Nanostructured Magnetically Sensitive Catalysts for the Fenton System: Obtaining, Research, Application

dc.citation.epage236
dc.citation.issue2
dc.citation.spage227
dc.contributor.affiliationL. M. Lytvynenko Institute of Physico-organic Chemistry and Coal Chemistry NAS of Ukraine
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorMakido, Olena
dc.contributor.authorKhovanets’, Galyna
dc.contributor.authorKochubei, Viktoria
dc.contributor.authorYevchuk, Iryna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T11:13:06Z
dc.date.available2024-01-22T11:13:06Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractСинтезовано наноструктуровані каталізатори типу «ядро-оболонка», які мають магніточутливе ядро з фериту кобальту із захисним шаром пористого SiO2, на поверхні якого розміщені кластери з оксиду купруму, що відіграють роль каталітичних центрів. Структуру каталізатора CoFe2O4/SiO2/CuO підтверджено за допомогою термогравіметричного аналізу (TGA), рентгенівської дифракції (XRD) та скануючої електронної мікроскопії (SEM). Дослідження каталітичної активності отриманого каталізатора проводили в системі Фентона на модельному розчині метиленового синього. Каталітична активність композиту при деструкції МС досягає 99%. Висока магнітна чутливість одержаних каталізаторів забезпечують легке вилучення їх з реакційного середовища. Каталізатори продемонстрували можливість багаторазового використання без втрати активності.
dc.description.abstractNanostructured “shell-shell” type catalysts, which consist of a magnetically sensitive core of cobalt ferrite and a protective layer of porous SiO2, have been synthesized. On the surface of porous SiO2 clusters of copper oxide are situated playing the role of catalytic centers. The structure of CoFe2O4 / SiO2 / CuO catalyst was confirmed by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Studies of the catalytic activity of the obtained catalysts were performed in the Fenton system on a model solution of methylene blue (MB). The catalytic activity of the composite in MB destruction reaches 99%. The high magnetic sensitivity of the obtained catalysts ensures their easy removal from the reaction medium. The catalysts demonstrated the possibility of reusability without loss of activity.
dc.format.extent227-236
dc.format.pages10
dc.identifier.citationNanostructured Magnetically Sensitive Catalysts for the Fenton System: Obtaining, Research, Application / Olena Makido, Galyna Khovanets’, Viktoria Kochubei, Iryna Yevchuk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 227–236.
dc.identifier.citationenNanostructured Magnetically Sensitive Catalysts for the Fenton System: Obtaining, Research, Application / Olena Makido, Galyna Khovanets’, Viktoria Kochubei, Iryna Yevchuk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 227–236.
dc.identifier.doidoi.org/10.23939/chcht16.02.227
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60983
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (16), 2022
dc.relation.references[1] Maximillian J., Brusseau M.L., Glenn E.P., Matthias A.D. Pollution and Environmental Perturbations in the Global System Environ. In Environmental and Pollution Science, 3rd ed.; Academic Press, 2019; pp 457-476. https://doi.org/10.1016/B978-0-12-814719-1.00025-2
dc.relation.references[2] Inyinbor Adejumoke, A.; Adebesin Babatunde, O.; Oluyori Abimbola, P.; Adelani-Akande Tabitha, A.; Dada Adewumi, O.; Oreofe Toyin, A. Water Pollution: Effects, Prevention, and Climatic Impact. In Water Challenges of an Urbanizing World, 2018. https://doi.org/10.5772/INTECHOPEN.72018
dc.relation.references[3] Deng Y., Zhao R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167-176. https://doi.org/10.1007/s40726-015-0015-z
dc.relation.references[4] Ganiyu, S.O.; Vieira dos Santos, E.; Tossi de Araújo Costa, E.C.; Martínez-Huitle, C.A. Electrochemical Advanced Oxidation Processes (EAOPs) as Alternative Treatment Techniques for Carwash Wastewater Reclamation. Chemosphere 2018, 211, 998-1006. https://doi.org/10.1016/j.chemosphere.2018.08.044
dc.relation.references[5] Pham, A. N.; Xing, G.; Miller, Ch. J.; Waite, T. D. Fenton-like Copper Redox Chemistry Revisited: Hydrogen Peroxide and Superoxide Mediation of Copper-Catalyzed Oxidant Production. J. Catal. 2013, 301, 54-64. https://doi.org/10.1016/j.jcat.2013.01.025
dc.relation.references[6] Yang, Y.; Liu, Y.; Fang, X.; Miao, W.; Chen, X.; Sun, J.; Ni, B.-J.; Mao, S. Heterogeneous Electro-Fenton Catalysis with HKUST-1-derived Cu@C Decorated in 3D Graphene Network. Chemosphere 2020, 243, 125423. https://doi.org/10.1016/j.chemosphere.2019.125423
dc.relation.references[7] Bonfim, D.P.F.; Santana, C.S.; Batista, M.S.; Fabiano, D.P. Catalytic Evaluation of CuO/[Si]MCM-41 in Fenton-like Reactions. Chem. Eng. Technol. 2019, 42, 882-888. https://doi.org/10.1002/ceat.201800593
dc.relation.references[8] Ding, L.; Zhang, M.; Zhang, Y.; Yang, J.; Zheng, J.; Hayat, T.; Alharbi, N.S.; Hu, J. Tailoring the Nickel Nanoparticles Anchored on the Surface of Fe3O4@SiO2 Spheres for Nanocatalysis. Nanotechnology 2017, 28, 345601. https://doi.org/10.1088/1361-6528/aa7b9c
dc.relation.references[9] Shi, B.-N.; Wan, J.-F.; Liu, Ch.-T.; Yu, X.-J.; Ma, F.-W. Synthesis of CoFe2O4/MCM-41/TiO2 Composite Microspheres and its Performance in Degradation of Phenol. Mater. Sci. Semicond. Process. 2015, 37, 241-249. https://doi.org/10.1016/j.mssp.2015.03.048
dc.relation.references[10] Naĭden, E.P.; Zhuravlev, V. A.; Itin, V. I.; Terekhova, O.G.; Magaeva, A.A.; Ivanov, Yu.F. Magnetic Properties and Structural Parameters of Nanosized Oxide Ferrimagnet Powders Produced by Mechanochemical Synthesis from Salt Solutions. Phys. Solid State 2008, 50, 894-900. https://doi.org/10.1134/S1063783408050156
dc.relation.references[11] Dutta, B. K.; Abd Ellateif, T.M.; Maitra, S. Development of a Porous Silica Film by Sol-gel Process. Int. Sci. Index, Chem. Mol. Engin. 2011, 5, 34-38. http://doi.org/10.5281/zenodo.1063366
dc.relation.references[12] Poreddy, R.; Engelbrekt, C.; Riisager, A. Copper Oxide as Efficient Catalyst for Oxidative Dehydrogenation of Alcohols with Air. Catal. Sci. Technol. 2015, 5, 2467-2477. https://doi.org/10.1039/C4CY01622J
dc.relation.references[13] Zedan, A. F.; Mohamed, A. T.; El-Shall, M. S.; Al-Qaradawi, S.Y.; Aljaber, A.S. Tailoring the Reducibility and Catalytic Activity of CuO Nanoparticles for Low Temperature CO Oxidation. RSC Adv. 2018, 8, 19499-19511. https://doi.org/10.1039/C8RA03623C
dc.relation.references[14] Fang, M.; Zheng, R.; Wu, Y.; Yue, D.; Qian, X.; Zhao, Y.; Bian, Z. CuO Nanosheet as a Recyclable Fenton-like Catalyst Prepared from Simulated Cu(II) Waste Effluents by Alkaline H2O2 Reaction. Environ. Sci. Nano 2019, 6, 105-114. https://doi.org/10.1039/C8EN00930A
dc.relation.references[15] Liu, X.; Zhang, J.; Guo, X.; Wu, S.; Wang, S. Porous α-Fe2O3 Decorated by Au Nanoparticles and their Enhanced Sensor Performance. Nanotechnology 2010, 21, 095501. https://doi.org/10.1088/0957-4484/21/9/095501
dc.relation.references[16] Said, A.A.; Abd El-Salaam, K.M.; Hassan, E.A.; El-Awad, A.M.; Mohamed, M.M. A Study on the Thermal Decomposition of Iron-cobalt Mixed Hydroxides. J. Therm. Anal. 1993, 39, 309-321
dc.relation.references[17] Osuntokun J., Ajibade P. A.: Structural and Thermal Studies of ZnS and CdS Nanoparticles in Polymer Matrices. J. Nanomater. 2016, 2016, 3296071. https://doi.org/10.1155/2016/3296071
dc.relation.references[18] Rao, K.S.; Choudary, G.S.V.R.K.; Rao, K.H.; Sujatha, Ch. Structural and Magnetic Properties of Ultrafine CoFe2O4 Nanoparticles. Procedia Materials Science 2015, 10, 19-27. https://doi.org/10.1016/J.MSPRO.2015.06.019
dc.relation.references[19] Waje, S. B.; Hashim, M.; Yusoff, W.M.D.W.; Abbas, Z. X-ray Diffraction Studies on Crystallite Size Evolution of CoFe2O4 Nanoparticles Prepared Using Mechanical Alloying and Sintering. Appl. Surf. Sci. 2010, 256, 3122-3127. https://doi.org/10.1016/j.apsusc.2009.11.084
dc.relation.references[20] Dolhov, B.N. Kataliz v orhanycheskoi khimii (2 Ed). Hosudarstvennoe nauchno-tekhnycheskoe izdatelʹstvo khymicheskoi literatury, 1959. (in Russia)
dc.relation.references[21] Prozorova, D.A.; Afyneevskyj, A.V.; Knjazev, A.V. Zakonomernosti dezaktivatsii nanesennykh nikelevykh katalizatorov gidririvaniia sulfide-ionom. Žurnal Fizicheskoi Khimii 2019, 93, 1681. (in Russia)
dc.relation.references[22] Cao, Z.-F.; Wen, X.; Chen, P.; Yang, F.; Ou, X.-L.; Wang, S.; Zhong, H. Synthesis of a Novel Heterogeneous Fenton Catalyst and Promote the Degradation of Methylene Blue by Fast Regeneration of Fe2+. Colloids Surf. A Physicochem. Eng. Asp. 2018, 549, 94-104. https://doi.org/10.1016/j.colsurfa.2018.04.009
dc.relation.references[23] Yang, B.; Tian, Z.; Zhang, L.; Guo, Y.; Yan, S. Enhanced Heterogeneous Fenton Degradation of Methylene Blue by Nanoscale Zero Valent Iron (nZVI) Assembled on Magnetic Fe3O4/Reduced Graphene Oxide. J. Water Process Eng. 2015, 5, 101-111. https://doi.org/10.1016/j.jwpe.2015.01.006
dc.relation.referencesen[1] Maximillian J., Brusseau M.L., Glenn E.P., Matthias A.D. Pollution and Environmental Perturbations in the Global System Environ. In Environmental and Pollution Science, 3rd ed.; Academic Press, 2019; pp 457-476. https://doi.org/10.1016/B978-0-12-814719-1.00025-2
dc.relation.referencesen[2] Inyinbor Adejumoke, A.; Adebesin Babatunde, O.; Oluyori Abimbola, P.; Adelani-Akande Tabitha, A.; Dada Adewumi, O.; Oreofe Toyin, A. Water Pollution: Effects, Prevention, and Climatic Impact. In Water Challenges of an Urbanizing World, 2018. https://doi.org/10.5772/INTECHOPEN.72018
dc.relation.referencesen[3] Deng Y., Zhao R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167-176. https://doi.org/10.1007/s40726-015-0015-z
dc.relation.referencesen[4] Ganiyu, S.O.; Vieira dos Santos, E.; Tossi de Araújo Costa, E.C.; Martínez-Huitle, C.A. Electrochemical Advanced Oxidation Processes (EAOPs) as Alternative Treatment Techniques for Carwash Wastewater Reclamation. Chemosphere 2018, 211, 998-1006. https://doi.org/10.1016/j.chemosphere.2018.08.044
dc.relation.referencesen[5] Pham, A. N.; Xing, G.; Miller, Ch. J.; Waite, T. D. Fenton-like Copper Redox Chemistry Revisited: Hydrogen Peroxide and Superoxide Mediation of Copper-Catalyzed Oxidant Production. J. Catal. 2013, 301, 54-64. https://doi.org/10.1016/j.jcat.2013.01.025
dc.relation.referencesen[6] Yang, Y.; Liu, Y.; Fang, X.; Miao, W.; Chen, X.; Sun, J.; Ni, B.-J.; Mao, S. Heterogeneous Electro-Fenton Catalysis with HKUST-1-derived Cu@C Decorated in 3D Graphene Network. Chemosphere 2020, 243, 125423. https://doi.org/10.1016/j.chemosphere.2019.125423
dc.relation.referencesen[7] Bonfim, D.P.F.; Santana, C.S.; Batista, M.S.; Fabiano, D.P. Catalytic Evaluation of CuO/[Si]MCM-41 in Fenton-like Reactions. Chem. Eng. Technol. 2019, 42, 882-888. https://doi.org/10.1002/ceat.201800593
dc.relation.referencesen[8] Ding, L.; Zhang, M.; Zhang, Y.; Yang, J.; Zheng, J.; Hayat, T.; Alharbi, N.S.; Hu, J. Tailoring the Nickel Nanoparticles Anchored on the Surface of Fe3O4@SiO2 Spheres for Nanocatalysis. Nanotechnology 2017, 28, 345601. https://doi.org/10.1088/1361-6528/aa7b9c
dc.relation.referencesen[9] Shi, B.-N.; Wan, J.-F.; Liu, Ch.-T.; Yu, X.-J.; Ma, F.-W. Synthesis of CoFe2O4/MCM-41/TiO2 Composite Microspheres and its Performance in Degradation of Phenol. Mater. Sci. Semicond. Process. 2015, 37, 241-249. https://doi.org/10.1016/j.mssp.2015.03.048
dc.relation.referencesen[10] Naĭden, E.P.; Zhuravlev, V. A.; Itin, V. I.; Terekhova, O.G.; Magaeva, A.A.; Ivanov, Yu.F. Magnetic Properties and Structural Parameters of Nanosized Oxide Ferrimagnet Powders Produced by Mechanochemical Synthesis from Salt Solutions. Phys. Solid State 2008, 50, 894-900. https://doi.org/10.1134/S1063783408050156
dc.relation.referencesen[11] Dutta, B. K.; Abd Ellateif, T.M.; Maitra, S. Development of a Porous Silica Film by Sol-gel Process. Int. Sci. Index, Chem. Mol. Engin. 2011, 5, 34-38. http://doi.org/10.5281/zenodo.1063366
dc.relation.referencesen[12] Poreddy, R.; Engelbrekt, C.; Riisager, A. Copper Oxide as Efficient Catalyst for Oxidative Dehydrogenation of Alcohols with Air. Catal. Sci. Technol. 2015, 5, 2467-2477. https://doi.org/10.1039/P.4CY01622J
dc.relation.referencesen[13] Zedan, A. F.; Mohamed, A. T.; El-Shall, M. S.; Al-Qaradawi, S.Y.; Aljaber, A.S. Tailoring the Reducibility and Catalytic Activity of CuO Nanoparticles for Low Temperature CO Oxidation. RSC Adv. 2018, 8, 19499-19511. https://doi.org/10.1039/P.8RA03623C
dc.relation.referencesen[14] Fang, M.; Zheng, R.; Wu, Y.; Yue, D.; Qian, X.; Zhao, Y.; Bian, Z. CuO Nanosheet as a Recyclable Fenton-like Catalyst Prepared from Simulated Cu(II) Waste Effluents by Alkaline H2O2 Reaction. Environ. Sci. Nano 2019, 6, 105-114. https://doi.org/10.1039/P.8EN00930A
dc.relation.referencesen[15] Liu, X.; Zhang, J.; Guo, X.; Wu, S.; Wang, S. Porous α-Fe2O3 Decorated by Au Nanoparticles and their Enhanced Sensor Performance. Nanotechnology 2010, 21, 095501. https://doi.org/10.1088/0957-4484/21/9/095501
dc.relation.referencesen[16] Said, A.A.; Abd El-Salaam, K.M.; Hassan, E.A.; El-Awad, A.M.; Mohamed, M.M. A Study on the Thermal Decomposition of Iron-cobalt Mixed Hydroxides. J. Therm. Anal. 1993, 39, 309-321
dc.relation.referencesen[17] Osuntokun J., Ajibade P. A., Structural and Thermal Studies of ZnS and CdS Nanoparticles in Polymer Matrices. J. Nanomater. 2016, 2016, 3296071. https://doi.org/10.1155/2016/3296071
dc.relation.referencesen[18] Rao, K.S.; Choudary, G.S.V.R.K.; Rao, K.H.; Sujatha, Ch. Structural and Magnetic Properties of Ultrafine CoFe2O4 Nanoparticles. Procedia Materials Science 2015, 10, 19-27. https://doi.org/10.1016/J.MSPRO.2015.06.019
dc.relation.referencesen[19] Waje, S. B.; Hashim, M.; Yusoff, W.M.D.W.; Abbas, Z. X-ray Diffraction Studies on Crystallite Size Evolution of CoFe2O4 Nanoparticles Prepared Using Mechanical Alloying and Sintering. Appl. Surf. Sci. 2010, 256, 3122-3127. https://doi.org/10.1016/j.apsusc.2009.11.084
dc.relation.referencesen[20] Dolhov, B.N. Kataliz v orhanycheskoi khimii (2 Ed). Hosudarstvennoe nauchno-tekhnycheskoe izdatelʹstvo khymicheskoi literatury, 1959. (in Russia)
dc.relation.referencesen[21] Prozorova, D.A.; Afyneevskyj, A.V.; Knjazev, A.V. Zakonomernosti dezaktivatsii nanesennykh nikelevykh katalizatorov gidririvaniia sulfide-ionom. Žurnal Fizicheskoi Khimii 2019, 93, 1681. (in Russia)
dc.relation.referencesen[22] Cao, Z.-F.; Wen, X.; Chen, P.; Yang, F.; Ou, X.-L.; Wang, S.; Zhong, H. Synthesis of a Novel Heterogeneous Fenton Catalyst and Promote the Degradation of Methylene Blue by Fast Regeneration of Fe2+. Colloids Surf. A Physicochem. Eng. Asp. 2018, 549, 94-104. https://doi.org/10.1016/j.colsurfa.2018.04.009
dc.relation.referencesen[23] Yang, B.; Tian, Z.; Zhang, L.; Guo, Y.; Yan, S. Enhanced Heterogeneous Fenton Degradation of Methylene Blue by Nanoscale Zero Valent Iron (nZVI) Assembled on Magnetic Fe3O4/Reduced Graphene Oxide. J. Water Process Eng. 2015, 5, 101-111. https://doi.org/10.1016/j.jwpe.2015.01.006
dc.relation.urihttps://doi.org/10.1016/B978-0-12-814719-1.00025-2
dc.relation.urihttps://doi.org/10.5772/INTECHOPEN.72018
dc.relation.urihttps://doi.org/10.1007/s40726-015-0015-z
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2018.08.044
dc.relation.urihttps://doi.org/10.1016/j.jcat.2013.01.025
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2019.125423
dc.relation.urihttps://doi.org/10.1002/ceat.201800593
dc.relation.urihttps://doi.org/10.1088/1361-6528/aa7b9c
dc.relation.urihttps://doi.org/10.1016/j.mssp.2015.03.048
dc.relation.urihttps://doi.org/10.1134/S1063783408050156
dc.relation.urihttp://doi.org/10.5281/zenodo.1063366
dc.relation.urihttps://doi.org/10.1039/C4CY01622J
dc.relation.urihttps://doi.org/10.1039/C8RA03623C
dc.relation.urihttps://doi.org/10.1039/C8EN00930A
dc.relation.urihttps://doi.org/10.1088/0957-4484/21/9/095501
dc.relation.urihttps://doi.org/10.1155/2016/3296071
dc.relation.urihttps://doi.org/10.1016/J.MSPRO.2015.06.019
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2009.11.084
dc.relation.urihttps://doi.org/10.1016/j.colsurfa.2018.04.009
dc.relation.urihttps://doi.org/10.1016/j.jwpe.2015.01.006
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Makido O., Khovanets’ G., Kochubei V., Yevchuk I., 2022
dc.subjectнаноструктурований магніточутливий композит
dc.subjectкаталізатор типу «ядро-оболонка»
dc.subjectсистема Фентона
dc.subjectкаталітична активність
dc.subjectдеструкція метиленового синього
dc.subjectnanostructured magnetically sensitive composite
dc.subject“core-shell” type catalyst
dc.subjectthe Fenton system
dc.subjectcatalytic activity
dc.subjectdestruction of methylene blue
dc.titleNanostructured Magnetically Sensitive Catalysts for the Fenton System: Obtaining, Research, Application
dc.title.alternativeНаноструктуровані магніточутливі каталізатори для системи фентона: одержання, дослідження, використання
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v16n2_Makido_O-Nanostructured_Magnetically_227-236.pdf
Size:
870.19 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v16n2_Makido_O-Nanostructured_Magnetically_227-236__COVER.png
Size:
492.95 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: