Some inverse problem remarks of a continuous-in-time financial model in L1 ([tI, Θmax])
dc.citation.epage | 874 | |
dc.citation.issue | 3 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 864 | |
dc.contributor.affiliation | Університет Париж–Сакле | |
dc.contributor.affiliation | University Paris-Saclay | |
dc.contributor.author | Чаккур, Т. | |
dc.contributor.author | Chakkour, T. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T12:17:29Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | У статті ми збираємося ввести оператор, який бере участь в оберненій задачі фінансової моделі з неперервним часом. Ця структура призначена для використання у фінансах для будь-якої організації та, зокрема, для місцевих громад. Це дозволяє складати річні та багаторічні бюджети з описом схем позики, відшкодування та виплати відсотків. Обговорюємо цю обернену задачу в просторі інтегровних функцій над R з компактним носієм. У цьому просторі розглядається концепція некоректності, щоб отримати цікаві та корисні розв’язки. Потім даємо деякі зауваження щодо нефункціональності моделі для заданої щільності схеми погашення γ, коли цей оператор не є оборотним у просторі. Крім того, ця обернена задача проілюстрована, щоб довести її здатність використовуватися у фінансовій стратегії. | |
dc.description.abstract | In the paper we are going to introduce an operator that is involved in the inverse problem of the continuous-in-time financial model. This framework is designed to be used in the finance for any organization and, in particular, for local communities. It allows to set out annual and multiyear budgets, with describing loan, reimbursement and interest payment schemes. We discuss this inverse problem in the space of integrable functions over R having a compact support. The concept of ill-posedness is examined in this space in order to obtain interesting and useful solutions. Then, we will give some remarks for not functionality of the model for a given Repayment Pattern Density γ, when this operator is not invertible in the space. Additionally, this inverse problem is illustrated in order to prove its ability to be used in a financial strategy. | |
dc.format.extent | 864-874 | |
dc.format.pages | 11 | |
dc.identifier.citation | Chakkour T. Some inverse problem remarks of a continuous-in-time financial model in L1 ([tI, Θmax]) / T. Chakkour // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 864–874. | |
dc.identifier.citationen | Chakkour T. Some inverse problem remarks of a continuous-in-time financial model in L1 ([tI, Θmax]) / T. Chakkour // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 864–874. | |
dc.identifier.doi | doi.org/10.23939/mmc2023.03.864 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63523 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 3 (10), 2023 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 3 (10), 2023 | |
dc.relation.references | [1] Tarasov V. E. On history of mathematical economics: Application of fractional calculus. Mathematics. 7 (6), 509–537 (2019). | |
dc.relation.references | [2] Merton R. Continuous-Time Finance. Wiley–Blackwell (1992). | |
dc.relation.references | [3] Drost F. C., Werker B. J. M. Closing the GARCH gap: Continuous time GARCH modeling. Journal of Econometrics. 74 (1), 31–57 (1996). | |
dc.relation.references | [4] Frenod E., Chakkour T. A continuous-in-time financial model. Mathematical Finance Letters. 16, 1–37 (2016). | |
dc.relation.references | [5] Chakkour T., Frenod E. Inverse problem and concentration method of a continuous-in-time financial model. International Journal of Financial Engineering. 3 (02), 1650016 (2016). | |
dc.relation.references | [6] Chakkour T. Implementing some mathematical operators for a continuous-in-time financial model. Engineering Mathematics Letters. 2017, 2 (2017). | |
dc.relation.references | [7] Onalan ¨ O¨ . Financial modelling with Ornstein–Uhlenbeck processes driven by L´evy process. Proceedings of the World Congress on Engineering. 2, 1350–1355 (2009). | |
dc.relation.references | [8] Hofmann B., Kaltenbacher B., P¨oschl C., Scherzer O. A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Problems. 23 (3), 987 (2007). | |
dc.relation.references | [9] Potthast R. Fr´echet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Problems. 10 (2), 431 (1994). | |
dc.relation.references | [10] Andreev R., Elbau P., de Hoop M. V., Qiu L., Scherzer O. Generalized convergence rates results for linear inverse problems in Hilbert spaces. Numerical Functional Analysis and Optimization. 36 (5), 549–566 (2015). | |
dc.relation.references | [11] Chakkour T. Some notes about the continuous-in-time financial model. Abstract and Applied Analysis. 2017, 6985820 (2017). | |
dc.relation.references | [12] Hadamard J. Lectures on Cauchy’s problem in linear partial differential equations. Courier Corporation (2003). | |
dc.relation.references | [13] Chakkour T. Inverse problem stability of a continuous-in-time financial model. Acta Mathematica Scientia. 39 (5), 1423–1439 (2019). | |
dc.relation.references | [14] Xiong J., Liu C., Chen Y., Zhang S. A non-linear geophysical inversion algorithm for the MT data based on improved differential evolution. Engineering Letters. 26 (1), 1–19 (2018). | |
dc.relation.references | [15] Ignatyev M. On an inverse spectral problem for the convolution integro-differential operator of fractional order. Results in Mathematics. 73 (1), 34 (2018). | |
dc.relation.references | [16] Li Z., Kovachki N., Azizzadenesheli K., Liu B., Bhattacharya K., Stuart A., Anandkumar A. Fourier neural operator for parametric partial differential equations. Preprint arXiv:2010.08895 (2020). | |
dc.relation.references | [17] Normann D., Sanders S. Pincherle’s theorem in reverse mathematics and computability theory. Annals of Pure and Applied Logic. 171 (5), 102788 (2020). | |
dc.relation.references | [18] Zolotarev V. A. Inverse spectral problem for the operators with non-local potential. Mathematische Nachrichten. 292 (3), 661–681 (2019). | |
dc.relation.references | [19] Buterin S. A. On an inverse spectral problem for first-order integro-differential operators with discontinuities. Applied Mathematics Letters. 78, 65–71 (2018). | |
dc.relation.referencesen | [1] Tarasov V. E. On history of mathematical economics: Application of fractional calculus. Mathematics. 7 (6), 509–537 (2019). | |
dc.relation.referencesen | [2] Merton R. Continuous-Time Finance. Wiley–Blackwell (1992). | |
dc.relation.referencesen | [3] Drost F. C., Werker B. J. M. Closing the GARCH gap: Continuous time GARCH modeling. Journal of Econometrics. 74 (1), 31–57 (1996). | |
dc.relation.referencesen | [4] Frenod E., Chakkour T. A continuous-in-time financial model. Mathematical Finance Letters. 16, 1–37 (2016). | |
dc.relation.referencesen | [5] Chakkour T., Frenod E. Inverse problem and concentration method of a continuous-in-time financial model. International Journal of Financial Engineering. 3 (02), 1650016 (2016). | |
dc.relation.referencesen | [6] Chakkour T. Implementing some mathematical operators for a continuous-in-time financial model. Engineering Mathematics Letters. 2017, 2 (2017). | |
dc.relation.referencesen | [7] Onalan ¨ O¨ . Financial modelling with Ornstein–Uhlenbeck processes driven by L´evy process. Proceedings of the World Congress on Engineering. 2, 1350–1355 (2009). | |
dc.relation.referencesen | [8] Hofmann B., Kaltenbacher B., P¨oschl C., Scherzer O. A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Problems. 23 (3), 987 (2007). | |
dc.relation.referencesen | [9] Potthast R. Fr´echet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Problems. 10 (2), 431 (1994). | |
dc.relation.referencesen | [10] Andreev R., Elbau P., de Hoop M. V., Qiu L., Scherzer O. Generalized convergence rates results for linear inverse problems in Hilbert spaces. Numerical Functional Analysis and Optimization. 36 (5), 549–566 (2015). | |
dc.relation.referencesen | [11] Chakkour T. Some notes about the continuous-in-time financial model. Abstract and Applied Analysis. 2017, 6985820 (2017). | |
dc.relation.referencesen | [12] Hadamard J. Lectures on Cauchy’s problem in linear partial differential equations. Courier Corporation (2003). | |
dc.relation.referencesen | [13] Chakkour T. Inverse problem stability of a continuous-in-time financial model. Acta Mathematica Scientia. 39 (5), 1423–1439 (2019). | |
dc.relation.referencesen | [14] Xiong J., Liu C., Chen Y., Zhang S. A non-linear geophysical inversion algorithm for the MT data based on improved differential evolution. Engineering Letters. 26 (1), 1–19 (2018). | |
dc.relation.referencesen | [15] Ignatyev M. On an inverse spectral problem for the convolution integro-differential operator of fractional order. Results in Mathematics. 73 (1), 34 (2018). | |
dc.relation.referencesen | [16] Li Z., Kovachki N., Azizzadenesheli K., Liu B., Bhattacharya K., Stuart A., Anandkumar A. Fourier neural operator for parametric partial differential equations. Preprint arXiv:2010.08895 (2020). | |
dc.relation.referencesen | [17] Normann D., Sanders S. Pincherle’s theorem in reverse mathematics and computability theory. Annals of Pure and Applied Logic. 171 (5), 102788 (2020). | |
dc.relation.referencesen | [18] Zolotarev V. A. Inverse spectral problem for the operators with non-local potential. Mathematische Nachrichten. 292 (3), 661–681 (2019). | |
dc.relation.referencesen | [19] Buterin S. A. On an inverse spectral problem for first-order integro-differential operators with discontinuities. Applied Mathematics Letters. 78, 65–71 (2018). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | обернена задача | |
dc.subject | інтегральні оператори | |
dc.subject | фінансова модель | |
dc.subject | щільності та міри | |
dc.subject | inverse problem | |
dc.subject | integral operators | |
dc.subject | financial model | |
dc.subject | densities and measures | |
dc.title | Some inverse problem remarks of a continuous-in-time financial model in L1 ([tI, Θmax]) | |
dc.title.alternative | Деякі зауваження щодо оберненої задачі фінансової моделі з неперервним часом у L1 ([tI, Θmax]) | |
dc.type | Article |
Files
License bundle
1 - 1 of 1