, 5, (2), 202-207. https://doi.org/10.23939/ctas2022.01.202 | |
dc.relation.references | 12. Masyuk A., Kechur D., Levytskyi V., Kulish B. (2022) Starch-containing polylactide nanocomposites, Nanomaterials: applications & properties : proceedings of the 2022 IEEE 12th International conference, Krakow, 11-16 September 2022. - 2022. - C. NEE15-1-NEE15-4. https://doi.org/10.1109/NAP55339.2022.9934202 | |
dc.relation.references | 13. Masyuk A. S., Levytskyi V. E., Kechur D. I., Kulish B. I., Katruk D. S. (2022) Influence of calcium carbonate on the operational properties of polylactide composites, Chemistry, Technology and Application of Substances substances and their application,. 5 (1), 180-185. https://doi.org/10.23939/ctas2022.01.180 | |
dc.relation.referencesen | 1. Lee Tin Sin, Bee Soo Tueen Polylactic Acid 2nd Edition. A Practical Guide for the Processing, Manufacturing, and Applications of PLA, Oxford:William Andrew, 2019, 422 p. | |
dc.relation.referencesen | 2. Maria Laura, Di Lorenzo RenéAndrosch Industrial Applications of Poly(lactic acid), Cham:Springer, 2018. -228 p. https://doi.org/10.1007/978-3-319-75459-8 | |
dc.relation.referencesen | 3. Ranakoti, L.; Gangil, B.; Mishra, S.K.; Singh, T.; Sharma, S.; Ilyas, R.A.; El-Khatib, S. (2022) Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials. 15, 4312. https://doi.org/10.3390/ma15124312 | |
dc.relation.referencesen | 4. Casalini T, Rossi F, Castrovinci A and Perale G (2019) A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front. Bioeng. Biotechnol. 7:259. doi: 10.3389/fbioe.2019.00259 https://doi.org/10.3389/fbioe.2019.00259 | |
dc.relation.referencesen | 5. Kotiba Hamada, Mosab Kaseemb, Muhammad Ayyoobd, Jinho Jooa, Fawaz Deric (2018) Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science. 85. R. 83-127. https://doi.org/10.1016/j.progpolymsci.2018.07.001 | |
dc.relation.referencesen | 6. Jayarathna, S. Andersson, M.; Andersson, R. (2022) Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers, 14, 4557. https://doi.org/10.3390/polym14214557 | |
dc.relation.referencesen | 7. M. Yu, Y. Zheng and J. Tian (2020) Study on the biodegradability of modified starch/polylactic acid (PLA) composite materials, RSC Adv., 10, 26298 DOI: 10.1039/D0RA00274G https://doi.org/10.1039/D0RA00274G | |
dc.relation.referencesen | 8. Farahnaky, A., Saberi, B. and Majzoobi, M. (2013), Glycerol on Properties of Wheat Starch Films. J Texture Stud, 44: 176-186. https://doi.org/10.1111/jtxs.12007 | |
dc.relation.referencesen | 9. Zhu Xiong, Yong Yang, Jianxiang Feng, Xiaomin Zhang, Chuanzhi Zhang, Zhaobin Tang, Jin Zhu (2013) Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil, Carbohydrate Polymers, 92, 810-816. https://doi.org/10.1016/j.carbpol.2012.09.007 | |
dc.relation.referencesen | 10. Muller J, González-Martínez C, Chiralt A. (2017) Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials (Basel), 10(8), 952. doi: 10.3390/ma10080952. https://doi.org/10.3390/ma10080952 | |
dc.relation.referencesen | 11. Kulish B.I., Kechur D.I., Masyuk A.S., Levytskyi V.E. (2022) Peculiarities of the effect of epoxidized soybean oil on the properties of polylactide materials, Chemistry, technology of substances and their application, 5, (2), 202-207. https://doi.org/10.23939/ctas2022.01.202 | |
dc.relation.referencesen | 12. Masyuk A., Kechur D., Levytskyi V., Kulish B. (2022) Starch-containing polylactide nanocomposites, Nanomaterials: applications & properties : proceedings of the 2022 IEEE 12th International conference, Krakow, 11-16 September 2022, 2022, C. NEE15-1-NEE15-4. https://doi.org/10.1109/NAP55339.2022.9934202 | |
dc.relation.referencesen | 13. Masyuk A. S., Levytskyi V. E., Kechur D. I., Kulish B. I., Katruk D. S. (2022) Influence of calcium carbonate on the operational properties of polylactide composites, Chemistry, Technology and Application of Substances substances and their application,. 5 (1), 180-185. https://doi.org/10.23939/ctas2022.01.180 | |
dc.relation.uri | https://doi.org/10.1007/978-3-319-75459-8 | |
dc.relation.uri | https://doi.org/10.3390/ma15124312 | |
dc.relation.uri | https://doi.org/10.3389/fbioe.2019.00259 | |
dc.relation.uri | https://doi.org/10.1016/j.progpolymsci.2018.07.001 | |
dc.relation.uri | https://doi.org/10.3390/polym14214557 | |
dc.relation.uri | https://doi.org/10.1039/D0RA00274G | |
dc.relation.uri | https://doi.org/10.1111/jtxs.12007 | |
dc.relation.uri | https://doi.org/10.1016/j.carbpol.2012.09.007 | |
dc.relation.uri | https://doi.org/10.3390/ma10080952 | |
dc.relation.uri | https://doi.org/10.23939/ctas2022.01.202 | |
dc.relation.uri | https://doi.org/10.1109/NAP55339.2022.9934202 | |
dc.relation.uri | https://doi.org/10.23939/ctas2022.01.180 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | крохмаль | |
dc.subject | гліцерин | |
dc.subject | епоксидована соєва олива | |
dc.subject | пластифікування | |
dc.subject | ультразвук | |
dc.subject | starch | |
dc.subject | glycerin | |
dc.subject | epoxidized soybean oil | |
dc.subject | plasticization | |
dc.subject | ultrasound | |
dc.title | Особливості модифікування крохмалю для створення полімерних композитів | |
dc.title.alternative | Features of starch modification for the creation of polymer composites | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1