Особливості модифікування крохмалю для створення полімерних композитів

dc.citation.epage149
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage145
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКуліш, Б. І.
dc.contributor.authorЛевицький, Б. В.
dc.contributor.authorМасюк, А. С.
dc.contributor.authorЛевицький, В. Є.
dc.contributor.authorЗемке, В. М.
dc.contributor.authorKulish, B. I.
dc.contributor.authorLevytskyi, B. V.
dc.contributor.authorMasyuk, A. S.
dc.contributor.authorLevytskyi, V. Ye.
dc.contributor.authorZemke, V. M.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:12:28Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractДосліджено фізико-хімічні закономірності взаємодій у системі крохмаль–гліцерин–епоксидована соєва олива під дією ультразвуку. На підставі реологічних кривих виявлено вплив пластифікаторів на в’язкість систем гліцерин–крохмаль залежно від швидкості зсуву, часу витримки за певної температури та природи крохмалю. На підставі ІЧ спектроскопічних досліджень підтвержено наявність взаємодій між компонентами системи. За допомогою вологопоглинання визначено вплив природи пластифікатора на гідрофільність модифікованого крохмалю.
dc.description.abstractThe physicochemical regularities of interactions in the starch-glycerol-epoxidized soybean oil system under the influence of ultrasound were investigated. On the basis of rheological curves, the effect of plasticizers on the viscosity of glycerin-starch systems was revealed, depending on the shear rate, time of exposure at temperature, and the nature of starch. On the basis of IR spectroscopic studies, the existence of interactions between the components of the system was confirmed. With the help of moisture absorption, the influence of the nature of the plasticizer on the hydrophilicity of the modified starch was determined.
dc.format.extent145-149
dc.format.pages5
dc.identifier.citationОсобливості модифікування крохмалю для створення полімерних композитів / Б. І. Куліш, Б. В. Левицький, А. С. Масюк, В. Є. Левицький, В. М. Земке // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Том 6. — № 2. — С. 145–149.
dc.identifier.citationenFeatures of starch modification for the creation of polymer composites / B. I. Kulish, B. V. Levytskyi, A. S. Masyuk, V. Ye. Levytskyi, V. M. Zemke // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 2. — P. 145–149.
dc.identifier.doidoi.org/10.23939/ctas2023.02.145
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63676
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (6), 2023
dc.relation.references1. Lee Tin Sin, Bee Soo Tueen Polylactic Acid 2nd Edition. A Practical Guide for the Processing, Manufacturing, and Applications of PLA. - Oxford:William Andrew, 2019. - 422 p.
dc.relation.references2. Maria Laura, Di Lorenzo RenéAndrosch Industrial Applications of Poly(lactic acid). - Cham:Springer, 2018. -228 p. https://doi.org/10.1007/978-3-319-75459-8
dc.relation.references3. Ranakoti, L.; Gangil, B.; Mishra, S.K.; Singh, T.; Sharma, S.; Ilyas, R.A.; El-Khatib, S. (2022) Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials. 15, 4312. https://doi.org/10.3390/ma15124312
dc.relation.references4. Casalini T, Rossi F, Castrovinci A and Perale G (2019) A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front. Bioeng. Biotechnol. 7:259. doi: 10.3389/fbioe.2019.00259 https://doi.org/10.3389/fbioe.2019.00259
dc.relation.references5. Kotiba Hamada, Mosab Kaseemb, Muhammad Ayyoobd, Jinho Jooa, Fawaz Deric (2018) Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science. 85. Р. 83-127. https://doi.org/10.1016/j.progpolymsci.2018.07.001
dc.relation.references6. Jayarathna, S. Andersson, M.; Andersson, R. (2022) Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers, 14, 4557. https://doi.org/10.3390/polym14214557
dc.relation.references7. M. Yu, Y. Zheng and J. Tian (2020) Study on the biodegradability of modified starch/polylactic acid (PLA) composite materials, RSC Adv., 10, 26298 DOI: 10.1039/D0RA00274G https://doi.org/10.1039/D0RA00274G
dc.relation.references8. Farahnaky, A., Saberi, B. and Majzoobi, M. (2013), Glycerol on Properties of Wheat Starch Films. J Texture Stud, 44: 176-186. https://doi.org/10.1111/jtxs.12007
dc.relation.references9. Zhu Xiong, Yong Yang, Jianxiang Feng, Xiaomin Zhang, Chuanzhi Zhang, Zhaobin Tang, Jin Zhu (2013) Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil, Carbohydrate Polymers, 92, 810-816. https://doi.org/10.1016/j.carbpol.2012.09.007
dc.relation.references10. Muller J, González-Martínez C, Chiralt A. (2017) Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials (Basel), 10(8), 952. doi: 10.3390/ma10080952. https://doi.org/10.3390/ma10080952
dc.relation.references11. Kulish B.I., Kechur D.I., Masyuk A.S., Levytskyi V.E. (2022) Peculiarities of the effect of epoxidized soybean oil on the properties of polylactide materials, Chemistry, technology of substances and their application, 5, (2), 202-207. https://doi.org/10.23939/ctas2022.01.202
dc.relation.references12. Masyuk A., Kechur D., Levytskyi V., Kulish B. (2022) Starch-containing polylactide nanocomposites, Nanomaterials: applications & properties : proceedings of the 2022 IEEE 12th International conference, Krakow, 11-16 September 2022. - 2022. - C. NEE15-1-NEE15-4. https://doi.org/10.1109/NAP55339.2022.9934202
dc.relation.references13. Masyuk A. S., Levytskyi V. E., Kechur D. I., Kulish B. I., Katruk D. S. (2022) Influence of calcium carbonate on the operational properties of polylactide composites, Chemistry, Technology and Application of Substances substances and their application,. 5 (1), 180-185. https://doi.org/10.23939/ctas2022.01.180
dc.relation.referencesen1. Lee Tin Sin, Bee Soo Tueen Polylactic Acid 2nd Edition. A Practical Guide for the Processing, Manufacturing, and Applications of PLA, Oxford:William Andrew, 2019, 422 p.
dc.relation.referencesen2. Maria Laura, Di Lorenzo RenéAndrosch Industrial Applications of Poly(lactic acid), Cham:Springer, 2018. -228 p. https://doi.org/10.1007/978-3-319-75459-8
dc.relation.referencesen3. Ranakoti, L.; Gangil, B.; Mishra, S.K.; Singh, T.; Sharma, S.; Ilyas, R.A.; El-Khatib, S. (2022) Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials. 15, 4312. https://doi.org/10.3390/ma15124312
dc.relation.referencesen4. Casalini T, Rossi F, Castrovinci A and Perale G (2019) A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front. Bioeng. Biotechnol. 7:259. doi: 10.3389/fbioe.2019.00259 https://doi.org/10.3389/fbioe.2019.00259
dc.relation.referencesen5. Kotiba Hamada, Mosab Kaseemb, Muhammad Ayyoobd, Jinho Jooa, Fawaz Deric (2018) Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science. 85. R. 83-127. https://doi.org/10.1016/j.progpolymsci.2018.07.001
dc.relation.referencesen6. Jayarathna, S. Andersson, M.; Andersson, R. (2022) Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers, 14, 4557. https://doi.org/10.3390/polym14214557
dc.relation.referencesen7. M. Yu, Y. Zheng and J. Tian (2020) Study on the biodegradability of modified starch/polylactic acid (PLA) composite materials, RSC Adv., 10, 26298 DOI: 10.1039/D0RA00274G https://doi.org/10.1039/D0RA00274G
dc.relation.referencesen8. Farahnaky, A., Saberi, B. and Majzoobi, M. (2013), Glycerol on Properties of Wheat Starch Films. J Texture Stud, 44: 176-186. https://doi.org/10.1111/jtxs.12007
dc.relation.referencesen9. Zhu Xiong, Yong Yang, Jianxiang Feng, Xiaomin Zhang, Chuanzhi Zhang, Zhaobin Tang, Jin Zhu (2013) Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil, Carbohydrate Polymers, 92, 810-816. https://doi.org/10.1016/j.carbpol.2012.09.007
dc.relation.referencesen10. Muller J, González-Martínez C, Chiralt A. (2017) Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials (Basel), 10(8), 952. doi: 10.3390/ma10080952. https://doi.org/10.3390/ma10080952
dc.relation.referencesen11. Kulish B.I., Kechur D.I., Masyuk A.S., Levytskyi V.E. (2022) Peculiarities of the effect of epoxidized soybean oil on the properties of polylactide materials, Chemistry, technology of substances and their application, 5, (2), 202-207. https://doi.org/10.23939/ctas2022.01.202
dc.relation.referencesen12. Masyuk A., Kechur D., Levytskyi V., Kulish B. (2022) Starch-containing polylactide nanocomposites, Nanomaterials: applications & properties : proceedings of the 2022 IEEE 12th International conference, Krakow, 11-16 September 2022, 2022, C. NEE15-1-NEE15-4. https://doi.org/10.1109/NAP55339.2022.9934202
dc.relation.referencesen13. Masyuk A. S., Levytskyi V. E., Kechur D. I., Kulish B. I., Katruk D. S. (2022) Influence of calcium carbonate on the operational properties of polylactide composites, Chemistry, Technology and Application of Substances substances and their application,. 5 (1), 180-185. https://doi.org/10.23939/ctas2022.01.180
dc.relation.urihttps://doi.org/10.1007/978-3-319-75459-8
dc.relation.urihttps://doi.org/10.3390/ma15124312
dc.relation.urihttps://doi.org/10.3389/fbioe.2019.00259
dc.relation.urihttps://doi.org/10.1016/j.progpolymsci.2018.07.001
dc.relation.urihttps://doi.org/10.3390/polym14214557
dc.relation.urihttps://doi.org/10.1039/D0RA00274G
dc.relation.urihttps://doi.org/10.1111/jtxs.12007
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2012.09.007
dc.relation.urihttps://doi.org/10.3390/ma10080952
dc.relation.urihttps://doi.org/10.23939/ctas2022.01.202
dc.relation.urihttps://doi.org/10.1109/NAP55339.2022.9934202
dc.relation.urihttps://doi.org/10.23939/ctas2022.01.180
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectкрохмаль
dc.subjectгліцерин
dc.subjectепоксидована соєва олива
dc.subjectпластифікування
dc.subjectультразвук
dc.subjectstarch
dc.subjectglycerin
dc.subjectepoxidized soybean oil
dc.subjectplasticization
dc.subjectultrasound
dc.titleОсобливості модифікування крохмалю для створення полімерних композитів
dc.title.alternativeFeatures of starch modification for the creation of polymer composites
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v6n2_Kulish_B_I-Features_of_starch_modification_145-149.pdf
Size:
546.86 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v6n2_Kulish_B_I-Features_of_starch_modification_145-149__COVER.png
Size:
461.64 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.91 KB
Format:
Plain Text
Description: