Analysis of the most common damages in reinforced concrete structures: a review
dc.citation.epage | 42 | |
dc.citation.issue | 1 | |
dc.citation.spage | 35 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Бліхарський, Я. З. | |
dc.contributor.author | Копійка, Н. С. | |
dc.contributor.author | Blikharskyy, Yaroslav | |
dc.contributor.author | Kopiika, Nadiia | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-04-24T08:11:56Z | |
dc.date.available | 2023-04-24T08:11:56Z | |
dc.date.created | 2022-03-03 | |
dc.date.issued | 2022-03-03 | |
dc.description.abstract | Залізобетонні конструкції сьогодні є одними із найпоширеніших як в новому будівництві, так і в наявних будівлях і спорудах. Вони часто зазнають різних негативних впливів навколишнього середовища, що знижує їхню надійність і довговічність. Оптимізація будівельних конструкцій передбачає продовження їх життєвого циклу, оцінку їх довговічності, надійності та залишкового терміну служби. Для цього необхідна достовірна оцінка наявних пошкоджень, що є наслідком негативного впливу навколишнього середовища. Дефекти і пошкодження у залізобетонних конструкціях є складним питанням, яке необхідно розглядати з урахуванням різних факторів. Пошкодження та дефекти слід оцінювати за різними критеріями, зокрема за ступенем деградації, типом, часом та причиною утворення тощо. У статті детально проаналізовано найпоширеніші пошкодження залізобетонних конструкцій на основі ретельного огляду літератури з цього питання. Також запропоновано класифікацію причин зниження несучої здатності залізобетонних конструкцій. Виділено основні аспекти, які необхідно враховувати під час оцінювання залишкового ресурсу залізобетонних конструкцій за різних видів пошкоджень і дефектів. У дослідженні додатково розглянуто механізми корозії та особливості змін напружено-деформованого стану залізобетонних елементів в умовах корозійного впливу. Вивчення залізобетонних конструкцій за наявності в них пошкоджень і дефектів різних типів можливе лише за умови розуміння їхньої поведінки і структурних особливостей. Подальше теоретичне й експериментальне дослідження проблеми дефектів у залізобетонних конструкціях у комплексі з польовими дослідженнями реальних об’єктів необхідне для розроблення достовірних методів оцінювання їхньої залишкової несучої здатності. | |
dc.description.abstract | Reinforced concrete structures are often subjected to various negative environmental influences, reducing their reliability and durability. Main engineering tasks include extension of their life cycle, assessment of durability, reliability and residual service life. This requires reliable assessment of existing damages due to negative environmental impacts. Deterioration of RC structures is complex issue, which should be considered with the account of various factors. Damages and defects should be assessed, according to different criteria: degradation degree, type, time and cause of formation, etc. Article provides detailed analysis of the most common damages in RC structures on the basis of thorough literature review of this issue. Also, the classification of reasons for decrease of bearing capacity is proposed. Additionally, are discussed corrosion mechanisms and specifics of stress-strain state in corroded RC structures. | |
dc.format.extent | 35-42 | |
dc.format.pages | 8 | |
dc.identifier.citation | Blikharskyy Y. Analysis of the most common damages in reinforced concrete structures: a review / Yaroslav Blikharskyy, Nadiia Kopiika // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 4. — No 1. — P. 35–42. | |
dc.identifier.citationen | Blikharskyy Y. Analysis of the most common damages in reinforced concrete structures: a review / Yaroslav Blikharskyy, Nadiia Kopiika // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 4. — No 1. — P. 35–42. | |
dc.identifier.doi | doi.org/10.23939/jtbp2022.01.035 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57982 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Theory and Building Practice, 1 (4), 2022 | |
dc.relation.references | Akpanyung, K. V., & Loto, R. T. (2019). Pitting corrosion evaluation: a review. Journal of Physics: | |
dc.relation.references | Conference Series. IOP Publishing, 1378 (2), 1–13. DOI: 10.1088/1742-6596/1378/2/022088. | |
dc.relation.references | Angst, U. M. (2018). Challenges and opportunities in corrosion of steel in concrete. Materials and Structures, 51 (4), 1–20. DOI: 10.1617/s11527-017-1131-6. | |
dc.relation.references | Ben Seghier, M. E. A., Ouaer, H., Ghriga, M. A., Menad, N. A., & Thai, D. K. (2021).Hybrid soft computational approaches for modeling the maximum ultimate bond strength between the corroded steel | |
dc.relation.references | reinforcement and surrounding concrete. Neural Comput &Applic, 33, 6905–6920. DOI: 10.1007/s00521-020-05466-6. | |
dc.relation.references | Bhagwat, Y., Nayak, G., Lakshmi, A., & Pandit, P. (2020). Corrosion of Reinforcing Bar in RCC Structures-A | |
dc.relation.references | Review-Conference Paper. Civil Engineering Trends and Challenges for Sustainability (CTCS-2020). December 2020, 1–6. DOI: 10.1007/978-981-16-2826-9_51. | |
dc.relation.references | Blikharskyy Ya. Z. & Kopiika N. S. (2019). Research of damaged reinforced concrete elements, main methods | |
dc.relation.references | of their restoration and strengthening. Resource-saving materials, structures, buildings and structures, 37, 316–322. | |
dc.relation.references | DOI: 10.31713/budres.v0i37.300. | |
dc.relation.references | Blikharskyy Ya. Z. & Kopiika N. S. (2021). Comparative analysis of approaches to assessing the reliability of | |
dc.relation.references | building structures. Ukrainian Journal of Construction and Architecture, 3 (003), 46–54. DOI: 10.30838/J. | |
dc.relation.references | BPSACEA. 2312.010721.46.766. | |
dc.relation.references | Blikharskyy, Z., Selejdak, J., Blikharskyy, Y., & Khmil, R. (2019). Corrosion of reinforce bars in RC constructions. System Safety: Human-Technical Facility-Environment, 1(1), 277–283. | |
dc.relation.references | DOI:10.2478/czoto-2019-0036. | |
dc.relation.references | Bossio, A., Fabbrocino, F., Lignola, G. P., Monetta, T., Bellucci, F., Manfredi, G., & Prota, A. (2016). Effects | |
dc.relation.references | of corrosion on reinforced concrete structures. In Proceedings of the 14th International Forum World Heritage and | |
dc.relation.references | Degradation. June, 2016, Capri, Italy, 16–18. DOI: 10.1016/j.prostr.2018.11.051 | |
dc.relation.references | Cao, J., Liu, L., & Zhao, Sh. (2020). Relationship between Corrosion of Reinforcement and Surface Cracking | |
dc.relation.references | Width in Concrete. Advances in Civil Engineering, 2020 (7936861), 1–14. DOI: 10.1155/2020/7936861. | |
dc.relation.references | Cardone, D. (2016). Fragility curves and loss functions for RC structural components with smooth rebars. | |
dc.relation.references | Earthquakes and Structures, 10 (5), 1181–1212. DOI: 10.12989/eas.2016.10.5.1181. | |
dc.relation.references | Chandru, P., Karthikeyan, J., & Natarajan, C. (2021). Techniques to Assess the Corrosion Resistance and | |
dc.relation.references | Corrosion Rate of the Steel Embedded in Concrete. Building Pathologies and Acoustic Performance. Springer, Cham, 33–54. DOI: 10.1007/978-3-030-71233-4_3. | |
dc.relation.references | Chiu, C. K., Sung, H. F., Chi, K. N., & Hsiao, F. P. (2019). Experimental quantification on the residual seismic capacity of damaged RC column members. International Journal | |
dc.relation.references | of Concrete Structures and Materials, 13(1), 1–22. doi:10.1186/s40069-019-0338-z. | |
dc.relation.references | Ciubotariu, A. C., & Istrate, G. G. (2016). Corrosion rate of steels DX51D and S220GD in different corrosion | |
dc.relation.references | environment. “Mircea cel Batran” Naval Academy Scientific Bulletin, 19 (1), 166–172. DOI: 10.21279/1454-864X16-I1-028. | |
dc.relation.references | Dergach, T. O., Sukhomlin, G. D., Balev, A. E., & Sukhomlin, D. A. (2020). Accelerated electrochemical methods for testing austenitic corrosion-resistant steels for strength against intergranular corrosion. | |
dc.relation.references | Bulletin of the Dnieper State Academy of Civil Engineering and Architecture, 3, 46–56. DOI: 10.30838/J.BPSACEA.2312.070720.46.640. | |
dc.relation.references | Dixit, M., & Gupta, A. K. (2021). A Review of Different Assessment Methods of Corrosion of Steel | |
dc.relation.references | Reinforcement in Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1–18. | |
dc.relation.references | DOI: 10.1007/s40996-021-00644-5. | |
dc.relation.references | Dizaj, E. A., Padgett, J. E., & Kashanic, M. M. (2021). A Markov Chain-Based Model for Structural Vulnerability Assessment of Corrosion-Damaged Reinforced Concrete Bridges. Philosophical Transactions of | |
dc.relation.references | The Royal Society A Mathematical Physical and Engineering Sciences, 379 (2203), 1–28. DOI: 10.1098/rsta.2020.0290. | |
dc.relation.references | Ebell, G., Burkert, A., & Mietz, J. (2018). Detection of reinforcement corrosion in reinforced concrete | |
dc.relation.references | structures by potential mapping: Theory and practice. International Journal of Corrosion, 2018 (3027825), 1–7. DOI: 10.1155/2018/3027825. | |
dc.relation.references | Ferreira, R. M., & Jalali, S. (2006). Probability-based durability design of concrete structures in marine environment: doctoral thesis. Universidade do Minho, 339. URL: http://hdl.handle.net/1822/2675. | |
dc.relation.references | Gießgen, T., Mittelbach, A., Höche, D., Zheludkevich, M., & Kainer K. U. (2019). Enhanced predictive corrosion modeling with implicit corrosion products. Materials and Corrosion, 70(12), 2247–2255. | |
dc.relation.references | DOI: 10.1002/maco. 201911101. | |
dc.relation.references | Hait, P., Arjun, S., & Satyabrata, Ch. (2018). Quantification of damage to RC structures: A comprehensive | |
dc.relation.references | review. Disaster Advances, 11(12), 41-59. URL: https://www.academia.edu/39813716/Quantification_of_damage_to_RC_Structures_A_Comprehensive_review | |
dc.relation.references | Hibner, D. R. (2017). Residual axial capacity of fire exposed reinforced concrete columns (Thesis of | |
dc.relation.references | dissertation of Master of Science in Civil Engineering). Michigan State University, 134. DOI:10.25335/M5NS0W. | |
dc.relation.references | Javor, T. (1991). Damage classification of concrete structures. The state of the art report of RILEM Technical | |
dc.relation.references | Committee 104-DCC activity. Materials and Structures, 24, 253–259. DOI: 10.1007/BF02472079. | |
dc.relation.references | Kaveh, A., Scott, A., & Palermo, A. (2019). Experimental evaluation of the residual compression strength and | |
dc.relation.references | ultimate strain of chloride corrosion induced damaged concrete. Structural Concrete, 20(1), 296–306. DOI: 10.1002/suco.201800108. | |
dc.relation.references | Kenny, A., & Katz, A. (2020). Steel-concrete interface influence on chloride threshold for corrosion– | |
dc.relation.references | Empirical reinforcement to theory. Construction and Building Materials, 244 (118376). DOI: 10.1016/j.conbuildmat. 2020.118376. | |
dc.relation.references | Koteš, P., Vavruš, M., & Moravčík, M. (2021, August). Diagnostics and Evaluation of Bridge Structures on | |
dc.relation.references | Cogwheel Railway. In International Conference of the European Association on Quality Control of Bridges and | |
dc.relation.references | Structures. Springer, Cham, 93–101. DOI: 10.1007/978-3-030-91877-4_11. | |
dc.relation.references | Lee, K. S. (2015). An experimental study on hybrid noncompression CF bracing and GF sheet wrapping | |
dc.relation.references | reinforcement method to restore damaged RC structures. Shock and Vibration, 2015, 202751, 1–13. DOI: 10.1155/2015/202751 | |
dc.relation.references | Li, D., Wei, R., Li, L., Guan, X., & Mi, X. (2019). Pitting corrosion of reinforcing steel bars in chloride contaminated concrete. Construction and Building Materials, 199, 359–368. | |
dc.relation.references | DOI: 10.1016/j.conbuildmat.2018.12.003. | |
dc.relation.references | Linwen, Y., François, R., Dang, V. H., L’Hostis, V., & Gagné, R. (2015). Distribution of corrosion and pitting | |
dc.relation.references | factor of steel in corroded RC beams. Construction and Building Materials, 95 (1), 384–392. DOI: 10.1016/j.conbuildmat.2015.07.119. | |
dc.relation.references | Lobodanov, M. M., Vegera, P. I., & Blikharskyy, Z. Ya. (2018). Analysis of the influence of the main types of | |
dc.relation.references | defects and damages on the bearing capacity of reinforced concrete elements. Bulletin of the National University of | |
dc.relation.references | Lviv Polytechnic. Theory and practice of construction, 888, 93–100. URL: http://nbuv.gov.ua/UJRN/VNULPTPB_2018_888_15. | |
dc.relation.references | Mahmoodian, M. (2021). Structural reliability assessment of corroded offshore pipelines. Australian Journal | |
dc.relation.references | of Civil Engineering, 19(2), 123–133. DOI: 10.1080/14488353.2020.1816639. | |
dc.relation.references | Mak, M. W. T., Desnerck, P., & Lees, J. (2018). Correlation between surface crack width and steel corrosion | |
dc.relation.references | in reinforced concrete. International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018). | |
dc.relation.references | MATEC Web Conf. 2018, 199, 1–8. DOI: 10.1051/matecconf/201819904009. | |
dc.relation.references | Menz, N., Gerasimidis, S., Civjan, S., Czach, J., & Rigney, J. (2021). Review of Post-Fire Inspection Procedures for Concrete Tunnels. Transportation Research Record, 2675.9, 1304–1315. | |
dc.relation.references | DOI: 10.1177/03611981211006732. | |
dc.relation.references | Morshed, A. Z., Shakib, S., & Jahin, T. (2020). Characterization of Impressed Current Technique to Model | |
dc.relation.references | Corrosion of Reinforcement in Concrete. Journal of Engineering Science, 11(1), 93–99. DOI: 10.3329/jes.v11i1. 49551. | |
dc.relation.references | Nguyen, T. H. Y., Bui, V. H. L., Tran, V. M., Cao, N. T., Pansuk, W., & Jongvivatsakul, P. (2021). Verifying | |
dc.relation.references | the Reliability of Impressed Current Method to Simulate Natural Corrosion in Reinforced Concrete. Engineering | |
dc.relation.references | Journal, 25(3), 105–116. DOI:10.4186/ej.2021.25.3.105. | |
dc.relation.references | Ouzaa, K., & Chahmi, O. (2019). Numerical model for prediction of corrosion of steel reinforcements in | |
dc.relation.references | reinforced concrete structures. Underground Space, 4(1), 72–77. DOI: 10.1016/j.undsp.2018.06.002. | |
dc.relation.references | Ponechal, R., Koteš, P., Michálková, D., Kraľovanec, J., & Bahleda, F. (2021). Effect of Water Condensate on | |
dc.relation.references | Corrosion of Wires in Ungrouted Ducts. Materials, 14(24), 7765. DOI:10.3390/ma14247765. | |
dc.relation.references | Royani, A., Prifiharni, S., Priyotomo, G., & Sundjono, S. (2021). Corrosion rate and corrosion behaviour | |
dc.relation.references | analysis of carbon steel pipe at constant condensed fluid. Metallurgical and Materials Engineering, 27(4), 519–530. | |
dc.relation.references | DOI: 10.30544/591. | |
dc.relation.references | Sadeghi, K., & Nouban, F. (2016). Damage and fatigue quantification of RC structures. Structural | |
dc.relation.references | Engineering and Mechanics, 58 (6), 1021–1044. DOI: 10.12989/SEM.2016.58.6.1021. | |
dc.relation.references | Santos J., & Henriques A. A. (2021). Rotation capacity of corroded RC beams with special ductility tempcore | |
dc.relation.references | rebars. Engineering Structures, 236 (1), 112138. DOI: 10.1016/j.engstruct.2021.112138. | |
dc.relation.references | Santos, J., & Henriques, A. A. (2015). Strength and ductility of damaged tempcore rebars. Procedia | |
dc.relation.references | Engineering, 114, 800–807. DOI: 10.1016/j.proeng.2015.08.029. | |
dc.relation.references | Santos, J. & Henriques, A. A. (2012). Ductility of damaged reinforced concrete beams. Conference: ICDS12 – Durable Structures: from construction to rehabilitation. At: Lisbon, Portugal, 1–17. URL: http://durati.lnec.pt/pdf/icds12_r.pdf. | |
dc.relation.references | Shakib, S., & Morshed, A. Z. (2021). Modeling of Cover Concrete Cracking Due to Uniform Corrosion of | |
dc.relation.references | Reinforcement. Journal of Engineering Science, 12(1), 43–49. DOI: 10.3329/jes.v12i1.53100. | |
dc.relation.references | Xia, J., Wei-liang, J., & Li, L. (2011). Shear performance of reinforced concrete beams with corroded stirrups | |
dc.relation.references | in chloride environment. Corrosion Science, 53(5), 1794–1805. DOI: 10.1016/j.corsci.2011.01.058. | |
dc.relation.references | Yatsko, F. V. (2015). Modeling and forecasting of durability of reinforced concrete elements of transport | |
dc.relation.references | constructions on highways: dis. for science degree of Dr. Tech. Science. 05.23.17. Kyiv, 237. URL: | |
dc.relation.references | http://diser.ntu.edu.ua/Yazko_aref.pdf. | |
dc.relation.references | Zacchei, E., & Nogueira, C. G. (2021). 2D/3D Numerical Analyses of Corrosion Initiation in RC Structures | |
dc.relation.references | Accounting Fluctuations of Chloride Ions by External Actions. KSCE J Civ Eng., 25, 2105–2120. DOI: 10.1007/s12205-021-1242-z. | |
dc.relation.references | Zhang, L., Niu, D., Wen, B., & Luo D. (2019). Concrete protective layer cracking caused by non-uniform | |
dc.relation.references | corrosion of reinforcements. Materials, 12 (24), 4245. DOI: 10.3390/ma12244245. | |
dc.relation.references | Zhu, W., & François, R. (2013). Effect of corrosion pattern on the ductility of tensile reinforcement extracted | |
dc.relation.references | from a 26-year-old corroded beam. Advances in concrete construction, 1(2), 121–136. DOI: 10.12989/acc2013.01.2.121. | |
dc.relation.referencesen | Akpanyung, K. V., & Loto, R. T. (2019). Pitting corrosion evaluation: a review. Journal of Physics: | |
dc.relation.referencesen | Conference Series. IOP Publishing, 1378 (2), 1–13. DOI: 10.1088/1742-6596/1378/2/022088. | |
dc.relation.referencesen | Angst, U. M. (2018). Challenges and opportunities in corrosion of steel in concrete. Materials and Structures, 51 (4), 1–20. DOI: 10.1617/s11527-017-1131-6. | |
dc.relation.referencesen | Ben Seghier, M. E. A., Ouaer, H., Ghriga, M. A., Menad, N. A., & Thai, D. K. (2021).Hybrid soft computational approaches for modeling the maximum ultimate bond strength between the corroded steel | |
dc.relation.referencesen | reinforcement and surrounding concrete. Neural Comput &Applic, 33, 6905–6920. DOI: 10.1007/s00521-020-05466-6. | |
dc.relation.referencesen | Bhagwat, Y., Nayak, G., Lakshmi, A., & Pandit, P. (2020). Corrosion of Reinforcing Bar in RCC Structures-A | |
dc.relation.referencesen | Review-Conference Paper. Civil Engineering Trends and Challenges for Sustainability (CTCS-2020). December 2020, 1–6. DOI: 10.1007/978-981-16-2826-9_51. | |
dc.relation.referencesen | Blikharskyy Ya. Z. & Kopiika N. S. (2019). Research of damaged reinforced concrete elements, main methods | |
dc.relation.referencesen | of their restoration and strengthening. Resource-saving materials, structures, buildings and structures, 37, 316–322. | |
dc.relation.referencesen | DOI: 10.31713/budres.v0i37.300. | |
dc.relation.referencesen | Blikharskyy Ya. Z. & Kopiika N. S. (2021). Comparative analysis of approaches to assessing the reliability of | |
dc.relation.referencesen | building structures. Ukrainian Journal of Construction and Architecture, 3 (003), 46–54. DOI: 10.30838/J. | |
dc.relation.referencesen | BPSACEA. 2312.010721.46.766. | |
dc.relation.referencesen | Blikharskyy, Z., Selejdak, J., Blikharskyy, Y., & Khmil, R. (2019). Corrosion of reinforce bars in RC constructions. System Safety: Human-Technical Facility-Environment, 1(1), 277–283. | |
dc.relation.referencesen | DOI:10.2478/czoto-2019-0036. | |
dc.relation.referencesen | Bossio, A., Fabbrocino, F., Lignola, G. P., Monetta, T., Bellucci, F., Manfredi, G., & Prota, A. (2016). Effects | |
dc.relation.referencesen | of corrosion on reinforced concrete structures. In Proceedings of the 14th International Forum World Heritage and | |
dc.relation.referencesen | Degradation. June, 2016, Capri, Italy, 16–18. DOI: 10.1016/j.prostr.2018.11.051 | |
dc.relation.referencesen | Cao, J., Liu, L., & Zhao, Sh. (2020). Relationship between Corrosion of Reinforcement and Surface Cracking | |
dc.relation.referencesen | Width in Concrete. Advances in Civil Engineering, 2020 (7936861), 1–14. DOI: 10.1155/2020/7936861. | |
dc.relation.referencesen | Cardone, D. (2016). Fragility curves and loss functions for RC structural components with smooth rebars. | |
dc.relation.referencesen | Earthquakes and Structures, 10 (5), 1181–1212. DOI: 10.12989/eas.2016.10.5.1181. | |
dc.relation.referencesen | Chandru, P., Karthikeyan, J., & Natarajan, C. (2021). Techniques to Assess the Corrosion Resistance and | |
dc.relation.referencesen | Corrosion Rate of the Steel Embedded in Concrete. Building Pathologies and Acoustic Performance. Springer, Cham, 33–54. DOI: 10.1007/978-3-030-71233-4_3. | |
dc.relation.referencesen | Chiu, C. K., Sung, H. F., Chi, K. N., & Hsiao, F. P. (2019). Experimental quantification on the residual seismic capacity of damaged RC column members. International Journal | |
dc.relation.referencesen | of Concrete Structures and Materials, 13(1), 1–22. doi:10.1186/s40069-019-0338-z. | |
dc.relation.referencesen | Ciubotariu, A. C., & Istrate, G. G. (2016). Corrosion rate of steels DX51D and S220GD in different corrosion | |
dc.relation.referencesen | environment. "Mircea cel Batran" Naval Academy Scientific Bulletin, 19 (1), 166–172. DOI: 10.21279/1454-864X16-I1-028. | |
dc.relation.referencesen | Dergach, T. O., Sukhomlin, G. D., Balev, A. E., & Sukhomlin, D. A. (2020). Accelerated electrochemical methods for testing austenitic corrosion-resistant steels for strength against intergranular corrosion. | |
dc.relation.referencesen | Bulletin of the Dnieper State Academy of Civil Engineering and Architecture, 3, 46–56. DOI: 10.30838/J.BPSACEA.2312.070720.46.640. | |
dc.relation.referencesen | Dixit, M., & Gupta, A. K. (2021). A Review of Different Assessment Methods of Corrosion of Steel | |
dc.relation.referencesen | Reinforcement in Concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1–18. | |
dc.relation.referencesen | DOI: 10.1007/s40996-021-00644-5. | |
dc.relation.referencesen | Dizaj, E. A., Padgett, J. E., & Kashanic, M. M. (2021). A Markov Chain-Based Model for Structural Vulnerability Assessment of Corrosion-Damaged Reinforced Concrete Bridges. Philosophical Transactions of | |
dc.relation.referencesen | The Royal Society A Mathematical Physical and Engineering Sciences, 379 (2203), 1–28. DOI: 10.1098/rsta.2020.0290. | |
dc.relation.referencesen | Ebell, G., Burkert, A., & Mietz, J. (2018). Detection of reinforcement corrosion in reinforced concrete | |
dc.relation.referencesen | structures by potential mapping: Theory and practice. International Journal of Corrosion, 2018 (3027825), 1–7. DOI: 10.1155/2018/3027825. | |
dc.relation.referencesen | Ferreira, R. M., & Jalali, S. (2006). Probability-based durability design of concrete structures in marine environment: doctoral thesis. Universidade do Minho, 339. URL: http://hdl.handle.net/1822/2675. | |
dc.relation.referencesen | Gießgen, T., Mittelbach, A., Höche, D., Zheludkevich, M., & Kainer K. U. (2019). Enhanced predictive corrosion modeling with implicit corrosion products. Materials and Corrosion, 70(12), 2247–2255. | |
dc.relation.referencesen | DOI: 10.1002/maco. 201911101. | |
dc.relation.referencesen | Hait, P., Arjun, S., & Satyabrata, Ch. (2018). Quantification of damage to RC structures: A comprehensive | |
dc.relation.referencesen | review. Disaster Advances, 11(12), 41-59. URL: https://www.academia.edu/39813716/Quantification_of_damage_to_RC_Structures_A_Comprehensive_review | |
dc.relation.referencesen | Hibner, D. R. (2017). Residual axial capacity of fire exposed reinforced concrete columns (Thesis of | |
dc.relation.referencesen | dissertation of Master of Science in Civil Engineering). Michigan State University, 134. DOI:10.25335/M5NS0W. | |
dc.relation.referencesen | Javor, T. (1991). Damage classification of concrete structures. The state of the art report of RILEM Technical | |
dc.relation.referencesen | Committee 104-DCC activity. Materials and Structures, 24, 253–259. DOI: 10.1007/BF02472079. | |
dc.relation.referencesen | Kaveh, A., Scott, A., & Palermo, A. (2019). Experimental evaluation of the residual compression strength and | |
dc.relation.referencesen | ultimate strain of chloride corrosion induced damaged concrete. Structural Concrete, 20(1), 296–306. DOI: 10.1002/suco.201800108. | |
dc.relation.referencesen | Kenny, A., & Katz, A. (2020). Steel-concrete interface influence on chloride threshold for corrosion– | |
dc.relation.referencesen | Empirical reinforcement to theory. Construction and Building Materials, 244 (118376). DOI: 10.1016/j.conbuildmat. 2020.118376. | |
dc.relation.referencesen | Koteš, P., Vavruš, M., & Moravčík, M. (2021, August). Diagnostics and Evaluation of Bridge Structures on | |
dc.relation.referencesen | Cogwheel Railway. In International Conference of the European Association on Quality Control of Bridges and | |
dc.relation.referencesen | Structures. Springer, Cham, 93–101. DOI: 10.1007/978-3-030-91877-4_11. | |
dc.relation.referencesen | Lee, K. S. (2015). An experimental study on hybrid noncompression CF bracing and GF sheet wrapping | |
dc.relation.referencesen | reinforcement method to restore damaged RC structures. Shock and Vibration, 2015, 202751, 1–13. DOI: 10.1155/2015/202751 | |
dc.relation.referencesen | Li, D., Wei, R., Li, L., Guan, X., & Mi, X. (2019). Pitting corrosion of reinforcing steel bars in chloride contaminated concrete. Construction and Building Materials, 199, 359–368. | |
dc.relation.referencesen | DOI: 10.1016/j.conbuildmat.2018.12.003. | |
dc.relation.referencesen | Linwen, Y., François, R., Dang, V. H., L’Hostis, V., & Gagné, R. (2015). Distribution of corrosion and pitting | |
dc.relation.referencesen | factor of steel in corroded RC beams. Construction and Building Materials, 95 (1), 384–392. DOI: 10.1016/j.conbuildmat.2015.07.119. | |
dc.relation.referencesen | Lobodanov, M. M., Vegera, P. I., & Blikharskyy, Z. Ya. (2018). Analysis of the influence of the main types of | |
dc.relation.referencesen | defects and damages on the bearing capacity of reinforced concrete elements. Bulletin of the National University of | |
dc.relation.referencesen | Lviv Polytechnic. Theory and practice of construction, 888, 93–100. URL: http://nbuv.gov.ua/UJRN/VNULPTPB_2018_888_15. | |
dc.relation.referencesen | Mahmoodian, M. (2021). Structural reliability assessment of corroded offshore pipelines. Australian Journal | |
dc.relation.referencesen | of Civil Engineering, 19(2), 123–133. DOI: 10.1080/14488353.2020.1816639. | |
dc.relation.referencesen | Mak, M. W. T., Desnerck, P., & Lees, J. (2018). Correlation between surface crack width and steel corrosion | |
dc.relation.referencesen | in reinforced concrete. International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018). | |
dc.relation.referencesen | MATEC Web Conf. 2018, 199, 1–8. DOI: 10.1051/matecconf/201819904009. | |
dc.relation.referencesen | Menz, N., Gerasimidis, S., Civjan, S., Czach, J., & Rigney, J. (2021). Review of Post-Fire Inspection Procedures for Concrete Tunnels. Transportation Research Record, 2675.9, 1304–1315. | |
dc.relation.referencesen | DOI: 10.1177/03611981211006732. | |
dc.relation.referencesen | Morshed, A. Z., Shakib, S., & Jahin, T. (2020). Characterization of Impressed Current Technique to Model | |
dc.relation.referencesen | Corrosion of Reinforcement in Concrete. Journal of Engineering Science, 11(1), 93–99. DOI: 10.3329/jes.v11i1. 49551. | |
dc.relation.referencesen | Nguyen, T. H. Y., Bui, V. H. L., Tran, V. M., Cao, N. T., Pansuk, W., & Jongvivatsakul, P. (2021). Verifying | |
dc.relation.referencesen | the Reliability of Impressed Current Method to Simulate Natural Corrosion in Reinforced Concrete. Engineering | |
dc.relation.referencesen | Journal, 25(3), 105–116. DOI:10.4186/ej.2021.25.3.105. | |
dc.relation.referencesen | Ouzaa, K., & Chahmi, O. (2019). Numerical model for prediction of corrosion of steel reinforcements in | |
dc.relation.referencesen | reinforced concrete structures. Underground Space, 4(1), 72–77. DOI: 10.1016/j.undsp.2018.06.002. | |
dc.relation.referencesen | Ponechal, R., Koteš, P., Michálková, D., Kraľovanec, J., & Bahleda, F. (2021). Effect of Water Condensate on | |
dc.relation.referencesen | Corrosion of Wires in Ungrouted Ducts. Materials, 14(24), 7765. DOI:10.3390/ma14247765. | |
dc.relation.referencesen | Royani, A., Prifiharni, S., Priyotomo, G., & Sundjono, S. (2021). Corrosion rate and corrosion behaviour | |
dc.relation.referencesen | analysis of carbon steel pipe at constant condensed fluid. Metallurgical and Materials Engineering, 27(4), 519–530. | |
dc.relation.referencesen | DOI: 10.30544/591. | |
dc.relation.referencesen | Sadeghi, K., & Nouban, F. (2016). Damage and fatigue quantification of RC structures. Structural | |
dc.relation.referencesen | Engineering and Mechanics, 58 (6), 1021–1044. DOI: 10.12989/SEM.2016.58.6.1021. | |
dc.relation.referencesen | Santos J., & Henriques A. A. (2021). Rotation capacity of corroded RC beams with special ductility tempcore | |
dc.relation.referencesen | rebars. Engineering Structures, 236 (1), 112138. DOI: 10.1016/j.engstruct.2021.112138. | |
dc.relation.referencesen | Santos, J., & Henriques, A. A. (2015). Strength and ductility of damaged tempcore rebars. Procedia | |
dc.relation.referencesen | Engineering, 114, 800–807. DOI: 10.1016/j.proeng.2015.08.029. | |
dc.relation.referencesen | Santos, J. & Henriques, A. A. (2012). Ductility of damaged reinforced concrete beams. Conference: ICDS12 – Durable Structures: from construction to rehabilitation. At: Lisbon, Portugal, 1–17. URL: http://durati.lnec.pt/pdf/icds12_r.pdf. | |
dc.relation.referencesen | Shakib, S., & Morshed, A. Z. (2021). Modeling of Cover Concrete Cracking Due to Uniform Corrosion of | |
dc.relation.referencesen | Reinforcement. Journal of Engineering Science, 12(1), 43–49. DOI: 10.3329/jes.v12i1.53100. | |
dc.relation.referencesen | Xia, J., Wei-liang, J., & Li, L. (2011). Shear performance of reinforced concrete beams with corroded stirrups | |
dc.relation.referencesen | in chloride environment. Corrosion Science, 53(5), 1794–1805. DOI: 10.1016/j.corsci.2011.01.058. | |
dc.relation.referencesen | Yatsko, F. V. (2015). Modeling and forecasting of durability of reinforced concrete elements of transport | |
dc.relation.referencesen | constructions on highways: dis. for science degree of Dr. Tech. Science. 05.23.17. Kyiv, 237. URL: | |
dc.relation.referencesen | http://diser.ntu.edu.ua/Yazko_aref.pdf. | |
dc.relation.referencesen | Zacchei, E., & Nogueira, C. G. (2021). 2D/3D Numerical Analyses of Corrosion Initiation in RC Structures | |
dc.relation.referencesen | Accounting Fluctuations of Chloride Ions by External Actions. KSCE J Civ Eng., 25, 2105–2120. DOI: 10.1007/s12205-021-1242-z. | |
dc.relation.referencesen | Zhang, L., Niu, D., Wen, B., & Luo D. (2019). Concrete protective layer cracking caused by non-uniform | |
dc.relation.referencesen | corrosion of reinforcements. Materials, 12 (24), 4245. DOI: 10.3390/ma12244245. | |
dc.relation.referencesen | Zhu, W., & François, R. (2013). Effect of corrosion pattern on the ductility of tensile reinforcement extracted | |
dc.relation.referencesen | from a 26-year-old corroded beam. Advances in concrete construction, 1(2), 121–136. DOI: 10.12989/acc2013.01.2.121. | |
dc.relation.uri | http://hdl.handle.net/1822/2675 | |
dc.relation.uri | https://www.academia.edu/39813716/Quantification_of_damage_to_RC_Structures_A_Comprehensive_review | |
dc.relation.uri | http://nbuv.gov.ua/UJRN/VNULPTPB_2018_888_15 | |
dc.relation.uri | http://durati.lnec.pt/pdf/icds12_r.pdf | |
dc.relation.uri | http://diser.ntu.edu.ua/Yazko_aref.pdf | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Blikharskyy Y., Kopiika N., 2022 | |
dc.subject | залізобетонні конструкції | |
dc.subject | пошкодження | |
dc.subject | довговічність | |
dc.subject | залишкова несуча здатність | |
dc.subject | корозія | |
dc.subject | RC structures | |
dc.subject | damages | |
dc.subject | durability | |
dc.subject | residual load-bearing capacity | |
dc.subject | corrosion | |
dc.title | Analysis of the most common damages in reinforced concrete structures: a review | |
dc.title.alternative | Аналіз найпоширеніших пошкоджень і дефектів у залізобетонних конструкціях: огляд | |
dc.type | Article |
Files
License bundle
1 - 1 of 1