Impact of pedestrian flows on traffic delays before roundabouts

dc.citation.epage32
dc.citation.issue2
dc.citation.journalTitleТранспортні технології
dc.citation.spage23
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorBura, Romana
dc.contributor.authorRohalskyy, Roman
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-22T07:50:12Z
dc.date.available2024-02-22T07:50:12Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ роботі розглянуто саморегульоване перехрестя, розташоване у житловому районі м. Львова. На локації розміщено багато точок притягання, тому інтенсивності транспортних та пішохідних потоків високі. На усіх підходах до перехрестя наявні нерегульовані пішохідні переходи, з яких на трьох відсутні острівці безпеки. Проведено натурні дослідження зі збиранням первинних показників транспортних та пішохідних потоків у пікові та міжпікові періоди. За допомогою програмного забезпечення PTV Vissim визначено затримки транспортних потоків на підходах до саморегульованого перехрестя за реальних умов руху. Запропоновано три варіанти влаштування пішохідних переходів на підходах до саморегульованих перехресть. Перший варіант передбачав облаштування острівців безпеки на всіх пішохідних переходах. Другим варіантом було облаштування підземних пішохідних переходів. Третій варіант – впровадження адаптивного світлофорного регулювання з пристроєм виклику для пішоходів. Здійснено моделювання руху за усіх трьох запропонованих варіантів із визначенням затримки, яка припадає на один транспортний засіб, значень середньої та максимальної довжини черги транспортних засобів на підходах до саморегульованого перехрестя. Усі три варіанти показали кращі результати зменшення транспортної затримки, ніж за нинішніх умов руху. Проте спостерігалися затримки, спричинені самим транспортним потоком. Ці затримки визначено за результатами моделювання другого варіанта. У цьому випадку значення транспортної затримки є найнижчими. Найвищі значення затримок, порівняно з іншими варіантами, спостерігалися за першого варіанта. Визначено переваги та недоліки кожного із варіантів облаштування пішохідних переходів. Подано рекомендації щодо доцільності розміщення різних видів пішохідних переходів на підходах до саморегульованого перехрестя.
dc.description.abstractThe paper examines a roundabout located in a residential district of Lviv city. The area has many attraction points, so traffic and pedestrian flow volumes are large. All approaches to the roundabout have unsignalized pedestrian crosswalks, three of which lack safety islands. Field studies were conducted on peak and off-peak periods, collecting primary indicators of traffic and pedestrian flows. Traffic flow delays were determined on the approaches to the roundabout under existing traffic conditions with the help of the PTV VISSIM software. Three options were proposed for arranging pedestrian crosswalks on approaches to the roundabout. The first option was an arrangement of safety islands on all pedestrian crosswalks. The second option was an arrangement of underground pedestrian crosswalks. The third option was the implementation of adapting traffic light control with a call button for pedestrians. Traffic simulation was carried out for all three proposed options with the finding of the delay per vehicle and the values of the average and maximum length of the queue of vehicles on the approaches to the roundabout. All three options showed better results of traffic delay than existing conditions. However, there were delays caused by the traffic flow itself. These delays are seen in the results of the simulation of option two. Traffic delays are the smallest at this option. Option one showed the highest values of traffic delays in comparison with the other two options. The advantages and disadvantages of each option for arranging pedestrian crosswalks are determined. Recommendations are given regarding the feasibility of locating various types of pedestrian crosswalks on the approaches to the roundabout. Given the research results, the best option from the view of traffic and pedestrian flows, their delays and safety is the third one.
dc.format.extent23-32
dc.format.pages10
dc.identifier.citationBura R. Impact of pedestrian flows on traffic delays before roundabouts / Romana Bura, Roman Rohalskyy // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 4. — No 2. — P. 23–32.
dc.identifier.citationenBura R. Impact of pedestrian flows on traffic delays before roundabouts / Romana Bura, Roman Rohalskyy // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 4. — No 2. — P. 23–32.
dc.identifier.doidoi.org/10.23939/tt2023.02.023
dc.identifier.issn2708-2199
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61384
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТранспортні технології, 2 (4), 2023
dc.relation.ispartofTransport Technologies, 2 (4), 2023
dc.relation.references1. Automobile roads. Transport junctions in one level. Designing. (2016). HBN V.2.3-37641918-555:2016 from 1st Luly 2016. Kyiv: Ministry of Infrastructure of Ukraine (in Ukrainian).
dc.relation.references2. Streets and roads of settlements (2018). DBN V.2.3-5:2018 from 1st September 2018. Kyiv: Minregion Ukrainy (in Ukrainian).
dc.relation.references3. Ameen, T., Rashid, W. & Ahmad, A. (2022) Estimation of vehicular delay in presence of illegally crossing pedestrians and determination of LOS using cluster analysis at Midblock sections of Urban Roads, Innovative Infrastructure Solutions, 8(1), 24. doi: 10.1007/s41062-022-00994-7 (in English). https://doi.org/10.1007/s41062-022-00994-7
dc.relation.references4. Fornalchyk, Y., Koda, E., Kernytskyy, I., Hrytsun, O., Royko, Y., Bura, R., ... & Polyansky, P. (2023). The impact of vehicle traffic volume on pedestrian behavior at unsignalized crosswalks. Roads and Bridges - Drogi i Mosty, 22(2), 201-219. doi: 10.7409/rabdim.023.010 (in English).
dc.relation.references5. Xin, X., Jia, N., Ma, S., & Mu, J. (2019). Empirical and simulation study of traffic delay at un-signalized crosswalks due to conflicts between pedestrians and vehicles. Transportmetrica B: Transport Dynamics, 7(1), 637-656. doi: 10.1080/21680566.2018.1460880 (in English). https://doi.org/10.1080/21680566.2018.1460880
dc.relation.references6. Distefano, N., Leonardi, S., & Pulvirenti, G. (2022). Analysis of pedestrian crossing behaviour at roundabout. Transportation research procedia, 60, 28-35. doi: 10.1016/j.trpro.2021.12.005 (in English). https://doi.org/10.1016/j.trpro.2021.12.005
dc.relation.references7. Abdullah, M., Oguchi, T., & Dias, C. (2021). Relocation of Intersection Crosswalks to Nearby Mid-block Locations: Simulation-based Performance Evaluation. Jordan Journal of Civil Engineering, 15(3), 393-406 (in English).
dc.relation.references8. Gracanin, D., Ruskic, N., Pavlica, T., Maric, M., & Ciric Lalic, D. (2023). Simulation modelling of pedestrians influence on the roundabout capacity. International Journal of Simulation Modelling (IJSIMM), 22(3), 474-484. doi: 10.2507/IJSIMM22-3-656 (in English). https://doi.org/10.2507/IJSIMM22-3-656
dc.relation.references9. Petru, J., Krivda, V., Zitnikova, K., & Kludka, M. (2016). Modeling of the impact of a pedestrian crossing on resulting capacity of a roundabout. In Advances and Trends in Engineering Sciences and Technologies II (pp. 841-846) (in English). https://doi.org/10.1201/9781315393827-139
dc.relation.references10. Bari, C., & Dhamaniya, A. (2022). Reduction in entry capacity of roundabout under the influence of pedestrians in mixed traffic conditions. Komunikácie, 24(4), 201-214. doi: 10.26552/com.C.2022.4.D201-D214 (in English). https://doi.org/10.26552/com.C.2022.4.D201-D214
dc.relation.references11. Kang, N., & Terabe, S. (2019). Estimating roundabout delay considering pedestrian impact. In Scientific and Technical Conference "Transport Systems. Theory and Practice 2018", (pp. 112-123). doi: 10.1007/978-3-319-98618-0_10 (in English). https://doi.org/10.1007/978-3-319-98618-0_10
dc.relation.references12. Duran, C., & Cheu, R. (2013). Effects of crosswalk location and pedestrian volume on entry capacity of roundabouts. International Journal of Transportation Science and Technology, 2(1), 31-46. doi: 10.1260/2046-0430.2.1.31 (in English). https://doi.org/10.1260/2046-0430.2.1.31
dc.relation.references13. Distefano, L., Leonardi, S., & Pulvirenti, G. (2021). Experimental analysis of pedestrian behavior at different configurations of crosswalks at roundabout legs. J. Eur. Transp, 85(3), 15. doi: 10.48295/ET.2021.85.3 (in English). https://doi.org/10.48295/ET.2021.85.3
dc.relation.references14. Karwand, Z., Mokhtar, S., Suzuki, K., Oloruntobi, O., Shah, M. Z., & Misnan, S. H. (2023). Impact of Splitter-Island on Pedestrian Safety at Roundabout Using Surrogate Safety Measures: A Comparative Study. Sustainability, 15(6), 5359. doi: 10.3390/su15065359 (in English). https://doi.org/10.3390/su15065359
dc.relation.references15. Vignali, V., Pazzini, M., Ghasemi, N., Lantieri, C., Simone, A., & Dondi, G. (2020). The safety and conspicuity of pedestrian crossing at roundabouts: The effect of median refuge island and zebra markings. Transportation research part F: traffic psychology and behaviour, 68, 94-104. doi: 10.1016/j.trf.2019.12.007 (in English). https://doi.org/10.1016/j.trf.2019.12.007
dc.relation.references16. Mako, E. (2015, October). Evaluation of human behaviour at pedestrian crossings. In 2015 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom) (pp. 443-447). doi: 10.1109/CogInfoCom.2015.7390634 (in English). https://doi.org/10.1109/CogInfoCom.2015.7390634
dc.relation.references17. Kodani, K., Nozato, A., Kuroiwa, H., & Fujioka, K. (2018, October). A Roundabout with Pedestrians: Simulations Using a Cellular Automaton Model. In TENCON 2018-2018 IEEE Region 10 Conference (pp. 1102-1105). doi: 10.1109/TENCON.2018.8650185 (in English). https://doi.org/10.1109/TENCON.2018.8650185
dc.relation.references18. Xu, H., Zhang, K., Zheng, Q., & Yao, R. (2018). Multi‐level pedestrian signalisation at large four‐leg roundabouts. IET Intelligent Transport Systems, 12(8), 838-850. doi: 10.1049/iet-its.2017.0155 (in English). https://doi.org/10.1049/iet-its.2017.0155
dc.relation.referencesen1. Automobile roads. Transport junctions in one level. Designing. (2016). HBN V.2.3-37641918-555:2016 from 1st Luly 2016. Kyiv: Ministry of Infrastructure of Ukraine (in Ukrainian).
dc.relation.referencesen2. Streets and roads of settlements (2018). DBN V.2.3-5:2018 from 1st September 2018. Kyiv: Minregion Ukrainy (in Ukrainian).
dc.relation.referencesen3. Ameen, T., Rashid, W. & Ahmad, A. (2022) Estimation of vehicular delay in presence of illegally crossing pedestrians and determination of LOS using cluster analysis at Midblock sections of Urban Roads, Innovative Infrastructure Solutions, 8(1), 24. doi: 10.1007/s41062-022-00994-7 (in English). https://doi.org/10.1007/s41062-022-00994-7
dc.relation.referencesen4. Fornalchyk, Y., Koda, E., Kernytskyy, I., Hrytsun, O., Royko, Y., Bura, R., ... & Polyansky, P. (2023). The impact of vehicle traffic volume on pedestrian behavior at unsignalized crosswalks. Roads and Bridges - Drogi i Mosty, 22(2), 201-219. doi: 10.7409/rabdim.023.010 (in English).
dc.relation.referencesen5. Xin, X., Jia, N., Ma, S., & Mu, J. (2019). Empirical and simulation study of traffic delay at un-signalized crosswalks due to conflicts between pedestrians and vehicles. Transportmetrica B: Transport Dynamics, 7(1), 637-656. doi: 10.1080/21680566.2018.1460880 (in English). https://doi.org/10.1080/21680566.2018.1460880
dc.relation.referencesen6. Distefano, N., Leonardi, S., & Pulvirenti, G. (2022). Analysis of pedestrian crossing behaviour at roundabout. Transportation research procedia, 60, 28-35. doi: 10.1016/j.trpro.2021.12.005 (in English). https://doi.org/10.1016/j.trpro.2021.12.005
dc.relation.referencesen7. Abdullah, M., Oguchi, T., & Dias, C. (2021). Relocation of Intersection Crosswalks to Nearby Mid-block Locations: Simulation-based Performance Evaluation. Jordan Journal of Civil Engineering, 15(3), 393-406 (in English).
dc.relation.referencesen8. Gracanin, D., Ruskic, N., Pavlica, T., Maric, M., & Ciric Lalic, D. (2023). Simulation modelling of pedestrians influence on the roundabout capacity. International Journal of Simulation Modelling (IJSIMM), 22(3), 474-484. doi: 10.2507/IJSIMM22-3-656 (in English). https://doi.org/10.2507/IJSIMM22-3-656
dc.relation.referencesen9. Petru, J., Krivda, V., Zitnikova, K., & Kludka, M. (2016). Modeling of the impact of a pedestrian crossing on resulting capacity of a roundabout. In Advances and Trends in Engineering Sciences and Technologies II (pp. 841-846) (in English). https://doi.org/10.1201/9781315393827-139
dc.relation.referencesen10. Bari, C., & Dhamaniya, A. (2022). Reduction in entry capacity of roundabout under the influence of pedestrians in mixed traffic conditions. Komunikácie, 24(4), 201-214. doi: 10.26552/com.P.2022.4.D201-D214 (in English). https://doi.org/10.26552/com.P.2022.4.D201-D214
dc.relation.referencesen11. Kang, N., & Terabe, S. (2019). Estimating roundabout delay considering pedestrian impact. In Scientific and Technical Conference "Transport Systems. Theory and Practice 2018", (pp. 112-123). doi: 10.1007/978-3-319-98618-0_10 (in English). https://doi.org/10.1007/978-3-319-98618-0_10
dc.relation.referencesen12. Duran, C., & Cheu, R. (2013). Effects of crosswalk location and pedestrian volume on entry capacity of roundabouts. International Journal of Transportation Science and Technology, 2(1), 31-46. doi: 10.1260/2046-0430.2.1.31 (in English). https://doi.org/10.1260/2046-0430.2.1.31
dc.relation.referencesen13. Distefano, L., Leonardi, S., & Pulvirenti, G. (2021). Experimental analysis of pedestrian behavior at different configurations of crosswalks at roundabout legs. J. Eur. Transp, 85(3), 15. doi: 10.48295/ET.2021.85.3 (in English). https://doi.org/10.48295/ET.2021.85.3
dc.relation.referencesen14. Karwand, Z., Mokhtar, S., Suzuki, K., Oloruntobi, O., Shah, M. Z., & Misnan, S. H. (2023). Impact of Splitter-Island on Pedestrian Safety at Roundabout Using Surrogate Safety Measures: A Comparative Study. Sustainability, 15(6), 5359. doi: 10.3390/su15065359 (in English). https://doi.org/10.3390/su15065359
dc.relation.referencesen15. Vignali, V., Pazzini, M., Ghasemi, N., Lantieri, C., Simone, A., & Dondi, G. (2020). The safety and conspicuity of pedestrian crossing at roundabouts: The effect of median refuge island and zebra markings. Transportation research part F: traffic psychology and behaviour, 68, 94-104. doi: 10.1016/j.trf.2019.12.007 (in English). https://doi.org/10.1016/j.trf.2019.12.007
dc.relation.referencesen16. Mako, E. (2015, October). Evaluation of human behaviour at pedestrian crossings. In 2015 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom) (pp. 443-447). doi: 10.1109/CogInfoCom.2015.7390634 (in English). https://doi.org/10.1109/CogInfoCom.2015.7390634
dc.relation.referencesen17. Kodani, K., Nozato, A., Kuroiwa, H., & Fujioka, K. (2018, October). A Roundabout with Pedestrians: Simulations Using a Cellular Automaton Model. In TENCON 2018-2018 IEEE Region 10 Conference (pp. 1102-1105). doi: 10.1109/TENCON.2018.8650185 (in English). https://doi.org/10.1109/TENCON.2018.8650185
dc.relation.referencesen18. Xu, H., Zhang, K., Zheng, Q., & Yao, R. (2018). Multi‐level pedestrian signalisation at large four‐leg roundabouts. IET Intelligent Transport Systems, 12(8), 838-850. doi: 10.1049/iet-its.2017.0155 (in English). https://doi.org/10.1049/iet-its.2017.0155
dc.relation.urihttps://doi.org/10.1007/s41062-022-00994-7
dc.relation.urihttps://doi.org/10.1080/21680566.2018.1460880
dc.relation.urihttps://doi.org/10.1016/j.trpro.2021.12.005
dc.relation.urihttps://doi.org/10.2507/IJSIMM22-3-656
dc.relation.urihttps://doi.org/10.1201/9781315393827-139
dc.relation.urihttps://doi.org/10.26552/com.C.2022.4.D201-D214
dc.relation.urihttps://doi.org/10.1007/978-3-319-98618-0_10
dc.relation.urihttps://doi.org/10.1260/2046-0430.2.1.31
dc.relation.urihttps://doi.org/10.48295/ET.2021.85.3
dc.relation.urihttps://doi.org/10.3390/su15065359
dc.relation.urihttps://doi.org/10.1016/j.trf.2019.12.007
dc.relation.urihttps://doi.org/10.1109/CogInfoCom.2015.7390634
dc.relation.urihttps://doi.org/10.1109/TENCON.2018.8650185
dc.relation.urihttps://doi.org/10.1049/iet-its.2017.0155
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© R. Bura, R. Rohalskyy, 2023
dc.subjectтранспортний потік
dc.subjectпішохідний потік
dc.subjectбезпека руху
dc.subjectмоделювання руху
dc.subjectнерегульований пішохідний перехід
dc.subjecttraffic flow
dc.subjectpedestrian flow
dc.subjectroundabout
dc.subjectroad safety
dc.subjecttraffic simulation
dc.subjectunsignalized pedestrian crosswalk
dc.titleImpact of pedestrian flows on traffic delays before roundabouts
dc.title.alternativeВплив пішохідних потоків на затримки транспорту перед саморегульованими перехрестями
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2023v4n2_Bura_R-Impact_of_pedestrian_flows_on_23-32.pdf
Size:
275.24 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2023v4n2_Bura_R-Impact_of_pedestrian_flows_on_23-32__COVER.png
Size:
440.25 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: