Analysis of the most common damages in reinforced concrete structures: a review

dc.citation.epage42
dc.citation.issue1
dc.citation.spage35
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБліхарський, Я. З.
dc.contributor.authorКопійка, Н. С.
dc.contributor.authorBlikharskyy, Yaroslav
dc.contributor.authorKopiika, Nadiia
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-04-24T08:11:56Z
dc.date.available2023-04-24T08:11:56Z
dc.date.created2022-03-03
dc.date.issued2022-03-03
dc.description.abstractЗалізобетонні конструкції сьогодні є одними із найпоширеніших як в новому будівництві, так і в наявних будівлях і спорудах. Вони часто зазнають різних негативних впливів навколишнього середовища, що знижує їхню надійність і довговічність. Оптимізація будівельних конструкцій передбачає продовження їх життєвого циклу, оцінку їх довговічності, надійності та залишкового терміну служби. Для цього необхідна достовірна оцінка наявних пошкоджень, що є наслідком негативного впливу навколишнього середовища. Дефекти і пошкодження у залізобетонних конструкціях є складним питанням, яке необхідно розглядати з урахуванням різних факторів. Пошкодження та дефекти слід оцінювати за різними критеріями, зокрема за ступенем деградації, типом, часом та причиною утворення тощо. У статті детально проаналізовано найпоширеніші пошкодження залізобетонних конструкцій на основі ретельного огляду літератури з цього питання. Також запропоновано класифікацію причин зниження несучої здатності залізобетонних конструкцій. Виділено основні аспекти, які необхідно враховувати під час оцінювання залишкового ресурсу залізобетонних конструкцій за різних видів пошкоджень і дефектів. У дослідженні додатково розглянуто механізми корозії та особливості змін напружено-деформованого стану залізобетонних елементів в умовах корозійного впливу. Вивчення залізобетонних конструкцій за наявності в них пошкоджень і дефектів різних типів можливе лише за умови розуміння їхньої поведінки і структурних особливостей. Подальше теоретичне й експериментальне дослідження проблеми дефектів у залізобетонних конструкціях у комплексі з польовими дослідженнями реальних об’єктів необхідне для розроблення достовірних методів оцінювання їхньої залишкової несучої здатності.
dc.description.abstractReinforced concrete structures are often subjected to various negative environmental influences, reducing their reliability and durability. Main engineering tasks include extension of their life cycle, assessment of durability, reliability and residual service life. This requires reliable assessment of existing damages due to negative environmental impacts. Deterioration of RC structures is complex issue, which should be considered with the account of various factors. Damages and defects should be assessed, according to different criteria: degradation degree, type, time and cause of formation, etc. Article provides detailed analysis of the most common damages in RC structures on the basis of thorough literature review of this issue. Also, the classification of reasons for decrease of bearing capacity is proposed. Additionally, are discussed corrosion mechanisms and specifics of stress-strain state in corroded RC structures.
dc.format.extent35-42
dc.format.pages8
dc.identifier.citationBlikharskyy Y. Analysis of the most common damages in reinforced concrete structures: a review / Yaroslav Blikharskyy, Nadiia Kopiika // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 4. — No 1. — P. 35–42.
dc.identifier.citationenBlikharskyy Y. Analysis of the most common damages in reinforced concrete structures: a review / Yaroslav Blikharskyy, Nadiia Kopiika // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 4. — No 1. — P. 35–42.
dc.identifier.doidoi.org/10.23939/jtbp2022.01.035
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57982
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 1 (4), 2022
dc.relation.referencesAkpanyung, K. V., & Loto, R. T. (2019). Pitting corrosion evaluation: a review. Journal of Physics:
dc.relation.referencesConference Series. IOP Publishing, 1378 (2), 1–13. DOI: 10.1088/1742-6596/1378/2/022088.
dc.relation.referencesAngst, U. M. (2018). Challenges and opportunities in corrosion of steel in concrete. Materials and Structures, 51 (4), 1–20. DOI: 10.1617/s11527-017-1131-6.
dc.relation.referencesBen Seghier, M. E. A., Ouaer, H., Ghriga, M. A., Menad, N. A., & Thai, D. K. (2021).Hybrid soft computational approaches for modeling the maximum ultimate bond strength between the corroded steel
dc.relation.referencesreinforcement and surrounding concrete. Neural Comput &Applic, 33, 6905–6920. DOI: 10.1007/s00521-020-05466-6.
dc.relation.referencesBhagwat, Y., Nayak, G., Lakshmi, A., & Pandit, P. (2020). Corrosion of Reinforcing Bar in RCC Structures-A
dc.relation.referencesReview-Conference Paper. Civil Engineering Trends and Challenges for Sustainability (CTCS-2020). December 2020, 1–6. DOI: 10.1007/978-981-16-2826-9_51.
dc.relation.referencesBlikharskyy Ya. Z. & Kopiika N. S. (2019). Research of damaged reinforced concrete elements, main methods
dc.relation.referencesof their restoration and strengthening. Resource-saving materials, structures, buildings and structures, 37, 316–322.
dc.relation.referencesDOI: 10.31713/budres.v0i37.300.
dc.relation.referencesBlikharskyy Ya. Z. & Kopiika N. S. (2021). Comparative analysis of approaches to assessing the reliability of
dc.relation.referencesbuilding structures. Ukrainian Journal of Construction and Architecture, 3 (003), 46–54. DOI: 10.30838/J.
dc.relation.referencesBPSACEA. 2312.010721.46.766.
dc.relation.referencesBlikharskyy, Z., Selejdak, J., Blikharskyy, Y., & Khmil, R. (2019). Corrosion of reinforce bars in RC constructions. System Safety: Human-Technical Facility-Environment, 1(1), 277–283.
dc.relation.referencesDOI:10.2478/czoto-2019-0036.
dc.relation.referencesBossio, A., Fabbrocino, F., Lignola, G. P., Monetta, T., Bellucci, F., Manfredi, G., & Prota, A. (2016). Effects
dc.relation.referencesof corrosion on reinforced concrete structures. In Proceedings of the 14th International Forum World Heritage and
dc.relation.referencesDegradation. June, 2016, Capri, Italy, 16–18. DOI: 10.1016/j.prostr.2018.11.051
dc.relation.referencesCao, J., Liu, L., & Zhao, Sh. (2020). Relationship between Corrosion of Reinforcement and Surface Cracking
dc.relation.referencesWidth in Concrete. Advances in Civil Engineering, 2020 (7936861), 1–14. DOI: 10.1155/2020/7936861.
dc.relation.referencesCardone, D. (2016). Fragility curves and loss functions for RC structural components with smooth rebars.
dc.relation.referencesEarthquakes and Structures, 10 (5), 1181–1212. DOI: 10.12989/eas.2016.10.5.1181.
dc.relation.referencesChandru, P., Karthikeyan, J., & Natarajan, C. (2021). Techniques to Assess the Corrosion Resistance and
dc.relation.referencesCorrosion Rate of the Steel Embedded in Concrete. Building Pathologies and Acoustic Performance. Springer, Cham, 33–54. DOI: 10.1007/978-3-030-71233-4_3.
dc.relation.referencesChiu, C. K., Sung, H. F., Chi, K. N., & Hsiao, F. P. (2019). Experimental quantification on the residual seismic capacity of damaged RC column members. International Journal
dc.relation.referencesof Concrete Structures and Materials, 13(1), 1–22. doi:10.1186/s40069-019-0338-z.
dc.relation.referencesCiubotariu, A. C., & Istrate, G. G. (2016). Corrosion rate of steels DX51D and S220GD in different corrosion
dc.relation.referencesenvironment. “Mircea cel Batran” Naval Academy Scientific Bulletin, 19 (1), 166–172. DOI: 10.21279/1454-864X16-I1-028.
dc.relation.referencesDergach, T. O., Sukhomlin, G. D., Balev, A. E., & Sukhomlin, D. A. (2020). Accelerated electrochemical methods for testing austenitic corrosion-resistant steels for strength against intergranular corrosion.
dc.relation.referencesBulletin of the Dnieper State Academy of Civil Engineering and Architecture, 3, 46–56. DOI: 10.30838/J.BPSACEA.2312.070720.46.640.
dc.relation.referencesDixit, M., & Gupta, A. K. (2021). A Review of Different Assessment Methods of Corrosion of Steel
dc.relation.referencesReinforcement in Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1–18.
dc.relation.referencesDOI: 10.1007/s40996-021-00644-5.
dc.relation.referencesDizaj, E. A., Padgett, J. E., & Kashanic, M. M. (2021). A Markov Chain-Based Model for Structural Vulnerability Assessment of Corrosion-Damaged Reinforced Concrete Bridges. Philosophical Transactions of
dc.relation.referencesThe Royal Society A Mathematical Physical and Engineering Sciences, 379 (2203), 1–28. DOI: 10.1098/rsta.2020.0290.
dc.relation.referencesEbell, G., Burkert, A., & Mietz, J. (2018). Detection of reinforcement corrosion in reinforced concrete
dc.relation.referencesstructures by potential mapping: Theory and practice. International Journal of Corrosion, 2018 (3027825), 1–7. DOI: 10.1155/2018/3027825.
dc.relation.referencesFerreira, R. M., & Jalali, S. (2006). Probability-based durability design of concrete structures in marine environment: doctoral thesis. Universidade do Minho, 339. URL: http://hdl.handle.net/1822/2675.
dc.relation.referencesGießgen, T., Mittelbach, A., Höche, D., Zheludkevich, M., & Kainer K. U. (2019). Enhanced predictive corrosion modeling with implicit corrosion products. Materials and Corrosion, 70(12), 2247–2255.
dc.relation.referencesDOI: 10.1002/maco. 201911101.
dc.relation.referencesHait, P., Arjun, S., & Satyabrata, Ch. (2018). Quantification of damage to RC structures: A comprehensive
dc.relation.referencesreview. Disaster Advances, 11(12), 41-59. URL: https://www.academia.edu/39813716/Quantification_of_damage_to_RC_Structures_A_Comprehensive_review
dc.relation.referencesHibner, D. R. (2017). Residual axial capacity of fire exposed reinforced concrete columns (Thesis of
dc.relation.referencesdissertation of Master of Science in Civil Engineering). Michigan State University, 134. DOI:10.25335/M5NS0W.
dc.relation.referencesJavor, T. (1991). Damage classification of concrete structures. The state of the art report of RILEM Technical
dc.relation.referencesCommittee 104-DCC activity. Materials and Structures, 24, 253–259. DOI: 10.1007/BF02472079.
dc.relation.referencesKaveh, A., Scott, A., & Palermo, A. (2019). Experimental evaluation of the residual compression strength and
dc.relation.referencesultimate strain of chloride corrosion induced damaged concrete. Structural Concrete, 20(1), 296–306. DOI: 10.1002/suco.201800108.
dc.relation.referencesKenny, A., & Katz, A. (2020). Steel-concrete interface influence on chloride threshold for corrosion–
dc.relation.referencesEmpirical reinforcement to theory. Construction and Building Materials, 244 (118376). DOI: 10.1016/j.conbuildmat. 2020.118376.
dc.relation.referencesKoteš, P., Vavruš, M., & Moravčík, M. (2021, August). Diagnostics and Evaluation of Bridge Structures on
dc.relation.referencesCogwheel Railway. In International Conference of the European Association on Quality Control of Bridges and
dc.relation.referencesStructures. Springer, Cham, 93–101. DOI: 10.1007/978-3-030-91877-4_11.
dc.relation.referencesLee, K. S. (2015). An experimental study on hybrid noncompression CF bracing and GF sheet wrapping
dc.relation.referencesreinforcement method to restore damaged RC structures. Shock and Vibration, 2015, 202751, 1–13. DOI: 10.1155/2015/202751
dc.relation.referencesLi, D., Wei, R., Li, L., Guan, X., & Mi, X. (2019). Pitting corrosion of reinforcing steel bars in chloride contaminated concrete. Construction and Building Materials, 199, 359–368.
dc.relation.referencesDOI: 10.1016/j.conbuildmat.2018.12.003.
dc.relation.referencesLinwen, Y., François, R., Dang, V. H., L’Hostis, V., & Gagné, R. (2015). Distribution of corrosion and pitting
dc.relation.referencesfactor of steel in corroded RC beams. Construction and Building Materials, 95 (1), 384–392. DOI: 10.1016/j.conbuildmat.2015.07.119.
dc.relation.referencesLobodanov, M. M., Vegera, P. I., & Blikharskyy, Z. Ya. (2018). Analysis of the influence of the main types of
dc.relation.referencesdefects and damages on the bearing capacity of reinforced concrete elements. Bulletin of the National University of
dc.relation.referencesLviv Polytechnic. Theory and practice of construction, 888, 93–100. URL: http://nbuv.gov.ua/UJRN/VNULPTPB_2018_888_15.
dc.relation.referencesMahmoodian, M. (2021). Structural reliability assessment of corroded offshore pipelines. Australian Journal
dc.relation.referencesof Civil Engineering, 19(2), 123–133. DOI: 10.1080/14488353.2020.1816639.
dc.relation.referencesMak, M. W. T., Desnerck, P., & Lees, J. (2018). Correlation between surface crack width and steel corrosion
dc.relation.referencesin reinforced concrete. International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018).
dc.relation.referencesMATEC Web Conf. 2018, 199, 1–8. DOI: 10.1051/matecconf/201819904009.
dc.relation.referencesMenz, N., Gerasimidis, S., Civjan, S., Czach, J., & Rigney, J. (2021). Review of Post-Fire Inspection Procedures for Concrete Tunnels. Transportation Research Record, 2675.9, 1304–1315.
dc.relation.referencesDOI: 10.1177/03611981211006732.
dc.relation.referencesMorshed, A. Z., Shakib, S., & Jahin, T. (2020). Characterization of Impressed Current Technique to Model
dc.relation.referencesCorrosion of Reinforcement in Concrete. Journal of Engineering Science, 11(1), 93–99. DOI: 10.3329/jes.v11i1. 49551.
dc.relation.referencesNguyen, T. H. Y., Bui, V. H. L., Tran, V. M., Cao, N. T., Pansuk, W., & Jongvivatsakul, P. (2021). Verifying
dc.relation.referencesthe Reliability of Impressed Current Method to Simulate Natural Corrosion in Reinforced Concrete. Engineering
dc.relation.referencesJournal, 25(3), 105–116. DOI:10.4186/ej.2021.25.3.105.
dc.relation.referencesOuzaa, K., & Chahmi, O. (2019). Numerical model for prediction of corrosion of steel reinforcements in
dc.relation.referencesreinforced concrete structures. Underground Space, 4(1), 72–77. DOI: 10.1016/j.undsp.2018.06.002.
dc.relation.referencesPonechal, R., Koteš, P., Michálková, D., Kraľovanec, J., & Bahleda, F. (2021). Effect of Water Condensate on
dc.relation.referencesCorrosion of Wires in Ungrouted Ducts. Materials, 14(24), 7765. DOI:10.3390/ma14247765.
dc.relation.referencesRoyani, A., Prifiharni, S., Priyotomo, G., & Sundjono, S. (2021). Corrosion rate and corrosion behaviour
dc.relation.referencesanalysis of carbon steel pipe at constant condensed fluid. Metallurgical and Materials Engineering, 27(4), 519–530.
dc.relation.referencesDOI: 10.30544/591.
dc.relation.referencesSadeghi, K., & Nouban, F. (2016). Damage and fatigue quantification of RC structures. Structural
dc.relation.referencesEngineering and Mechanics, 58 (6), 1021–1044. DOI: 10.12989/SEM.2016.58.6.1021.
dc.relation.referencesSantos J., & Henriques A. A. (2021). Rotation capacity of corroded RC beams with special ductility tempcore
dc.relation.referencesrebars. Engineering Structures, 236 (1), 112138. DOI: 10.1016/j.engstruct.2021.112138.
dc.relation.referencesSantos, J., & Henriques, A. A. (2015). Strength and ductility of damaged tempcore rebars. Procedia
dc.relation.referencesEngineering, 114, 800–807. DOI: 10.1016/j.proeng.2015.08.029.
dc.relation.referencesSantos, J. & Henriques, A. A. (2012). Ductility of damaged reinforced concrete beams. Conference: ICDS12 – Durable Structures: from construction to rehabilitation. At: Lisbon, Portugal, 1–17. URL: http://durati.lnec.pt/pdf/icds12_r.pdf.
dc.relation.referencesShakib, S., & Morshed, A. Z. (2021). Modeling of Cover Concrete Cracking Due to Uniform Corrosion of
dc.relation.referencesReinforcement. Journal of Engineering Science, 12(1), 43–49. DOI: 10.3329/jes.v12i1.53100.
dc.relation.referencesXia, J., Wei-liang, J., & Li, L. (2011). Shear performance of reinforced concrete beams with corroded stirrups
dc.relation.referencesin chloride environment. Corrosion Science, 53(5), 1794–1805. DOI: 10.1016/j.corsci.2011.01.058.
dc.relation.referencesYatsko, F. V. (2015). Modeling and forecasting of durability of reinforced concrete elements of transport
dc.relation.referencesconstructions on highways: dis. for science degree of Dr. Tech. Science. 05.23.17. Kyiv, 237. URL:
dc.relation.referenceshttp://diser.ntu.edu.ua/Yazko_aref.pdf.
dc.relation.referencesZacchei, E., & Nogueira, C. G. (2021). 2D/3D Numerical Analyses of Corrosion Initiation in RC Structures
dc.relation.referencesAccounting Fluctuations of Chloride Ions by External Actions. KSCE J Civ Eng., 25, 2105–2120. DOI: 10.1007/s12205-021-1242-z.
dc.relation.referencesZhang, L., Niu, D., Wen, B., & Luo D. (2019). Concrete protective layer cracking caused by non-uniform
dc.relation.referencescorrosion of reinforcements. Materials, 12 (24), 4245. DOI: 10.3390/ma12244245.
dc.relation.referencesZhu, W., & François, R. (2013). Effect of corrosion pattern on the ductility of tensile reinforcement extracted
dc.relation.referencesfrom a 26-year-old corroded beam. Advances in concrete construction, 1(2), 121–136. DOI: 10.12989/acc2013.01.2.121.
dc.relation.referencesenAkpanyung, K. V., & Loto, R. T. (2019). Pitting corrosion evaluation: a review. Journal of Physics:
dc.relation.referencesenConference Series. IOP Publishing, 1378 (2), 1–13. DOI: 10.1088/1742-6596/1378/2/022088.
dc.relation.referencesenAngst, U. M. (2018). Challenges and opportunities in corrosion of steel in concrete. Materials and Structures, 51 (4), 1–20. DOI: 10.1617/s11527-017-1131-6.
dc.relation.referencesenBen Seghier, M. E. A., Ouaer, H., Ghriga, M. A., Menad, N. A., & Thai, D. K. (2021).Hybrid soft computational approaches for modeling the maximum ultimate bond strength between the corroded steel
dc.relation.referencesenreinforcement and surrounding concrete. Neural Comput &Applic, 33, 6905–6920. DOI: 10.1007/s00521-020-05466-6.
dc.relation.referencesenBhagwat, Y., Nayak, G., Lakshmi, A., & Pandit, P. (2020). Corrosion of Reinforcing Bar in RCC Structures-A
dc.relation.referencesenReview-Conference Paper. Civil Engineering Trends and Challenges for Sustainability (CTCS-2020). December 2020, 1–6. DOI: 10.1007/978-981-16-2826-9_51.
dc.relation.referencesenBlikharskyy Ya. Z. & Kopiika N. S. (2019). Research of damaged reinforced concrete elements, main methods
dc.relation.referencesenof their restoration and strengthening. Resource-saving materials, structures, buildings and structures, 37, 316–322.
dc.relation.referencesenDOI: 10.31713/budres.v0i37.300.
dc.relation.referencesenBlikharskyy Ya. Z. & Kopiika N. S. (2021). Comparative analysis of approaches to assessing the reliability of
dc.relation.referencesenbuilding structures. Ukrainian Journal of Construction and Architecture, 3 (003), 46–54. DOI: 10.30838/J.
dc.relation.referencesenBPSACEA. 2312.010721.46.766.
dc.relation.referencesenBlikharskyy, Z., Selejdak, J., Blikharskyy, Y., & Khmil, R. (2019). Corrosion of reinforce bars in RC constructions. System Safety: Human-Technical Facility-Environment, 1(1), 277–283.
dc.relation.referencesenDOI:10.2478/czoto-2019-0036.
dc.relation.referencesenBossio, A., Fabbrocino, F., Lignola, G. P., Monetta, T., Bellucci, F., Manfredi, G., & Prota, A. (2016). Effects
dc.relation.referencesenof corrosion on reinforced concrete structures. In Proceedings of the 14th International Forum World Heritage and
dc.relation.referencesenDegradation. June, 2016, Capri, Italy, 16–18. DOI: 10.1016/j.prostr.2018.11.051
dc.relation.referencesenCao, J., Liu, L., & Zhao, Sh. (2020). Relationship between Corrosion of Reinforcement and Surface Cracking
dc.relation.referencesenWidth in Concrete. Advances in Civil Engineering, 2020 (7936861), 1–14. DOI: 10.1155/2020/7936861.
dc.relation.referencesenCardone, D. (2016). Fragility curves and loss functions for RC structural components with smooth rebars.
dc.relation.referencesenEarthquakes and Structures, 10 (5), 1181–1212. DOI: 10.12989/eas.2016.10.5.1181.
dc.relation.referencesenChandru, P., Karthikeyan, J., & Natarajan, C. (2021). Techniques to Assess the Corrosion Resistance and
dc.relation.referencesenCorrosion Rate of the Steel Embedded in Concrete. Building Pathologies and Acoustic Performance. Springer, Cham, 33–54. DOI: 10.1007/978-3-030-71233-4_3.
dc.relation.referencesenChiu, C. K., Sung, H. F., Chi, K. N., & Hsiao, F. P. (2019). Experimental quantification on the residual seismic capacity of damaged RC column members. International Journal
dc.relation.referencesenof Concrete Structures and Materials, 13(1), 1–22. doi:10.1186/s40069-019-0338-z.
dc.relation.referencesenCiubotariu, A. C., & Istrate, G. G. (2016). Corrosion rate of steels DX51D and S220GD in different corrosion
dc.relation.referencesenenvironment. "Mircea cel Batran" Naval Academy Scientific Bulletin, 19 (1), 166–172. DOI: 10.21279/1454-864X16-I1-028.
dc.relation.referencesenDergach, T. O., Sukhomlin, G. D., Balev, A. E., & Sukhomlin, D. A. (2020). Accelerated electrochemical methods for testing austenitic corrosion-resistant steels for strength against intergranular corrosion.
dc.relation.referencesenBulletin of the Dnieper State Academy of Civil Engineering and Architecture, 3, 46–56. DOI: 10.30838/J.BPSACEA.2312.070720.46.640.
dc.relation.referencesenDixit, M., & Gupta, A. K. (2021). A Review of Different Assessment Methods of Corrosion of Steel
dc.relation.referencesenReinforcement in Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1–18.
dc.relation.referencesenDOI: 10.1007/s40996-021-00644-5.
dc.relation.referencesenDizaj, E. A., Padgett, J. E., & Kashanic, M. M. (2021). A Markov Chain-Based Model for Structural Vulnerability Assessment of Corrosion-Damaged Reinforced Concrete Bridges. Philosophical Transactions of
dc.relation.referencesenThe Royal Society A Mathematical Physical and Engineering Sciences, 379 (2203), 1–28. DOI: 10.1098/rsta.2020.0290.
dc.relation.referencesenEbell, G., Burkert, A., & Mietz, J. (2018). Detection of reinforcement corrosion in reinforced concrete
dc.relation.referencesenstructures by potential mapping: Theory and practice. International Journal of Corrosion, 2018 (3027825), 1–7. DOI: 10.1155/2018/3027825.
dc.relation.referencesenFerreira, R. M., & Jalali, S. (2006). Probability-based durability design of concrete structures in marine environment: doctoral thesis. Universidade do Minho, 339. URL: http://hdl.handle.net/1822/2675.
dc.relation.referencesenGießgen, T., Mittelbach, A., Höche, D., Zheludkevich, M., & Kainer K. U. (2019). Enhanced predictive corrosion modeling with implicit corrosion products. Materials and Corrosion, 70(12), 2247–2255.
dc.relation.referencesenDOI: 10.1002/maco. 201911101.
dc.relation.referencesenHait, P., Arjun, S., & Satyabrata, Ch. (2018). Quantification of damage to RC structures: A comprehensive
dc.relation.referencesenreview. Disaster Advances, 11(12), 41-59. URL: https://www.academia.edu/39813716/Quantification_of_damage_to_RC_Structures_A_Comprehensive_review
dc.relation.referencesenHibner, D. R. (2017). Residual axial capacity of fire exposed reinforced concrete columns (Thesis of
dc.relation.referencesendissertation of Master of Science in Civil Engineering). Michigan State University, 134. DOI:10.25335/M5NS0W.
dc.relation.referencesenJavor, T. (1991). Damage classification of concrete structures. The state of the art report of RILEM Technical
dc.relation.referencesenCommittee 104-DCC activity. Materials and Structures, 24, 253–259. DOI: 10.1007/BF02472079.
dc.relation.referencesenKaveh, A., Scott, A., & Palermo, A. (2019). Experimental evaluation of the residual compression strength and
dc.relation.referencesenultimate strain of chloride corrosion induced damaged concrete. Structural Concrete, 20(1), 296–306. DOI: 10.1002/suco.201800108.
dc.relation.referencesenKenny, A., & Katz, A. (2020). Steel-concrete interface influence on chloride threshold for corrosion–
dc.relation.referencesenEmpirical reinforcement to theory. Construction and Building Materials, 244 (118376). DOI: 10.1016/j.conbuildmat. 2020.118376.
dc.relation.referencesenKoteš, P., Vavruš, M., & Moravčík, M. (2021, August). Diagnostics and Evaluation of Bridge Structures on
dc.relation.referencesenCogwheel Railway. In International Conference of the European Association on Quality Control of Bridges and
dc.relation.referencesenStructures. Springer, Cham, 93–101. DOI: 10.1007/978-3-030-91877-4_11.
dc.relation.referencesenLee, K. S. (2015). An experimental study on hybrid noncompression CF bracing and GF sheet wrapping
dc.relation.referencesenreinforcement method to restore damaged RC structures. Shock and Vibration, 2015, 202751, 1–13. DOI: 10.1155/2015/202751
dc.relation.referencesenLi, D., Wei, R., Li, L., Guan, X., & Mi, X. (2019). Pitting corrosion of reinforcing steel bars in chloride contaminated concrete. Construction and Building Materials, 199, 359–368.
dc.relation.referencesenDOI: 10.1016/j.conbuildmat.2018.12.003.
dc.relation.referencesenLinwen, Y., François, R., Dang, V. H., L’Hostis, V., & Gagné, R. (2015). Distribution of corrosion and pitting
dc.relation.referencesenfactor of steel in corroded RC beams. Construction and Building Materials, 95 (1), 384–392. DOI: 10.1016/j.conbuildmat.2015.07.119.
dc.relation.referencesenLobodanov, M. M., Vegera, P. I., & Blikharskyy, Z. Ya. (2018). Analysis of the influence of the main types of
dc.relation.referencesendefects and damages on the bearing capacity of reinforced concrete elements. Bulletin of the National University of
dc.relation.referencesenLviv Polytechnic. Theory and practice of construction, 888, 93–100. URL: http://nbuv.gov.ua/UJRN/VNULPTPB_2018_888_15.
dc.relation.referencesenMahmoodian, M. (2021). Structural reliability assessment of corroded offshore pipelines. Australian Journal
dc.relation.referencesenof Civil Engineering, 19(2), 123–133. DOI: 10.1080/14488353.2020.1816639.
dc.relation.referencesenMak, M. W. T., Desnerck, P., & Lees, J. (2018). Correlation between surface crack width and steel corrosion
dc.relation.referencesenin reinforced concrete. International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018).
dc.relation.referencesenMATEC Web Conf. 2018, 199, 1–8. DOI: 10.1051/matecconf/201819904009.
dc.relation.referencesenMenz, N., Gerasimidis, S., Civjan, S., Czach, J., & Rigney, J. (2021). Review of Post-Fire Inspection Procedures for Concrete Tunnels. Transportation Research Record, 2675.9, 1304–1315.
dc.relation.referencesenDOI: 10.1177/03611981211006732.
dc.relation.referencesenMorshed, A. Z., Shakib, S., & Jahin, T. (2020). Characterization of Impressed Current Technique to Model
dc.relation.referencesenCorrosion of Reinforcement in Concrete. Journal of Engineering Science, 11(1), 93–99. DOI: 10.3329/jes.v11i1. 49551.
dc.relation.referencesenNguyen, T. H. Y., Bui, V. H. L., Tran, V. M., Cao, N. T., Pansuk, W., & Jongvivatsakul, P. (2021). Verifying
dc.relation.referencesenthe Reliability of Impressed Current Method to Simulate Natural Corrosion in Reinforced Concrete. Engineering
dc.relation.referencesenJournal, 25(3), 105–116. DOI:10.4186/ej.2021.25.3.105.
dc.relation.referencesenOuzaa, K., & Chahmi, O. (2019). Numerical model for prediction of corrosion of steel reinforcements in
dc.relation.referencesenreinforced concrete structures. Underground Space, 4(1), 72–77. DOI: 10.1016/j.undsp.2018.06.002.
dc.relation.referencesenPonechal, R., Koteš, P., Michálková, D., Kraľovanec, J., & Bahleda, F. (2021). Effect of Water Condensate on
dc.relation.referencesenCorrosion of Wires in Ungrouted Ducts. Materials, 14(24), 7765. DOI:10.3390/ma14247765.
dc.relation.referencesenRoyani, A., Prifiharni, S., Priyotomo, G., & Sundjono, S. (2021). Corrosion rate and corrosion behaviour
dc.relation.referencesenanalysis of carbon steel pipe at constant condensed fluid. Metallurgical and Materials Engineering, 27(4), 519–530.
dc.relation.referencesenDOI: 10.30544/591.
dc.relation.referencesenSadeghi, K., & Nouban, F. (2016). Damage and fatigue quantification of RC structures. Structural
dc.relation.referencesenEngineering and Mechanics, 58 (6), 1021–1044. DOI: 10.12989/SEM.2016.58.6.1021.
dc.relation.referencesenSantos J., & Henriques A. A. (2021). Rotation capacity of corroded RC beams with special ductility tempcore
dc.relation.referencesenrebars. Engineering Structures, 236 (1), 112138. DOI: 10.1016/j.engstruct.2021.112138.
dc.relation.referencesenSantos, J., & Henriques, A. A. (2015). Strength and ductility of damaged tempcore rebars. Procedia
dc.relation.referencesenEngineering, 114, 800–807. DOI: 10.1016/j.proeng.2015.08.029.
dc.relation.referencesenSantos, J. & Henriques, A. A. (2012). Ductility of damaged reinforced concrete beams. Conference: ICDS12 – Durable Structures: from construction to rehabilitation. At: Lisbon, Portugal, 1–17. URL: http://durati.lnec.pt/pdf/icds12_r.pdf.
dc.relation.referencesenShakib, S., & Morshed, A. Z. (2021). Modeling of Cover Concrete Cracking Due to Uniform Corrosion of
dc.relation.referencesenReinforcement. Journal of Engineering Science, 12(1), 43–49. DOI: 10.3329/jes.v12i1.53100.
dc.relation.referencesenXia, J., Wei-liang, J., & Li, L. (2011). Shear performance of reinforced concrete beams with corroded stirrups
dc.relation.referencesenin chloride environment. Corrosion Science, 53(5), 1794–1805. DOI: 10.1016/j.corsci.2011.01.058.
dc.relation.referencesenYatsko, F. V. (2015). Modeling and forecasting of durability of reinforced concrete elements of transport
dc.relation.referencesenconstructions on highways: dis. for science degree of Dr. Tech. Science. 05.23.17. Kyiv, 237. URL:
dc.relation.referencesenhttp://diser.ntu.edu.ua/Yazko_aref.pdf.
dc.relation.referencesenZacchei, E., & Nogueira, C. G. (2021). 2D/3D Numerical Analyses of Corrosion Initiation in RC Structures
dc.relation.referencesenAccounting Fluctuations of Chloride Ions by External Actions. KSCE J Civ Eng., 25, 2105–2120. DOI: 10.1007/s12205-021-1242-z.
dc.relation.referencesenZhang, L., Niu, D., Wen, B., & Luo D. (2019). Concrete protective layer cracking caused by non-uniform
dc.relation.referencesencorrosion of reinforcements. Materials, 12 (24), 4245. DOI: 10.3390/ma12244245.
dc.relation.referencesenZhu, W., & François, R. (2013). Effect of corrosion pattern on the ductility of tensile reinforcement extracted
dc.relation.referencesenfrom a 26-year-old corroded beam. Advances in concrete construction, 1(2), 121–136. DOI: 10.12989/acc2013.01.2.121.
dc.relation.urihttp://hdl.handle.net/1822/2675
dc.relation.urihttps://www.academia.edu/39813716/Quantification_of_damage_to_RC_Structures_A_Comprehensive_review
dc.relation.urihttp://nbuv.gov.ua/UJRN/VNULPTPB_2018_888_15
dc.relation.urihttp://durati.lnec.pt/pdf/icds12_r.pdf
dc.relation.urihttp://diser.ntu.edu.ua/Yazko_aref.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Blikharskyy Y., Kopiika N., 2022
dc.subjectзалізобетонні конструкції
dc.subjectпошкодження
dc.subjectдовговічність
dc.subjectзалишкова несуча здатність
dc.subjectкорозія
dc.subjectRC structures
dc.subjectdamages
dc.subjectdurability
dc.subjectresidual load-bearing capacity
dc.subjectcorrosion
dc.titleAnalysis of the most common damages in reinforced concrete structures: a review
dc.title.alternativeАналіз найпоширеніших пошкоджень і дефектів у залізобетонних конструкціях: огляд
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v4n1_Blikharskyy_Y-Analysis_of_the_most_35-42.pdf
Size:
417.36 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v4n1_Blikharskyy_Y-Analysis_of_the_most_35-42__COVER.png
Size:
430.87 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: