Preparation of Briquettes on the Basis of Sub-Standard Coal of Kazakhstan Fields

dc.citation.epage125
dc.citation.issue1
dc.citation.spage118
dc.contributor.affiliationAl-Farabi Kazakh National University
dc.contributor.affiliationThe Combustion Problems Institute
dc.contributor.authorTulepov, Marat
dc.contributor.authorSassykova, Larissa
dc.contributor.authorKerimkulova, Almagul
dc.contributor.authorTureshova, Gulmira
dc.contributor.authorAbdrakova, Fedosya
dc.contributor.authorZhapekova, Anar
dc.contributor.authorSultanova, Zukhra
dc.contributor.authorSpanova, Galiya
dc.contributor.authorTolep, Dana
dc.contributor.authorGabdrashova, Sholpan
dc.contributor.authorBaiseitov, Dauren
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T10:41:28Z
dc.date.available2024-01-22T10:41:28Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractРозроблена технологія брикетування некондиційного вугілля казахстанських родовищ для отримання високоякісного брикетного палива. Вибрана модифікуюча добавка у вигляді нафтових залишків, яка дає можливість отримати зв‘язуюче для брикетування бурого вугілля. Матеріалом для приготування брикетів є вугільний дрібняк, одержаний з сухого вугілля, що погано спікається, і яке не може використовуватись для безпосереднього спалювання в печі. Визначено оптимальні параметри для отримання високоякісних паливних брикетів. Введення модифікуючої добавки до нафтових залишків дає можливість отримати зв‘язуюче для брикетування. Дослідження фізичних параметрів брикетів та дані SEM показали, що товщина адсорбційного шару вугілля та зчеплення зв‘язуючого в тонких шарах відіграють важливу роль у формуванні структури та міцності брикету. Зроблено припущення, що за оптимальної товщини шару плівки має місце максимальний прояв капілярних сил і збільшення адгезивної взаємодії між частинками і зв‘язуючим. Органічний компонент вугільного дрібняку – це суміш різних рентгеноаморфних компонентів, наявність і кількість яких змінюється в ряді метаморфізму. Показана можливість та перспективи використання місцевої сировини для розроблення високоякісного брикетованого буровугільного палива.
dc.description.abstractA technology of briquetting of sub-standard coal of Kazakhstan fields to obtain high-quality briquetting fuel has been developed. A modifying additive in the form of oil residues has been selected, that make it possible to obtain a binder composition for brown coal briquetting. The material for the preparation of coal briquettes is coal fines from dry, poorly sintered coals, which cannot be used for direct combustion in the furnace. The optimal parameters for obtaining high-quality fuel briquettes have been determined. The introduction of a modifying additive into the oil residues makes it possible to obtain a binder composition for briquetting brown coal. Studies of the physical parameters of briquettes and the data of SEM showed that the thickness of the adsorption layer of coal and the cohesion of the binder in thin layers play an important role in the formation of the structure and strength of the briquette. It was assumed that at the optimum thickness of the film layer, the maximum manifestation of capillary forces and an increase in the adhesive interaction between the particles and the binder take place. The organic component of the coal fines is a mixture of various X-ray amorphous components, the presence and number of which vary in a series of metamorphism. The results of the performed studies show the possibility and prospects of using local raw materials for the development of high-quality briquetted brown coal fuel.
dc.format.extent118-125
dc.format.pages8
dc.identifier.citationPreparation of Briquettes on the Basis of Sub-Standard Coal of Kazakhstan Fields / Marat Tulepov, Larissa Sassykova, Almagul Kerimkulova, Gulmira Tureshova, Fedosya Abdrakova, Anar Zhapekova, Zukhra Sultanova, Galiya Spanova, Dana Tolep, Sholpan Gabdrashova, Dauren Baiseitov // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 118–125.
dc.identifier.citationenPreparation of Briquettes on the Basis of Sub-Standard Coal of Kazakhstan Fields / Marat Tulepov, Larissa Sassykova, Almagul Kerimkulova, Gulmira Tureshova, Fedosya Abdrakova, Anar Zhapekova, Zukhra Sultanova, Galiya Spanova, Dana Tolep, Sholpan Gabdrashova, Dauren Baiseitov // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 118–125.
dc.identifier.doidoi.org/10.23939/chcht16.01.118
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60948
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (16), 2022
dc.relation.references[1] Baiseitov, D.; Gabdrashova, Sh.E.; Magazova, A.N.; Dalelkhanuly, O. Hydrogenation of Coal of "Karazhira" Field: Optimal Catalysts and Thermogravimetric Researches. Int. J. Chem. Sci. 2016, 14, 244-250.
dc.relation.references[2] Tulepov, M.I.; Baiseitov, D.A.; Sassykova, L.R.; Zhapekova, A.O.; Abdrakova, F.Yu.; Aknazarov, S.Kh.; Tureshova, G.O.; Spanova, G.A. Preparation of Coal Briquettes Based on Coal Fines with the Addition of Vinyl Chloride and Polyethylene Terephthalate. ARPN J. Eng. Appl. Sci. 2020, 15, 2311-2317.
dc.relation.references[3] Baiseitov, D.; Gabdrashova, Sh.E.; Akylbai, A.K.; Dalelkhanuly, O. Obtaining of Liquid Fuel from Coal in the Presence of the Polymers. Int. J. Chem. Sci. 2016, 14, 261-268.
dc.relation.references[4] http://uglex.com/articles/232-zapasy-uglya-v-kazakhstane.html
dc.relation.references[5] Tulepov, M.; Mansurov, Z.; Sassykova, L.; Baiseitov, D.; Dalelhanuly, O.; Ualiev, Z. Research of Iron-containing Concentrates of Balkhash Deposit (Kazakhstan) for Processing of Low-grade Coal. J. Chem. Technol. Metall. 2019, 54, 531-538.
dc.relation.references[6] Merrick, D. History of Coal Combustion and Conversion Technology. Coal Combustion and Conversion Technology. Energy Alternatives Series; Palgrave: London, 1984, pp 25-37. https://doi.org/10.1007/978-1-349-06197-6_2
dc.relation.references[7] Yemelyanova, V.S.; Dossumova, B.T.; Shakiyeva, T.V.; Sassykova, L.R.; Sendilvelan, S. Modified Aluminosilicate Catalysts Based on Cenospheres of Power Plants for Processing Fuel Oil into Light Fractions. Int. J. Mech. Prod. Eng. Res. Develop. 2019, 9, 1079-1086. https://doi.org/10.24247/ijmperdaug2019111
dc.relation.references[8] Shakiyeva, T.V.; Sassykova, L. R.; Khamlenko, A.A.; Dossumova, B.T.; Sassykova, A.R.; Batyrbayeva, A.A.; Zhaxibayeva, Zh. M.; Kozhaisakova, M.A.; Azhigulova, R. N.; Sendilvelan, S. Composite Catalysts Based on Fly Ash of Thermal Power Plants and Natural Zeolite for Purification of Gas Emissions and Catalytic Cracking of Fuel Oil. ARPN J. Eng. Appl. Sci. 2021, 16, 1877-1885.
dc.relation.references[9] Manina, T. S.; Fedorova, N.I.; Semenova, S.A.; Ismailov, Z.R. Processing Low-grade Oxidized Coal to Produce Effective Carbon Sorbents. Coke and Chemistry 2012, 55, 115-118. https://doi.org/10.3103/S1068364X12030027
dc.relation.references[10] Widodo, Fatimah D.; Estiaty, L.M. Coal Blending Preparation for Non-carbonized Coal Briquettes. IOP C Ser. Earth Env., 18–19 October 2017, 118, conference 1, Bandung, Indonesia. https://doi.org/10.1088/1755-1315/118/1/012068
dc.relation.references[11] Park, H.; Sahajwalla, V. Reduction Behavior of Carbon Composite Pellets Including Alumina and Silica at 1273 K and 1373 K. ISIJ Int. 2014, 54, 1256-1265. https://doi.org/10.2355/isijinternational.54.1256
dc.relation.references[12] Meincken, M.; Funk, S. Burning Characteristics of Low-cost Safety Charcoal Briquettes Made from Wood Residues and Soil for Domestic Use. Agroforest. Syst. 2015, 89, 357-363. https://doi.org/10.1007/s10457-014-9772-8
dc.relation.references[13] Maloletnev, A.S.; Gyul’maliev, A.M. Structure of Coal Hydrogenation Products Obtained in the Presence of Oil and Coal Paste-forming Agents. Solid Fuel Chem. 2013, 47, 231-233. https://doi.org/10.3103/S0361521913040095
dc.relation.references[14] Stevenson, G.G.; Perlack, R.D. The Prospects for Coal Briquetting in the Third World. Energ. Policy 1989, 17, 215-227. https://doi.org/10.1016/0301-4215(89)90046-3
dc.relation.references[15] Gabdrashova, Sh.E.; Rakhova, N.M.; Pustovalov, I.O; Elemesova, Zh.; Tulepov, M.I.; Korchagin, M.A.; Sassykova, L.R.; Sendilvelan, S.; Baiseitov, D.A. Preparation of Mechanically Activated Mixtures of Titanium with the Carbon Nanotubes and Study of their Properties under Thermal Explosion. Rasayan J. Chem. 2018, 11, 324-330. https://doi.org/10.7324/RJC.2018.1112017
dc.relation.references[16] Antal, M.J.; Grønli, M. The Art, Science, and Technology of Charcoal Production. Ind. Eng. Chem. Res. 2003, 42, 1619-1640. https://doi.org/10.1021/ie0207919
dc.relation.references[17] Somerville, M.A. The Strength and Density of Green and Reduced Briquettes Made with Iron Ore and Charcoal. J. Sustain. Metall. 2016, 2, 228-238. https://doi.org/10.1007/s40831-016-0057-5
dc.relation.references[18] Khodakov, G.S. Influence of Fine Grinding on the Physicochemical Properties of Solids. Russ. Chem. Rev. 1963, 32, 386. https://doi.org/10.1070/RC1963v032n07ABEH001350
dc.relation.references[19] Bazhin, V.Yu.; Kuskov, V.B. Production of Fuel Briquettes from Carbon Containing Materials. Proceedings of the XVIII International Coal Preparation Congress, Russia, Saint-Petersburg, 2016, 701. https://doi.org/10.1007/978-3-319-40943-6_108
dc.relation.references[20] Maloletnev, A.S.; Mazneva, O.A.; Naumov, K.I. Mechanochemical Activation of Coal from the Erkovetskoe Deposit and its Reactivity in a Liquefaction Process. Solid Fuel Chem. 2015, 49, 372-376. https://doi.org/10.3103/S0361521915060051
dc.relation.references[21] Tulepov, M.; Sassykova, L.; Kerimkulova, A.; Tureshova, G.; Zhapekova, A.; Sultanova, Z.; Tursynbek, S.; Gabdrashova, Sh.; Baiseitov, D. Preparation of Coal Briquettes Based on Non-Standard Kazakhstan Coal with Various Additives and Determination of Their Quality. J. Chem. Technol. Metall. 2021, 56, 123-132.
dc.relation.references[22] Shen, J.; Ling, K.; Zou, G.; Wang, Z. Reaction Mechanism of Coprocessing Coal and Heavy Oils. Coal Convers. 1999, 4, 5-9.
dc.relation.references[23] Lu, G.; Yan, Y.; Colechin, M.; Hill, R. Monitoring of Oscillatory Characteristics of Pulverized Coal Flames through Image Processing and Spectral Analysis. IEEE T. Instrum. Meas. 2006, 55, 226-231. https://doi.org/10.1109/TIM.2005.861254
dc.relation.references[24] Abotsi, G.M.K.; Bota, K.B.; Saha, G.; Mayes, S. Effects of Surface Active Agents on Molybdenum Adsorption onto Coal for Liquefaction. Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 1996, 41, 984-987.
dc.relation.references[25] Kasaikina, O.T.; Lesin, V.I.; Pisarenko, L.M. Colloidal Catalysts on the Base of Iron(3+) Oxides for Oxidative Treatment of Biomass. Catal. Sustain. Energ. 2014, 2, 21-27. https://doi.org/10.2478/cse-2014-0003
dc.relation.references[26] Borowski, G.; Hycnar, J.J. Utilization of Fine Coal Waste as a Fuel Briquettes. Int. J. Coal Prep. Util. 2013, 33, 194-204. https://doi.org/10.1080/19392699.2013.787993
dc.relation.references[27] Baiseitov, D.; Tulepov, M.; Sassykova, L.; Gabdrashova, S.; Kudaibergenov, K.; Mansurov, Z. Physicomechanical Properties of Petrosorbents of the Phytogenesis. Revue Roumaine de Chimie 2017, 62, 249-253.
dc.relation.references[28] Nameless: Binder for Improving Coal Gangue and Low-grade Coal. Fuel Energy Abstr. 2002, 43, 10. https://doi.org/10.1016/S0140-6701(02)80081-9
dc.relation.references[29] Cook, A.C.; Sherwood, N.R. Classification of Oil Shales, Coals and Other Organic-rich Rocks. Org. Geochem. 1991, 17, 211-222. https://doi.org/10.1016/0146-6380(91)90079-Y
dc.relation.references[30] Mochidzuki, K.; Soutric, F.; Tadokoro, K.; Antal, M.J.; Tóth, M.; Zelei, B.; Várhegyi, G. Electrical and Physical Properties of Carbonized Charcoals. Ind. Eng. Chem. Res. 2003, 42, 5140-5151. https://doi.org/10.1021/ie030358e
dc.relation.references[31] De Korte, G.J. Processing Low-grade Coal to Produce High-grade Products. J. South. African Inst. Min.Metall. 2015, 115, 569-572.
dc.relation.references[32] Tulepov, M.I.; Mansurov, Z.A.; Kazakov, Yu.V.; Abdrakova, F.Yu.; Sultanova, Z.L.; Rakhova, N.M.; Madiyev, S.S.; Golovchenko, O.Yu. ; Sassykova, L.R.; Tolep, D.M. et al.: Methods of Reducing the Front Performance Flame at the Underground Mines Works. Orient. J. Chem. 2018, 34, 3037. https://doi.org/10.13005/ojc/340645
dc.relation.references[33] Gabdrashova, Sh.; Tulepov, M.; Pustovalov, I.; Sassykova, L.; Rakhova, N.; Spanova, G.; Hamzina, B.; Elouadi, B.; Kazakov, Yu. Preparation and Test of Slowly Burning Energy-intensive Materials with Time-delay Composition. J. Chem. Technol. Metallurg. 2019, 54, 650-656.
dc.relation.references[34] Ellison, G.; Stanmore, B.R. High Strength Binderless Brown Coal Briquettes Part II. An Investigation into Bonding. Fuel Proc. Technol. 1981, 4, 291-304. https://doi.org/10.1016/0378-3820(81)90005-9
dc.relation.referencesen[1] Baiseitov, D.; Gabdrashova, Sh.E.; Magazova, A.N.; Dalelkhanuly, O. Hydrogenation of Coal of "Karazhira" Field: Optimal Catalysts and Thermogravimetric Researches. Int. J. Chem. Sci. 2016, 14, 244-250.
dc.relation.referencesen[2] Tulepov, M.I.; Baiseitov, D.A.; Sassykova, L.R.; Zhapekova, A.O.; Abdrakova, F.Yu.; Aknazarov, S.Kh.; Tureshova, G.O.; Spanova, G.A. Preparation of Coal Briquettes Based on Coal Fines with the Addition of Vinyl Chloride and Polyethylene Terephthalate. ARPN J. Eng. Appl. Sci. 2020, 15, 2311-2317.
dc.relation.referencesen[3] Baiseitov, D.; Gabdrashova, Sh.E.; Akylbai, A.K.; Dalelkhanuly, O. Obtaining of Liquid Fuel from Coal in the Presence of the Polymers. Int. J. Chem. Sci. 2016, 14, 261-268.
dc.relation.referencesen[4] http://uglex.com/articles/232-zapasy-uglya-v-kazakhstane.html
dc.relation.referencesen[5] Tulepov, M.; Mansurov, Z.; Sassykova, L.; Baiseitov, D.; Dalelhanuly, O.; Ualiev, Z. Research of Iron-containing Concentrates of Balkhash Deposit (Kazakhstan) for Processing of Low-grade Coal. J. Chem. Technol. Metall. 2019, 54, 531-538.
dc.relation.referencesen[6] Merrick, D. History of Coal Combustion and Conversion Technology. Coal Combustion and Conversion Technology. Energy Alternatives Series; Palgrave: London, 1984, pp 25-37. https://doi.org/10.1007/978-1-349-06197-6_2
dc.relation.referencesen[7] Yemelyanova, V.S.; Dossumova, B.T.; Shakiyeva, T.V.; Sassykova, L.R.; Sendilvelan, S. Modified Aluminosilicate Catalysts Based on Cenospheres of Power Plants for Processing Fuel Oil into Light Fractions. Int. J. Mech. Prod. Eng. Res. Develop. 2019, 9, 1079-1086. https://doi.org/10.24247/ijmperdaug2019111
dc.relation.referencesen[8] Shakiyeva, T.V.; Sassykova, L. R.; Khamlenko, A.A.; Dossumova, B.T.; Sassykova, A.R.; Batyrbayeva, A.A.; Zhaxibayeva, Zh. M.; Kozhaisakova, M.A.; Azhigulova, R. N.; Sendilvelan, S. Composite Catalysts Based on Fly Ash of Thermal Power Plants and Natural Zeolite for Purification of Gas Emissions and Catalytic Cracking of Fuel Oil. ARPN J. Eng. Appl. Sci. 2021, 16, 1877-1885.
dc.relation.referencesen[9] Manina, T. S.; Fedorova, N.I.; Semenova, S.A.; Ismailov, Z.R. Processing Low-grade Oxidized Coal to Produce Effective Carbon Sorbents. Coke and Chemistry 2012, 55, 115-118. https://doi.org/10.3103/S1068364X12030027
dc.relation.referencesen[10] Widodo, Fatimah D.; Estiaty, L.M. Coal Blending Preparation for Non-carbonized Coal Briquettes. IOP C Ser. Earth Env., 18–19 October 2017, 118, conference 1, Bandung, Indonesia. https://doi.org/10.1088/1755-1315/118/1/012068
dc.relation.referencesen[11] Park, H.; Sahajwalla, V. Reduction Behavior of Carbon Composite Pellets Including Alumina and Silica at 1273 K and 1373 K. ISIJ Int. 2014, 54, 1256-1265. https://doi.org/10.2355/isijinternational.54.1256
dc.relation.referencesen[12] Meincken, M.; Funk, S. Burning Characteristics of Low-cost Safety Charcoal Briquettes Made from Wood Residues and Soil for Domestic Use. Agroforest. Syst. 2015, 89, 357-363. https://doi.org/10.1007/s10457-014-9772-8
dc.relation.referencesen[13] Maloletnev, A.S.; Gyul’maliev, A.M. Structure of Coal Hydrogenation Products Obtained in the Presence of Oil and Coal Paste-forming Agents. Solid Fuel Chem. 2013, 47, 231-233. https://doi.org/10.3103/S0361521913040095
dc.relation.referencesen[14] Stevenson, G.G.; Perlack, R.D. The Prospects for Coal Briquetting in the Third World. Energ. Policy 1989, 17, 215-227. https://doi.org/10.1016/0301-4215(89)90046-3
dc.relation.referencesen[15] Gabdrashova, Sh.E.; Rakhova, N.M.; Pustovalov, I.O; Elemesova, Zh.; Tulepov, M.I.; Korchagin, M.A.; Sassykova, L.R.; Sendilvelan, S.; Baiseitov, D.A. Preparation of Mechanically Activated Mixtures of Titanium with the Carbon Nanotubes and Study of their Properties under Thermal Explosion. Rasayan J. Chem. 2018, 11, 324-330. https://doi.org/10.7324/RJC.2018.1112017
dc.relation.referencesen[16] Antal, M.J.; Grønli, M. The Art, Science, and Technology of Charcoal Production. Ind. Eng. Chem. Res. 2003, 42, 1619-1640. https://doi.org/10.1021/ie0207919
dc.relation.referencesen[17] Somerville, M.A. The Strength and Density of Green and Reduced Briquettes Made with Iron Ore and Charcoal. J. Sustain. Metall. 2016, 2, 228-238. https://doi.org/10.1007/s40831-016-0057-5
dc.relation.referencesen[18] Khodakov, G.S. Influence of Fine Grinding on the Physicochemical Properties of Solids. Russ. Chem. Rev. 1963, 32, 386. https://doi.org/10.1070/RC1963v032n07ABEH001350
dc.relation.referencesen[19] Bazhin, V.Yu.; Kuskov, V.B. Production of Fuel Briquettes from Carbon Containing Materials. Proceedings of the XVIII International Coal Preparation Congress, Russia, Saint-Petersburg, 2016, 701. https://doi.org/10.1007/978-3-319-40943-6_108
dc.relation.referencesen[20] Maloletnev, A.S.; Mazneva, O.A.; Naumov, K.I. Mechanochemical Activation of Coal from the Erkovetskoe Deposit and its Reactivity in a Liquefaction Process. Solid Fuel Chem. 2015, 49, 372-376. https://doi.org/10.3103/S0361521915060051
dc.relation.referencesen[21] Tulepov, M.; Sassykova, L.; Kerimkulova, A.; Tureshova, G.; Zhapekova, A.; Sultanova, Z.; Tursynbek, S.; Gabdrashova, Sh.; Baiseitov, D. Preparation of Coal Briquettes Based on Non-Standard Kazakhstan Coal with Various Additives and Determination of Their Quality. J. Chem. Technol. Metall. 2021, 56, 123-132.
dc.relation.referencesen[22] Shen, J.; Ling, K.; Zou, G.; Wang, Z. Reaction Mechanism of Coprocessing Coal and Heavy Oils. Coal Convers. 1999, 4, 5-9.
dc.relation.referencesen[23] Lu, G.; Yan, Y.; Colechin, M.; Hill, R. Monitoring of Oscillatory Characteristics of Pulverized Coal Flames through Image Processing and Spectral Analysis. IEEE T. Instrum. Meas. 2006, 55, 226-231. https://doi.org/10.1109/TIM.2005.861254
dc.relation.referencesen[24] Abotsi, G.M.K.; Bota, K.B.; Saha, G.; Mayes, S. Effects of Surface Active Agents on Molybdenum Adsorption onto Coal for Liquefaction. Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 1996, 41, 984-987.
dc.relation.referencesen[25] Kasaikina, O.T.; Lesin, V.I.; Pisarenko, L.M. Colloidal Catalysts on the Base of Iron(3+) Oxides for Oxidative Treatment of Biomass. Catal. Sustain. Energ. 2014, 2, 21-27. https://doi.org/10.2478/cse-2014-0003
dc.relation.referencesen[26] Borowski, G.; Hycnar, J.J. Utilization of Fine Coal Waste as a Fuel Briquettes. Int. J. Coal Prep. Util. 2013, 33, 194-204. https://doi.org/10.1080/19392699.2013.787993
dc.relation.referencesen[27] Baiseitov, D.; Tulepov, M.; Sassykova, L.; Gabdrashova, S.; Kudaibergenov, K.; Mansurov, Z. Physicomechanical Properties of Petrosorbents of the Phytogenesis. Revue Roumaine de Chimie 2017, 62, 249-253.
dc.relation.referencesen[28] Nameless: Binder for Improving Coal Gangue and Low-grade Coal. Fuel Energy Abstr. 2002, 43, 10. https://doi.org/10.1016/S0140-6701(02)80081-9
dc.relation.referencesen[29] Cook, A.C.; Sherwood, N.R. Classification of Oil Shales, Coals and Other Organic-rich Rocks. Org. Geochem. 1991, 17, 211-222. https://doi.org/10.1016/0146-6380(91)90079-Y
dc.relation.referencesen[30] Mochidzuki, K.; Soutric, F.; Tadokoro, K.; Antal, M.J.; Tóth, M.; Zelei, B.; Várhegyi, G. Electrical and Physical Properties of Carbonized Charcoals. Ind. Eng. Chem. Res. 2003, 42, 5140-5151. https://doi.org/10.1021/ie030358e
dc.relation.referencesen[31] De Korte, G.J. Processing Low-grade Coal to Produce High-grade Products. J. South. African Inst. Min.Metall. 2015, 115, 569-572.
dc.relation.referencesen[32] Tulepov, M.I.; Mansurov, Z.A.; Kazakov, Yu.V.; Abdrakova, F.Yu.; Sultanova, Z.L.; Rakhova, N.M.; Madiyev, S.S.; Golovchenko, O.Yu. ; Sassykova, L.R.; Tolep, D.M. et al., Methods of Reducing the Front Performance Flame at the Underground Mines Works. Orient. J. Chem. 2018, 34, 3037. https://doi.org/10.13005/ojc/340645
dc.relation.referencesen[33] Gabdrashova, Sh.; Tulepov, M.; Pustovalov, I.; Sassykova, L.; Rakhova, N.; Spanova, G.; Hamzina, B.; Elouadi, B.; Kazakov, Yu. Preparation and Test of Slowly Burning Energy-intensive Materials with Time-delay Composition. J. Chem. Technol. Metallurg. 2019, 54, 650-656.
dc.relation.referencesen[34] Ellison, G.; Stanmore, B.R. High Strength Binderless Brown Coal Briquettes Part II. An Investigation into Bonding. Fuel Proc. Technol. 1981, 4, 291-304. https://doi.org/10.1016/0378-3820(81)90005-9
dc.relation.urihttp://uglex.com/articles/232-zapasy-uglya-v-kazakhstane.html
dc.relation.urihttps://doi.org/10.1007/978-1-349-06197-6_2
dc.relation.urihttps://doi.org/10.24247/ijmperdaug2019111
dc.relation.urihttps://doi.org/10.3103/S1068364X12030027
dc.relation.urihttps://doi.org/10.1088/1755-1315/118/1/012068
dc.relation.urihttps://doi.org/10.2355/isijinternational.54.1256
dc.relation.urihttps://doi.org/10.1007/s10457-014-9772-8
dc.relation.urihttps://doi.org/10.3103/S0361521913040095
dc.relation.urihttps://doi.org/10.1016/0301-4215(89)90046-3
dc.relation.urihttps://doi.org/10.7324/RJC.2018.1112017
dc.relation.urihttps://doi.org/10.1021/ie0207919
dc.relation.urihttps://doi.org/10.1007/s40831-016-0057-5
dc.relation.urihttps://doi.org/10.1070/RC1963v032n07ABEH001350
dc.relation.urihttps://doi.org/10.1007/978-3-319-40943-6_108
dc.relation.urihttps://doi.org/10.3103/S0361521915060051
dc.relation.urihttps://doi.org/10.1109/TIM.2005.861254
dc.relation.urihttps://doi.org/10.2478/cse-2014-0003
dc.relation.urihttps://doi.org/10.1080/19392699.2013.787993
dc.relation.urihttps://doi.org/10.1016/S0140-6701(02)80081-9
dc.relation.urihttps://doi.org/10.1016/0146-6380(91)90079-Y
dc.relation.urihttps://doi.org/10.1021/ie030358e
dc.relation.urihttps://doi.org/10.13005/ojc/340645
dc.relation.urihttps://doi.org/10.1016/0378-3820(81)90005-9
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Tulepov M., Sassykova L., Kerimkulova A., Tureshova G., Abdrakova F., Zhapekova A., Sultanova Z., Spanova G., Tolep D., Gabdrashova S., Baiseitov D., 2022
dc.subjectвугілля
dc.subjectбрикетування
dc.subjectзв‘язуюче
dc.subjectгудрон
dc.subjectтеплотворна здатність
dc.subjectенергетичні показники
dc.subjectродовище
dc.subjectcoal
dc.subjectbriquetting
dc.subjectbinder
dc.subjecttar
dc.subjectcalorific value
dc.subjectenergy performance
dc.subjectdeposit
dc.titlePreparation of Briquettes on the Basis of Sub-Standard Coal of Kazakhstan Fields
dc.title.alternativeПриготування брикетів на основі некондиційного вугілля казахстанських родовищ
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v16n1_Tulepov_M-Preparation_of_Briquettes_118-125.pdf
Size:
570.61 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v16n1_Tulepov_M-Preparation_of_Briquettes_118-125__COVER.png
Size:
544.55 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: