Obtaining and Determining Antiviral and Antibacterial Activity of S-Esters of 4-R-Aminobenzenethiosulfonic Acid

dc.citation.epage324
dc.citation.issue2
dc.citation.spage315
dc.contributor.affiliationHirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences
dc.contributor.affiliationInstitute of Physical Organic Chemistry and Coal Chemistry named after L. M. Lytvynenko of the NAS of Ukraine
dc.contributor.affiliationLviv National Polytechnic University
dc.contributor.affiliationAlpinus Chemia Sp. z o. o.
dc.contributor.authorZaczynska, Ewa
dc.contributor.authorCzarny, Anna
dc.contributor.authorKarpenko, Olena
dc.contributor.authorVasylyuk, Sofiya
dc.contributor.authorMonka, Nataliya
dc.contributor.authorStadnytska, Nataliya
dc.contributor.authorFizer, Liubov
dc.contributor.authorKomarovska-Porokhnyavets, Olena
dc.contributor.authorJaranowski, Maciej
dc.contributor.authorLubenets, Vira
dc.contributor.authorZimecki, Michał
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:30:29Z
dc.date.available2024-02-12T08:30:29Z
dc.date.created2023-03-16
dc.date.issued2023-03-16
dc.description.abstractАлкілуванням натрієвої солі 4-ацетиламінобензентіосульфокислоти різними алкілувальними агентами та ацилюванням відповідних естерів 4-амінобензентіосульфокислоти метакрилоїлхлоридом синтезовано ряд S-естерів 4-R-амінобензентіосульфокислот. Для одержання S-метил 4-(ацетиламіно)бензенсульфонотіоату розроблено методику синтезу, яка відповідає основним принципам “зеленої хімії”. Ступінь цитотоксичності сполук оцінювали через визначення росту клітин А-549 колориметричним методом. Антибактеріальну активність тіосульфонатів визначали в агаровому дифузійному тесті, а противірусну дію – за цитопатичним ефектом за значенням TCID50.
dc.description.abstractA number of S-esters of 4-R-aminobenzenethiosulfonic acids were synthesized via alkylation of the sodium salt of 4-acetylaminobenzenethiosulfonic acid with various alkylating agents and acylation of the corresponding esters of 4-aminobenzenethiosulfonic acid with methacryloyl chloride. For obtaining S-methyl 4-(acetylamino) benzenesulfonothioate, it was developed a synthetic technique corresponding to the basic principles of “green chemistry”. The degree of compound cytotoxicity was measured by determining A-549 cell growth using colorimetric method. The antibacterial activity of the thiosulfonates was determined by the agar diffusion test and the antiviral action by their cytopathic effect at TCID50 value.
dc.format.extent315-324
dc.format.pages10
dc.identifier.citationObtaining and Determining Antiviral and Antibacterial Activity of S-Esters of 4-R-Aminobenzenethiosulfonic Acid / Ewa Zaczynska, Anna Czarny, Olena Karpenko, Sofiya Vasylyuk, Nataliya Monka, Nataliya Stadnytska, Liubov Fizer, Olena Komarovska-Porokhnyavets, Maciej Jaranowski, Vira Lubenets, Michał Zimecki // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 315–324.
dc.identifier.citationenObtaining and Determining Antiviral and Antibacterial Activity of S-Esters of 4-R-Aminobenzenethiosulfonic Acid / Ewa Zaczynska, Anna Czarny, Olena Karpenko, Sofiya Vasylyuk, Nataliya Monka, Nataliya Stadnytska, Liubov Fizer, Olena Komarovska-Porokhnyavets, Maciej Jaranowski, Vira Lubenets, Michał Zimecki // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 315–324.
dc.identifier.doidoi.org/10.23939/chcht17.02.315
dc.identifier.issn1996-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61235
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (17), 2023
dc.relation.references[1] Kubin, C.J.; McConville, T.H.; Dietz, D.; Zucker, J.; May, M.; Nelson, B.; Istorico, E.; Bartram, L.; Small-Saundres, J.; Sobieszczyk, M.E.; et al. Characterization of Bacterial and Fungal Infections in Hospitalized Patients with Coronavirus Disease 2019 and Factors Associated with Health Care-Associated Infections. Open Forum Infect. Dis. 2021, 8, ofab201. https://doi.org/10.1093/ofid/ofab201
dc.relation.references[2] Reddy, R.J.; Waheed, Md.; Kumar J.J. A Straightforward and Convenient Synthesis of Functionalized Allyl Thiosulfonates and Allyl Disulfanes. RSC Adv. 2018, 8, 40446-40453. https://doi.org/10.1039/c8ra06938g
dc.relation.references[3] Mampuys, P.; McElroy, C.R.; Clark, J.; Orru, R.V.A.; Maes, B.U.W. Thiosulfonates as Emerging Reactants: Synthesis and Applications. Adv. Synth. Catal. 2020, 362, 3-64. https://doi.org/10.1002/adsc.201900864
dc.relation.references[4] Batiha, G.E.S.; Beshbishy, A.M.; Wasef, L.G.; Elewa Y.H.A., Al-Sagan, A.A.; Abd El-Hack, M.E.; Taha, A.E.; Abd-Elhakim, Y.M.; Devkota, H.P. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.). Nutrients 2020, 12, 872. https://doi.org/10.3390/nu12030872
dc.relation.references[5] Gabriele, E.; Ricci, C.; Meneghetti, F.; Ferri, N.; Asai, A.; Sparatore, A. Methanethiosulfonate Derivatives as Ligands of the STAT3-SH2 Domain. J Enzyme Inhib Med Chem. 2017, 32, 337-344. http://dx.doi.org/10.1080/14756366.2016.1252757
dc.relation.references[6] Alseeni, M.N., Allheani, E. M., Qusti, S.Y., Qusti, N. Y., Alotaibi, S.A., Alotaibi, H.A.. Antimicrobial Activities of Some Plant Extracts against Some. Int. j. pharm. biol. sci. 2019, 14, 01-10.
dc.relation.references[7] Sharma, N.; Behl, T.; Singh, S.; Bansal, A.; Kumari Singh, S.; Zahoor, I. Expatiating the Therapeutic Profile of Garlic (Allium sativum): a Bench to Bedside Approach. Biointerface Res. Appl. Chem. 2021, 11, 14225-14239. https://doi.org/10.33263/BRIAC116.1422514239
dc.relation.references[8] Sorlozano-Puerto, A.; Albertuz-Crespo, M.; Lopez-Machado, I.; Gil-Martinez, L.; Ariza-Romero, J. J.; Maroto-Tello, A.; Baños-Arjona, A.; Gutierrez-Fernandez, J. Antibacterial and Antifungal Activity of Propyl-Propane-Thiosulfinate and Propyl-Propane-Thiosulfonate, Two Organosulfur Compounds from Allium cepa: In Vitro Antimicrobial Effect via the Gas Phase. Pharmaceuticals 2021, 14, 21. https://doi.org/10.3390/ph14010021
dc.relation.references[9] Gruhlke, M.C.H.; Nicco, C.; Batteux, F.; Slusarenko, A.J. The Effects of Allicin, a Reactive Sulfur Species from Garlic, on a Selection of Mammalian Cell Lines. Antioxidants (Basel) 2016, 6, 1. https://doi.org/10.3390/antiox6010001
dc.relation.references[10] Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Puerto, M.; Pichardo, S.; Javier Moreno, F.; Baños, A.; Nuñez, C.; Guillamón, E.; Cameán, A. M. Acute Toxicological Studies of the Main Organosulfur Compound Derived from Allium sp. Intended to be Used in Active Food Packaging. Food Chem. Toxicol. 2015, 82, 1-11. https://doi.org/10.1016/j.fct.2015.04.027
dc.relation.references[11] Zilbeyaz, K.; Oztekin, A.; Kutluana, E.G. Design and Synthesis of Garlic-Related Unsymmetrical Thiosulfonates as Potential Alzheimer’s Disease Therapeutics: In Vitro and In Silico Study. Bioorg. Med. Chem. 2021, 40, 116194. https://doi.org/10.1016/j.bmc.2021.116194
dc.relation.references[12] Oriabinska, L.B.; Starovoitova, S.O.; Vasylyuk, S.V.; Novikov, V.P.; Lubenets, V.I. Ethylthiosulfanilate Effect on Candida Tropicalis. Ukr. Biochem. J. 2017, 89, 70-76. https://doi.org/10.15407/ubj89.05.070
dc.relation.references[13] Martyrosian, I.A.; Pakholiuk, O.V.; Semak, B.D.; Komarovska-Porokhnyavets, O.; Lubenets, V.I.; Pambuk, S.A. New Technologies of Effective Protection of Textiles Against Microbiological Damage. Nanosistemi, Nanomateriali, Nanotehnologii 2019, 17, 621-636. https://doi.org/10.15407/nnn
dc.relation.references[14] Lubenets, V.; Stadnytska, N.; Baranovych, D.; Vasylyuk, S.; Karpenko, O.; Havryliak, V.; Novikov, V. Thiosulfonates. The Prospective Substances against Fungal Infections. In Fungal Infection; Silva de Loreto, É.; Moraes Tondolo, J.S., Eds.; 2019. http://dx.doi.org/10.5772/intechopen.84436
dc.relation.references[15] Liubas, N.; Iskra, R.; Stadnytska, N.; Monka, N.; Havryliak, V.; Lubenets, V. Antioxidant Activity of Thiosulfonate Compounds in Experiments In Vitro and In Vivo. Biointerface Res. Appl. Chem 2022, 12, 3106-3116. https://doi.org/10.33263/BRIAC123.31063116
dc.relation.references[16] Kotyk, B.I.; Iskra, R.Ya.; Slivinska, O.M.; Liubas, N.M.; Pylypetes, A.Z.; Lubenets, V.I.; Pryimych, V.I. Effects of Ethylthiosulfanylate and Chromium (VI) on the State of Pro/Antioxidant System in Rat Liver. Ukr. Biochem. J. 2020, 92, 78-86. https://doi.org/10.15407/ubj92.05.078
dc.relation.references[17] Halenova, T.I.; Nikolaeva, I.V.; Nakonechna, A.V.; Bolibrukh, K.B.; Monka, N.Y.; Lubenets, V.I.; Savchuk, O.M.; Novikov, V.P.; Ostapchenko, L.I. The Search of Compounds with Antiaggregation Activity Among S-esters of Thiosulfonic Acids. Ukr. Biochem. J. 2015, 87, 83-92. https://doi.org/10.15407/ubj87.05.083
dc.relation.references[18] Dmitryjuk, M.; Szczotko, M.; Kubiak, K.; Trojanowicz, R.; Parashchyn, Z.; Khomitska, H.; Lubenets, V. S-Methyl-(2-Methoxycarbonylamino-Benzimidazole-5) Thiosulfonate as a Potential Antiparasitic Agent-Its Action on the Development of Ascaris suum Eggs In Vitro. Pharmaceuticals (Basel) 2020, 13, 332. https://doi.org/10.3390/ph13110332
dc.relation.references[19] Lubenets, V.I.; Vasylyuk, S.V.; Novikov, V.P. Synthesis of S-(3-chloroquinoxalin-2-YL) Esters of Aliphatic and Aromatic Thiosulfonic Acids. Chem. Heterocycl. Compd. 2005, 41, 1547-1548. https://doi.org/10.1007/s10593-006-0039-9
dc.relation.references[20] Vasylyuk, S.; Komarovska-Porokhnyavets, O.; Novikov, V.; Lubenets, V. Modification of Alkyl Esters of 4-Aminobenzenethiosulfonic Acid by S-triazine Fragment and Investigation of their Growth-Regulative Activity. Chem. Chem. Technol. 2018, 12, 24-28. https://doi.org/10.23939/chcht12.01.024
dc.relation.references[21] Kuz'menko, L.; Avdeenko, A.; Konovalova, S.; Vasylyuk, S.; Fedorova, O.; Monka, N.; Krychkovska, A.; Lubenets, V. Synthesis and Study of Pesticidal Activity of Some N-Arylthio-1,4-Benzoquinone Imines. Biointerface Res. Appl. Chem. 2019, 9, 4232-4238. https://doi.org/10.33263/BRIAC95.232238
dc.relation.references[22] Cheng, Y.; Pham, A.-T.; Kato, T.; Lim, B.; Moreau, D.; Lopez-Andarias, J.; Zong, L.; Sakai, N.; Matile, S. Inhibitors of Thiol-Mediated Uptake. Chem. Sci. 2021, 12, 626-631. https://doi.org/10.1039/D0SC05447J
dc.relation.references[23] Focke, M.; Feld, A.; Lichtenthaler, K. Allicin, a Naturally Occurring Antibiotic from Garlic, Specifically Inhibits Acetyl-CoA Synthesis. FEBS Lett. 1990, 261, 106-108. https://doi.org/10.1016/0014-5793(90)80647-2
dc.relation.references[24] Roth, P.J.; Theato, P. Thiol–Thiosulfonate Chemistry in Polymer Science: Simple Fictionalization of Polymers via Disulfide linkages. In Thiol-X Chemistries in Polymer and Materials Science; Lowe, A., Bowman, C., Eds.; Abingdon: Nashville, TN, USA, 2013; pp 76-94.
dc.relation.references[25] Borlinghaus, J.; Albrecht, F.; Gruhlke, M.C.H.; Nwachukwu, I.D; Slusarenko, A.J. Allicin: Chemistry and Biological Properties. Molecules 2014, 19, 12591-12618. https://doi.org/10.3390/molecules190812591
dc.relation.references[26] Whitley, R.J.; Roizman, B. Herpes Simplex Virus Infections. Lancet 2001, 357, 1513-1518. https://doi.org/10.1016/S0140-6736(00)04638-9
dc.relation.references[27] Looker, K.J.; Welton, N.J.; Sabin, K. M.; Dalal, S.; Vickerman, P.; Prof, Turner, K.M.E.; Boily, M.-C.; Gottlieb, S. L. Global and Regional Estimates of the Contribution of Herpes Simplex Virus Type 2 Infection to HIV Incidence: A Population Attributable Fraction Analysis Using Published Epidemiological Data. Lancet Infect. Dis. 2019, 20, 240-249. https://doi.org/10.1016/S1473-3099(19)30470-0
dc.relation.references[28] Reid, G.E.; Lynch, J.P.; Weigt, S.; Sayah, D.; Belperio, J.A.; Grim, S. A.; Clark, N.M. Herpesvirus Respiratory Infections in Immunocompromised Patients: Epidemiology, Management, and Outcomes. Semin Respir Crit Care Med. 2016, 37, 603-630. https://doi.org/10.1055%2Fs-0036-1584793
dc.relation.references[29] Lubenets, V.; Karpenko, O.; Ponomarenko, M.; Zahoriy, G.; Krychkovska, A, Novikov V. Development of New Antimicrobial Compositions of Thiosulfonate Structure. Chem. Chem. Technol. 2013, 7, 119-124. https://doi.org/10.23939/chcht07.02.119
dc.relation.references[30] Lubenets, V.; Vasylyuk, S.; Monka, N.; Bolibrukh, K.; Koma-rovska-Porokhnyavets, O.; Baranovych, D.; Musyanovych, R.; Zaczynska, E,; Czarny, A.; Nawrot, U. et al. Synthesis and Antimi-crobial Properties of 4-Acylaminobenzenethiosulfoacid S-Esters. Saudi. Pharm. J. 2017, 25, 266-274. https://doi.org/10.1016/j.jsps.2016.06.007
dc.relation.references[31] Smith, C.D.; Craft, D.W.; Shiromoto, R.S.; Yan, P.O. Alternative Cell Line for Virus Isolation. J. Clin. Microbiol. 1986, 24, 265-268. https://doi.org/10.1128/jcm.24.2.265-268.1986
dc.relation.references[32] Hansen, M.B.; Nielsen, S.E.; Berg, K. Re-examination and Further Development of a Precise and Rapid dye Method for Measuring Cell Growth/cell Kill. J. Immunol. Methods 1989, 119, 203-210. https://doi.org/10.1016/0022-1759(89)90397-9
dc.relation.references[33] Heydari, S.; Habibi, D.; Faraji, A. A Green and Efficient Solvent- and Catalyst-Free Ultrasonic Dibenzylation Procedure. Chem. Chem. Technol. 2022, 16, 126-132. https://doi.org/10.23939/chcht16.01.126
dc.relation.references[34] Kusuma, H.; Putri, D.; Dewi, I.; Mahfud, M. Solvent-free Microwave Extraction as the Useful Tool for Extraction of Edible Essential Oils. Chem. Chem. Technol. 2016, 10, 213-218. https://doi.org/10.23939/chcht10.02.213
dc.relation.references[35] Starchevskyy, V.; Bernatska, N.; Typilo, I.; Oliynyk, L.; Strogan, O. Establishment of the Regularities of the Concentrations Change of Microorganisms and Water-Soluble Compounds in Polluted Water After Ultrasound Treatment. Chem. Chem. Technol. 2021, 15, 408–413. https://doi.org/10.23939/chcht15.03.408
dc.relation.references[36] Lubenets, V.; Yarish, M.E.; Vid, L.V. ChemInfrom Abstract: Synthesis of Acylation Sulfanilic Esters. Zh. Org. Khim. 1987, 23, 157-161. https://doi:10.1002/chin.198723133
dc.relation.references[37] Manual of Clinical Microbiology, 6th edition; Murray, P.R.; Baron, E.J.; Pfaller, M.A., Eds.; ASM Press: Washington, 1995.
dc.relation.references[38] Pfaller, M.A. National Committee for Clinical Laboratory Standard, Reference method for broth dilution antifungal susceptibility tes¬ting of yeasts; approved standard – second edition M-38. Conidium For¬ming Filamentous Fungi: Proposed Standard. NCCLS. 1998, 22, M27-A2.
dc.relation.references[39] Cutler, R.R.; Odent, M.; Hajj, H.; Maharjan, S.; Bennett, N.; Josling, P.; Ball, V.; Hatton, P.; Dall'antonia, M. In vitro Activity of an Aqueous Allicin Extract and a Novel Allicin Topical Gel Formulation against Lancefield Group B Streptococci. J. Antimicrob. Chemother. 2009, 63, 151-154. https://doi.org/10.1093/jac/dkn457
dc.relation.references[40] Weber, N.D.; Andersen, D.O.; North, J.A.; Murray, B.K.; Lawson, L.D.; Hughes, B.G. In vitro Virucidal Effects of Allium Sativum (Garlic) Extract and Compounds. Planta Med. 1992, 58, 417-423. https://doi.org/10.1055/s-2006-961504
dc.relation.referencesen[1] Kubin, C.J.; McConville, T.H.; Dietz, D.; Zucker, J.; May, M.; Nelson, B.; Istorico, E.; Bartram, L.; Small-Saundres, J.; Sobieszczyk, M.E.; et al. Characterization of Bacterial and Fungal Infections in Hospitalized Patients with Coronavirus Disease 2019 and Factors Associated with Health Care-Associated Infections. Open Forum Infect. Dis. 2021, 8, ofab201. https://doi.org/10.1093/ofid/ofab201
dc.relation.referencesen[2] Reddy, R.J.; Waheed, Md.; Kumar J.J. A Straightforward and Convenient Synthesis of Functionalized Allyl Thiosulfonates and Allyl Disulfanes. RSC Adv. 2018, 8, 40446-40453. https://doi.org/10.1039/P.8ra06938g
dc.relation.referencesen[3] Mampuys, P.; McElroy, C.R.; Clark, J.; Orru, R.V.A.; Maes, B.U.W. Thiosulfonates as Emerging Reactants: Synthesis and Applications. Adv. Synth. Catal. 2020, 362, 3-64. https://doi.org/10.1002/adsc.201900864
dc.relation.referencesen[4] Batiha, G.E.S.; Beshbishy, A.M.; Wasef, L.G.; Elewa Y.H.A., Al-Sagan, A.A.; Abd El-Hack, M.E.; Taha, A.E.; Abd-Elhakim, Y.M.; Devkota, H.P. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.). Nutrients 2020, 12, 872. https://doi.org/10.3390/nu12030872
dc.relation.referencesen[5] Gabriele, E.; Ricci, C.; Meneghetti, F.; Ferri, N.; Asai, A.; Sparatore, A. Methanethiosulfonate Derivatives as Ligands of the STAT3-SH2 Domain. J Enzyme Inhib Med Chem. 2017, 32, 337-344. http://dx.doi.org/10.1080/14756366.2016.1252757
dc.relation.referencesen[6] Alseeni, M.N., Allheani, E. M., Qusti, S.Y., Qusti, N. Y., Alotaibi, S.A., Alotaibi, H.A.. Antimicrobial Activities of Some Plant Extracts against Some. Int. j. pharm. biol. sci. 2019, 14, 01-10.
dc.relation.referencesen[7] Sharma, N.; Behl, T.; Singh, S.; Bansal, A.; Kumari Singh, S.; Zahoor, I. Expatiating the Therapeutic Profile of Garlic (Allium sativum): a Bench to Bedside Approach. Biointerface Res. Appl. Chem. 2021, 11, 14225-14239. https://doi.org/10.33263/BRIAC116.1422514239
dc.relation.referencesen[8] Sorlozano-Puerto, A.; Albertuz-Crespo, M.; Lopez-Machado, I.; Gil-Martinez, L.; Ariza-Romero, J. J.; Maroto-Tello, A.; Baños-Arjona, A.; Gutierrez-Fernandez, J. Antibacterial and Antifungal Activity of Propyl-Propane-Thiosulfinate and Propyl-Propane-Thiosulfonate, Two Organosulfur Compounds from Allium cepa: In Vitro Antimicrobial Effect via the Gas Phase. Pharmaceuticals 2021, 14, 21. https://doi.org/10.3390/ph14010021
dc.relation.referencesen[9] Gruhlke, M.C.H.; Nicco, C.; Batteux, F.; Slusarenko, A.J. The Effects of Allicin, a Reactive Sulfur Species from Garlic, on a Selection of Mammalian Cell Lines. Antioxidants (Basel) 2016, 6, 1. https://doi.org/10.3390/antiox6010001
dc.relation.referencesen[10] Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Puerto, M.; Pichardo, S.; Javier Moreno, F.; Baños, A.; Nuñez, C.; Guillamón, E.; Cameán, A. M. Acute Toxicological Studies of the Main Organosulfur Compound Derived from Allium sp. Intended to be Used in Active Food Packaging. Food Chem. Toxicol. 2015, 82, 1-11. https://doi.org/10.1016/j.fct.2015.04.027
dc.relation.referencesen[11] Zilbeyaz, K.; Oztekin, A.; Kutluana, E.G. Design and Synthesis of Garlic-Related Unsymmetrical Thiosulfonates as Potential Alzheimer’s Disease Therapeutics: In Vitro and In Silico Study. Bioorg. Med. Chem. 2021, 40, 116194. https://doi.org/10.1016/j.bmc.2021.116194
dc.relation.referencesen[12] Oriabinska, L.B.; Starovoitova, S.O.; Vasylyuk, S.V.; Novikov, V.P.; Lubenets, V.I. Ethylthiosulfanilate Effect on Candida Tropicalis. Ukr. Biochem. J. 2017, 89, 70-76. https://doi.org/10.15407/ubj89.05.070
dc.relation.referencesen[13] Martyrosian, I.A.; Pakholiuk, O.V.; Semak, B.D.; Komarovska-Porokhnyavets, O.; Lubenets, V.I.; Pambuk, S.A. New Technologies of Effective Protection of Textiles Against Microbiological Damage. Nanosistemi, Nanomateriali, Nanotehnologii 2019, 17, 621-636. https://doi.org/10.15407/nnn
dc.relation.referencesen[14] Lubenets, V.; Stadnytska, N.; Baranovych, D.; Vasylyuk, S.; Karpenko, O.; Havryliak, V.; Novikov, V. Thiosulfonates. The Prospective Substances against Fungal Infections. In Fungal Infection; Silva de Loreto, É.; Moraes Tondolo, J.S., Eds.; 2019. http://dx.doi.org/10.5772/intechopen.84436
dc.relation.referencesen[15] Liubas, N.; Iskra, R.; Stadnytska, N.; Monka, N.; Havryliak, V.; Lubenets, V. Antioxidant Activity of Thiosulfonate Compounds in Experiments In Vitro and In Vivo. Biointerface Res. Appl. Chem 2022, 12, 3106-3116. https://doi.org/10.33263/BRIAC123.31063116
dc.relation.referencesen[16] Kotyk, B.I.; Iskra, R.Ya.; Slivinska, O.M.; Liubas, N.M.; Pylypetes, A.Z.; Lubenets, V.I.; Pryimych, V.I. Effects of Ethylthiosulfanylate and Chromium (VI) on the State of Pro/Antioxidant System in Rat Liver. Ukr. Biochem. J. 2020, 92, 78-86. https://doi.org/10.15407/ubj92.05.078
dc.relation.referencesen[17] Halenova, T.I.; Nikolaeva, I.V.; Nakonechna, A.V.; Bolibrukh, K.B.; Monka, N.Y.; Lubenets, V.I.; Savchuk, O.M.; Novikov, V.P.; Ostapchenko, L.I. The Search of Compounds with Antiaggregation Activity Among S-esters of Thiosulfonic Acids. Ukr. Biochem. J. 2015, 87, 83-92. https://doi.org/10.15407/ubj87.05.083
dc.relation.referencesen[18] Dmitryjuk, M.; Szczotko, M.; Kubiak, K.; Trojanowicz, R.; Parashchyn, Z.; Khomitska, H.; Lubenets, V. S-Methyl-(2-Methoxycarbonylamino-Benzimidazole-5) Thiosulfonate as a Potential Antiparasitic Agent-Its Action on the Development of Ascaris suum Eggs In Vitro. Pharmaceuticals (Basel) 2020, 13, 332. https://doi.org/10.3390/ph13110332
dc.relation.referencesen[19] Lubenets, V.I.; Vasylyuk, S.V.; Novikov, V.P. Synthesis of S-(3-chloroquinoxalin-2-YL) Esters of Aliphatic and Aromatic Thiosulfonic Acids. Chem. Heterocycl. Compd. 2005, 41, 1547-1548. https://doi.org/10.1007/s10593-006-0039-9
dc.relation.referencesen[20] Vasylyuk, S.; Komarovska-Porokhnyavets, O.; Novikov, V.; Lubenets, V. Modification of Alkyl Esters of 4-Aminobenzenethiosulfonic Acid by S-triazine Fragment and Investigation of their Growth-Regulative Activity. Chem. Chem. Technol. 2018, 12, 24-28. https://doi.org/10.23939/chcht12.01.024
dc.relation.referencesen[21] Kuz'menko, L.; Avdeenko, A.; Konovalova, S.; Vasylyuk, S.; Fedorova, O.; Monka, N.; Krychkovska, A.; Lubenets, V. Synthesis and Study of Pesticidal Activity of Some N-Arylthio-1,4-Benzoquinone Imines. Biointerface Res. Appl. Chem. 2019, 9, 4232-4238. https://doi.org/10.33263/BRIAC95.232238
dc.relation.referencesen[22] Cheng, Y.; Pham, A.-T.; Kato, T.; Lim, B.; Moreau, D.; Lopez-Andarias, J.; Zong, L.; Sakai, N.; Matile, S. Inhibitors of Thiol-Mediated Uptake. Chem. Sci. 2021, 12, 626-631. https://doi.org/10.1039/D0SC05447J
dc.relation.referencesen[23] Focke, M.; Feld, A.; Lichtenthaler, K. Allicin, a Naturally Occurring Antibiotic from Garlic, Specifically Inhibits Acetyl-CoA Synthesis. FEBS Lett. 1990, 261, 106-108. https://doi.org/10.1016/0014-5793(90)80647-2
dc.relation.referencesen[24] Roth, P.J.; Theato, P. Thiol–Thiosulfonate Chemistry in Polymer Science: Simple Fictionalization of Polymers via Disulfide linkages. In Thiol-X Chemistries in Polymer and Materials Science; Lowe, A., Bowman, C., Eds.; Abingdon: Nashville, TN, USA, 2013; pp 76-94.
dc.relation.referencesen[25] Borlinghaus, J.; Albrecht, F.; Gruhlke, M.C.H.; Nwachukwu, I.D; Slusarenko, A.J. Allicin: Chemistry and Biological Properties. Molecules 2014, 19, 12591-12618. https://doi.org/10.3390/molecules190812591
dc.relation.referencesen[26] Whitley, R.J.; Roizman, B. Herpes Simplex Virus Infections. Lancet 2001, 357, 1513-1518. https://doi.org/10.1016/S0140-6736(00)04638-9
dc.relation.referencesen[27] Looker, K.J.; Welton, N.J.; Sabin, K. M.; Dalal, S.; Vickerman, P.; Prof, Turner, K.M.E.; Boily, M.-C.; Gottlieb, S. L. Global and Regional Estimates of the Contribution of Herpes Simplex Virus Type 2 Infection to HIV Incidence: A Population Attributable Fraction Analysis Using Published Epidemiological Data. Lancet Infect. Dis. 2019, 20, 240-249. https://doi.org/10.1016/S1473-3099(19)30470-0
dc.relation.referencesen[28] Reid, G.E.; Lynch, J.P.; Weigt, S.; Sayah, D.; Belperio, J.A.; Grim, S. A.; Clark, N.M. Herpesvirus Respiratory Infections in Immunocompromised Patients: Epidemiology, Management, and Outcomes. Semin Respir Crit Care Med. 2016, 37, 603-630. https://doi.org/10.1055%2Fs-0036-1584793
dc.relation.referencesen[29] Lubenets, V.; Karpenko, O.; Ponomarenko, M.; Zahoriy, G.; Krychkovska, A, Novikov V. Development of New Antimicrobial Compositions of Thiosulfonate Structure. Chem. Chem. Technol. 2013, 7, 119-124. https://doi.org/10.23939/chcht07.02.119
dc.relation.referencesen[30] Lubenets, V.; Vasylyuk, S.; Monka, N.; Bolibrukh, K.; Koma-rovska-Porokhnyavets, O.; Baranovych, D.; Musyanovych, R.; Zaczynska, E,; Czarny, A.; Nawrot, U. et al. Synthesis and Antimi-crobial Properties of 4-Acylaminobenzenethiosulfoacid S-Esters. Saudi. Pharm. J. 2017, 25, 266-274. https://doi.org/10.1016/j.jsps.2016.06.007
dc.relation.referencesen[31] Smith, C.D.; Craft, D.W.; Shiromoto, R.S.; Yan, P.O. Alternative Cell Line for Virus Isolation. J. Clin. Microbiol. 1986, 24, 265-268. https://doi.org/10.1128/jcm.24.2.265-268.1986
dc.relation.referencesen[32] Hansen, M.B.; Nielsen, S.E.; Berg, K. Re-examination and Further Development of a Precise and Rapid dye Method for Measuring Cell Growth/cell Kill. J. Immunol. Methods 1989, 119, 203-210. https://doi.org/10.1016/0022-1759(89)90397-9
dc.relation.referencesen[33] Heydari, S.; Habibi, D.; Faraji, A. A Green and Efficient Solvent- and Catalyst-Free Ultrasonic Dibenzylation Procedure. Chem. Chem. Technol. 2022, 16, 126-132. https://doi.org/10.23939/chcht16.01.126
dc.relation.referencesen[34] Kusuma, H.; Putri, D.; Dewi, I.; Mahfud, M. Solvent-free Microwave Extraction as the Useful Tool for Extraction of Edible Essential Oils. Chem. Chem. Technol. 2016, 10, 213-218. https://doi.org/10.23939/chcht10.02.213
dc.relation.referencesen[35] Starchevskyy, V.; Bernatska, N.; Typilo, I.; Oliynyk, L.; Strogan, O. Establishment of the Regularities of the Concentrations Change of Microorganisms and Water-Soluble Compounds in Polluted Water After Ultrasound Treatment. Chem. Chem. Technol. 2021, 15, 408–413. https://doi.org/10.23939/chcht15.03.408
dc.relation.referencesen[36] Lubenets, V.; Yarish, M.E.; Vid, L.V. ChemInfrom Abstract: Synthesis of Acylation Sulfanilic Esters. Zh. Org. Khim. 1987, 23, 157-161. https://doi:10.1002/chin.198723133
dc.relation.referencesen[37] Manual of Clinical Microbiology, 6th edition; Murray, P.R.; Baron, E.J.; Pfaller, M.A., Eds.; ASM Press: Washington, 1995.
dc.relation.referencesen[38] Pfaller, M.A. National Committee for Clinical Laboratory Standard, Reference method for broth dilution antifungal susceptibility tes¬ting of yeasts; approved standard – second edition M-38. Conidium For¬ming Filamentous Fungi: Proposed Standard. NCCLS. 1998, 22, M27-A2.
dc.relation.referencesen[39] Cutler, R.R.; Odent, M.; Hajj, H.; Maharjan, S.; Bennett, N.; Josling, P.; Ball, V.; Hatton, P.; Dall'antonia, M. In vitro Activity of an Aqueous Allicin Extract and a Novel Allicin Topical Gel Formulation against Lancefield Group B Streptococci. J. Antimicrob. Chemother. 2009, 63, 151-154. https://doi.org/10.1093/jac/dkn457
dc.relation.referencesen[40] Weber, N.D.; Andersen, D.O.; North, J.A.; Murray, B.K.; Lawson, L.D.; Hughes, B.G. In vitro Virucidal Effects of Allium Sativum (Garlic) Extract and Compounds. Planta Med. 1992, 58, 417-423. https://doi.org/10.1055/s-2006-961504
dc.relation.urihttps://doi.org/10.1093/ofid/ofab201
dc.relation.urihttps://doi.org/10.1039/c8ra06938g
dc.relation.urihttps://doi.org/10.1002/adsc.201900864
dc.relation.urihttps://doi.org/10.3390/nu12030872
dc.relation.urihttp://dx.doi.org/10.1080/14756366.2016.1252757
dc.relation.urihttps://doi.org/10.33263/BRIAC116.1422514239
dc.relation.urihttps://doi.org/10.3390/ph14010021
dc.relation.urihttps://doi.org/10.3390/antiox6010001
dc.relation.urihttps://doi.org/10.1016/j.fct.2015.04.027
dc.relation.urihttps://doi.org/10.1016/j.bmc.2021.116194
dc.relation.urihttps://doi.org/10.15407/ubj89.05.070
dc.relation.urihttps://doi.org/10.15407/nnn
dc.relation.urihttp://dx.doi.org/10.5772/intechopen.84436
dc.relation.urihttps://doi.org/10.33263/BRIAC123.31063116
dc.relation.urihttps://doi.org/10.15407/ubj92.05.078
dc.relation.urihttps://doi.org/10.15407/ubj87.05.083
dc.relation.urihttps://doi.org/10.3390/ph13110332
dc.relation.urihttps://doi.org/10.1007/s10593-006-0039-9
dc.relation.urihttps://doi.org/10.23939/chcht12.01.024
dc.relation.urihttps://doi.org/10.33263/BRIAC95.232238
dc.relation.urihttps://doi.org/10.1039/D0SC05447J
dc.relation.urihttps://doi.org/10.1016/0014-5793(90)80647-2
dc.relation.urihttps://doi.org/10.3390/molecules190812591
dc.relation.urihttps://doi.org/10.1016/S0140-6736(00)04638-9
dc.relation.urihttps://doi.org/10.1016/S1473-3099(19)30470-0
dc.relation.urihttps://doi.org/10.1055%2Fs-0036-1584793
dc.relation.urihttps://doi.org/10.23939/chcht07.02.119
dc.relation.urihttps://doi.org/10.1016/j.jsps.2016.06.007
dc.relation.urihttps://doi.org/10.1128/jcm.24.2.265-268.1986
dc.relation.urihttps://doi.org/10.1016/0022-1759(89)90397-9
dc.relation.urihttps://doi.org/10.23939/chcht16.01.126
dc.relation.urihttps://doi.org/10.23939/chcht10.02.213
dc.relation.urihttps://doi.org/10.23939/chcht15.03.408
dc.relation.urihttps://doi:10.1002/chin.198723133
dc.relation.urihttps://doi.org/10.1093/jac/dkn457
dc.relation.urihttps://doi.org/10.1055/s-2006-961504
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Zaczynska E., Czarny A., Karpenko O., Vasylyuk S., Monka N., Stadnytska N., Fizer L., Komarovska-Porokhnyavets O., Jaranowski M., Lubenets V., ZimeckiM., 2023
dc.subjectтіосульфонати
dc.subjectантибактеріальна активність
dc.subjectпротивірусна активність
dc.subjectantibacterial activity
dc.subjectantiviral activity
dc.titleObtaining and Determining Antiviral and Antibacterial Activity of S-Esters of 4-R-Aminobenzenethiosulfonic Acid
dc.title.alternativeОдержання та визначення противірусної й антибактеріальної активності S-естерів 4-R-амінобензенетіосульфокислоти
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n2_Zaczynska_E-Obtaining_and_Determining_315-324.pdf
Size:
638.08 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n2_Zaczynska_E-Obtaining_and_Determining_315-324__COVER.png
Size:
1.39 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: