Obtaining and Determining Antiviral and Antibacterial Activity of S-Esters of 4-R-Aminobenzenethiosulfonic Acid
dc.citation.epage | 324 | |
dc.citation.issue | 2 | |
dc.citation.spage | 315 | |
dc.contributor.affiliation | Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences | |
dc.contributor.affiliation | Institute of Physical Organic Chemistry and Coal Chemistry named after L. M. Lytvynenko of the NAS of Ukraine | |
dc.contributor.affiliation | Lviv National Polytechnic University | |
dc.contributor.affiliation | Alpinus Chemia Sp. z o. o. | |
dc.contributor.author | Zaczynska, Ewa | |
dc.contributor.author | Czarny, Anna | |
dc.contributor.author | Karpenko, Olena | |
dc.contributor.author | Vasylyuk, Sofiya | |
dc.contributor.author | Monka, Nataliya | |
dc.contributor.author | Stadnytska, Nataliya | |
dc.contributor.author | Fizer, Liubov | |
dc.contributor.author | Komarovska-Porokhnyavets, Olena | |
dc.contributor.author | Jaranowski, Maciej | |
dc.contributor.author | Lubenets, Vira | |
dc.contributor.author | Zimecki, Michał | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:30:29Z | |
dc.date.available | 2024-02-12T08:30:29Z | |
dc.date.created | 2023-03-16 | |
dc.date.issued | 2023-03-16 | |
dc.description.abstract | Алкілуванням натрієвої солі 4-ацетиламінобензентіосульфокислоти різними алкілувальними агентами та ацилюванням відповідних естерів 4-амінобензентіосульфокислоти метакрилоїлхлоридом синтезовано ряд S-естерів 4-R-амінобензентіосульфокислот. Для одержання S-метил 4-(ацетиламіно)бензенсульфонотіоату розроблено методику синтезу, яка відповідає основним принципам “зеленої хімії”. Ступінь цитотоксичності сполук оцінювали через визначення росту клітин А-549 колориметричним методом. Антибактеріальну активність тіосульфонатів визначали в агаровому дифузійному тесті, а противірусну дію – за цитопатичним ефектом за значенням TCID50. | |
dc.description.abstract | A number of S-esters of 4-R-aminobenzenethiosulfonic acids were synthesized via alkylation of the sodium salt of 4-acetylaminobenzenethiosulfonic acid with various alkylating agents and acylation of the corresponding esters of 4-aminobenzenethiosulfonic acid with methacryloyl chloride. For obtaining S-methyl 4-(acetylamino) benzenesulfonothioate, it was developed a synthetic technique corresponding to the basic principles of “green chemistry”. The degree of compound cytotoxicity was measured by determining A-549 cell growth using colorimetric method. The antibacterial activity of the thiosulfonates was determined by the agar diffusion test and the antiviral action by their cytopathic effect at TCID50 value. | |
dc.format.extent | 315-324 | |
dc.format.pages | 10 | |
dc.identifier.citation | Obtaining and Determining Antiviral and Antibacterial Activity of S-Esters of 4-R-Aminobenzenethiosulfonic Acid / Ewa Zaczynska, Anna Czarny, Olena Karpenko, Sofiya Vasylyuk, Nataliya Monka, Nataliya Stadnytska, Liubov Fizer, Olena Komarovska-Porokhnyavets, Maciej Jaranowski, Vira Lubenets, Michał Zimecki // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 315–324. | |
dc.identifier.citationen | Obtaining and Determining Antiviral and Antibacterial Activity of S-Esters of 4-R-Aminobenzenethiosulfonic Acid / Ewa Zaczynska, Anna Czarny, Olena Karpenko, Sofiya Vasylyuk, Nataliya Monka, Nataliya Stadnytska, Liubov Fizer, Olena Komarovska-Porokhnyavets, Maciej Jaranowski, Vira Lubenets, Michał Zimecki // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 315–324. | |
dc.identifier.doi | doi.org/10.23939/chcht17.02.315 | |
dc.identifier.issn | 1996-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61235 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (17), 2023 | |
dc.relation.references | [1] Kubin, C.J.; McConville, T.H.; Dietz, D.; Zucker, J.; May, M.; Nelson, B.; Istorico, E.; Bartram, L.; Small-Saundres, J.; Sobieszczyk, M.E.; et al. Characterization of Bacterial and Fungal Infections in Hospitalized Patients with Coronavirus Disease 2019 and Factors Associated with Health Care-Associated Infections. Open Forum Infect. Dis. 2021, 8, ofab201. https://doi.org/10.1093/ofid/ofab201 | |
dc.relation.references | [2] Reddy, R.J.; Waheed, Md.; Kumar J.J. A Straightforward and Convenient Synthesis of Functionalized Allyl Thiosulfonates and Allyl Disulfanes. RSC Adv. 2018, 8, 40446-40453. https://doi.org/10.1039/c8ra06938g | |
dc.relation.references | [3] Mampuys, P.; McElroy, C.R.; Clark, J.; Orru, R.V.A.; Maes, B.U.W. Thiosulfonates as Emerging Reactants: Synthesis and Applications. Adv. Synth. Catal. 2020, 362, 3-64. https://doi.org/10.1002/adsc.201900864 | |
dc.relation.references | [4] Batiha, G.E.S.; Beshbishy, A.M.; Wasef, L.G.; Elewa Y.H.A., Al-Sagan, A.A.; Abd El-Hack, M.E.; Taha, A.E.; Abd-Elhakim, Y.M.; Devkota, H.P. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.). Nutrients 2020, 12, 872. https://doi.org/10.3390/nu12030872 | |
dc.relation.references | [5] Gabriele, E.; Ricci, C.; Meneghetti, F.; Ferri, N.; Asai, A.; Sparatore, A. Methanethiosulfonate Derivatives as Ligands of the STAT3-SH2 Domain. J Enzyme Inhib Med Chem. 2017, 32, 337-344. http://dx.doi.org/10.1080/14756366.2016.1252757 | |
dc.relation.references | [6] Alseeni, M.N., Allheani, E. M., Qusti, S.Y., Qusti, N. Y., Alotaibi, S.A., Alotaibi, H.A.. Antimicrobial Activities of Some Plant Extracts against Some. Int. j. pharm. biol. sci. 2019, 14, 01-10. | |
dc.relation.references | [7] Sharma, N.; Behl, T.; Singh, S.; Bansal, A.; Kumari Singh, S.; Zahoor, I. Expatiating the Therapeutic Profile of Garlic (Allium sativum): a Bench to Bedside Approach. Biointerface Res. Appl. Chem. 2021, 11, 14225-14239. https://doi.org/10.33263/BRIAC116.1422514239 | |
dc.relation.references | [8] Sorlozano-Puerto, A.; Albertuz-Crespo, M.; Lopez-Machado, I.; Gil-Martinez, L.; Ariza-Romero, J. J.; Maroto-Tello, A.; Baños-Arjona, A.; Gutierrez-Fernandez, J. Antibacterial and Antifungal Activity of Propyl-Propane-Thiosulfinate and Propyl-Propane-Thiosulfonate, Two Organosulfur Compounds from Allium cepa: In Vitro Antimicrobial Effect via the Gas Phase. Pharmaceuticals 2021, 14, 21. https://doi.org/10.3390/ph14010021 | |
dc.relation.references | [9] Gruhlke, M.C.H.; Nicco, C.; Batteux, F.; Slusarenko, A.J. The Effects of Allicin, a Reactive Sulfur Species from Garlic, on a Selection of Mammalian Cell Lines. Antioxidants (Basel) 2016, 6, 1. https://doi.org/10.3390/antiox6010001 | |
dc.relation.references | [10] Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Puerto, M.; Pichardo, S.; Javier Moreno, F.; Baños, A.; Nuñez, C.; Guillamón, E.; Cameán, A. M. Acute Toxicological Studies of the Main Organosulfur Compound Derived from Allium sp. Intended to be Used in Active Food Packaging. Food Chem. Toxicol. 2015, 82, 1-11. https://doi.org/10.1016/j.fct.2015.04.027 | |
dc.relation.references | [11] Zilbeyaz, K.; Oztekin, A.; Kutluana, E.G. Design and Synthesis of Garlic-Related Unsymmetrical Thiosulfonates as Potential Alzheimer’s Disease Therapeutics: In Vitro and In Silico Study. Bioorg. Med. Chem. 2021, 40, 116194. https://doi.org/10.1016/j.bmc.2021.116194 | |
dc.relation.references | [12] Oriabinska, L.B.; Starovoitova, S.O.; Vasylyuk, S.V.; Novikov, V.P.; Lubenets, V.I. Ethylthiosulfanilate Effect on Candida Tropicalis. Ukr. Biochem. J. 2017, 89, 70-76. https://doi.org/10.15407/ubj89.05.070 | |
dc.relation.references | [13] Martyrosian, I.A.; Pakholiuk, O.V.; Semak, B.D.; Komarovska-Porokhnyavets, O.; Lubenets, V.I.; Pambuk, S.A. New Technologies of Effective Protection of Textiles Against Microbiological Damage. Nanosistemi, Nanomateriali, Nanotehnologii 2019, 17, 621-636. https://doi.org/10.15407/nnn | |
dc.relation.references | [14] Lubenets, V.; Stadnytska, N.; Baranovych, D.; Vasylyuk, S.; Karpenko, O.; Havryliak, V.; Novikov, V. Thiosulfonates. The Prospective Substances against Fungal Infections. In Fungal Infection; Silva de Loreto, É.; Moraes Tondolo, J.S., Eds.; 2019. http://dx.doi.org/10.5772/intechopen.84436 | |
dc.relation.references | [15] Liubas, N.; Iskra, R.; Stadnytska, N.; Monka, N.; Havryliak, V.; Lubenets, V. Antioxidant Activity of Thiosulfonate Compounds in Experiments In Vitro and In Vivo. Biointerface Res. Appl. Chem 2022, 12, 3106-3116. https://doi.org/10.33263/BRIAC123.31063116 | |
dc.relation.references | [16] Kotyk, B.I.; Iskra, R.Ya.; Slivinska, O.M.; Liubas, N.M.; Pylypetes, A.Z.; Lubenets, V.I.; Pryimych, V.I. Effects of Ethylthiosulfanylate and Chromium (VI) on the State of Pro/Antioxidant System in Rat Liver. Ukr. Biochem. J. 2020, 92, 78-86. https://doi.org/10.15407/ubj92.05.078 | |
dc.relation.references | [17] Halenova, T.I.; Nikolaeva, I.V.; Nakonechna, A.V.; Bolibrukh, K.B.; Monka, N.Y.; Lubenets, V.I.; Savchuk, O.M.; Novikov, V.P.; Ostapchenko, L.I. The Search of Compounds with Antiaggregation Activity Among S-esters of Thiosulfonic Acids. Ukr. Biochem. J. 2015, 87, 83-92. https://doi.org/10.15407/ubj87.05.083 | |
dc.relation.references | [18] Dmitryjuk, M.; Szczotko, M.; Kubiak, K.; Trojanowicz, R.; Parashchyn, Z.; Khomitska, H.; Lubenets, V. S-Methyl-(2-Methoxycarbonylamino-Benzimidazole-5) Thiosulfonate as a Potential Antiparasitic Agent-Its Action on the Development of Ascaris suum Eggs In Vitro. Pharmaceuticals (Basel) 2020, 13, 332. https://doi.org/10.3390/ph13110332 | |
dc.relation.references | [19] Lubenets, V.I.; Vasylyuk, S.V.; Novikov, V.P. Synthesis of S-(3-chloroquinoxalin-2-YL) Esters of Aliphatic and Aromatic Thiosulfonic Acids. Chem. Heterocycl. Compd. 2005, 41, 1547-1548. https://doi.org/10.1007/s10593-006-0039-9 | |
dc.relation.references | [20] Vasylyuk, S.; Komarovska-Porokhnyavets, O.; Novikov, V.; Lubenets, V. Modification of Alkyl Esters of 4-Aminobenzenethiosulfonic Acid by S-triazine Fragment and Investigation of their Growth-Regulative Activity. Chem. Chem. Technol. 2018, 12, 24-28. https://doi.org/10.23939/chcht12.01.024 | |
dc.relation.references | [21] Kuz'menko, L.; Avdeenko, A.; Konovalova, S.; Vasylyuk, S.; Fedorova, O.; Monka, N.; Krychkovska, A.; Lubenets, V. Synthesis and Study of Pesticidal Activity of Some N-Arylthio-1,4-Benzoquinone Imines. Biointerface Res. Appl. Chem. 2019, 9, 4232-4238. https://doi.org/10.33263/BRIAC95.232238 | |
dc.relation.references | [22] Cheng, Y.; Pham, A.-T.; Kato, T.; Lim, B.; Moreau, D.; Lopez-Andarias, J.; Zong, L.; Sakai, N.; Matile, S. Inhibitors of Thiol-Mediated Uptake. Chem. Sci. 2021, 12, 626-631. https://doi.org/10.1039/D0SC05447J | |
dc.relation.references | [23] Focke, M.; Feld, A.; Lichtenthaler, K. Allicin, a Naturally Occurring Antibiotic from Garlic, Specifically Inhibits Acetyl-CoA Synthesis. FEBS Lett. 1990, 261, 106-108. https://doi.org/10.1016/0014-5793(90)80647-2 | |
dc.relation.references | [24] Roth, P.J.; Theato, P. Thiol–Thiosulfonate Chemistry in Polymer Science: Simple Fictionalization of Polymers via Disulfide linkages. In Thiol-X Chemistries in Polymer and Materials Science; Lowe, A., Bowman, C., Eds.; Abingdon: Nashville, TN, USA, 2013; pp 76-94. | |
dc.relation.references | [25] Borlinghaus, J.; Albrecht, F.; Gruhlke, M.C.H.; Nwachukwu, I.D; Slusarenko, A.J. Allicin: Chemistry and Biological Properties. Molecules 2014, 19, 12591-12618. https://doi.org/10.3390/molecules190812591 | |
dc.relation.references | [26] Whitley, R.J.; Roizman, B. Herpes Simplex Virus Infections. Lancet 2001, 357, 1513-1518. https://doi.org/10.1016/S0140-6736(00)04638-9 | |
dc.relation.references | [27] Looker, K.J.; Welton, N.J.; Sabin, K. M.; Dalal, S.; Vickerman, P.; Prof, Turner, K.M.E.; Boily, M.-C.; Gottlieb, S. L. Global and Regional Estimates of the Contribution of Herpes Simplex Virus Type 2 Infection to HIV Incidence: A Population Attributable Fraction Analysis Using Published Epidemiological Data. Lancet Infect. Dis. 2019, 20, 240-249. https://doi.org/10.1016/S1473-3099(19)30470-0 | |
dc.relation.references | [28] Reid, G.E.; Lynch, J.P.; Weigt, S.; Sayah, D.; Belperio, J.A.; Grim, S. A.; Clark, N.M. Herpesvirus Respiratory Infections in Immunocompromised Patients: Epidemiology, Management, and Outcomes. Semin Respir Crit Care Med. 2016, 37, 603-630. https://doi.org/10.1055%2Fs-0036-1584793 | |
dc.relation.references | [29] Lubenets, V.; Karpenko, O.; Ponomarenko, M.; Zahoriy, G.; Krychkovska, A, Novikov V. Development of New Antimicrobial Compositions of Thiosulfonate Structure. Chem. Chem. Technol. 2013, 7, 119-124. https://doi.org/10.23939/chcht07.02.119 | |
dc.relation.references | [30] Lubenets, V.; Vasylyuk, S.; Monka, N.; Bolibrukh, K.; Koma-rovska-Porokhnyavets, O.; Baranovych, D.; Musyanovych, R.; Zaczynska, E,; Czarny, A.; Nawrot, U. et al. Synthesis and Antimi-crobial Properties of 4-Acylaminobenzenethiosulfoacid S-Esters. Saudi. Pharm. J. 2017, 25, 266-274. https://doi.org/10.1016/j.jsps.2016.06.007 | |
dc.relation.references | [31] Smith, C.D.; Craft, D.W.; Shiromoto, R.S.; Yan, P.O. Alternative Cell Line for Virus Isolation. J. Clin. Microbiol. 1986, 24, 265-268. https://doi.org/10.1128/jcm.24.2.265-268.1986 | |
dc.relation.references | [32] Hansen, M.B.; Nielsen, S.E.; Berg, K. Re-examination and Further Development of a Precise and Rapid dye Method for Measuring Cell Growth/cell Kill. J. Immunol. Methods 1989, 119, 203-210. https://doi.org/10.1016/0022-1759(89)90397-9 | |
dc.relation.references | [33] Heydari, S.; Habibi, D.; Faraji, A. A Green and Efficient Solvent- and Catalyst-Free Ultrasonic Dibenzylation Procedure. Chem. Chem. Technol. 2022, 16, 126-132. https://doi.org/10.23939/chcht16.01.126 | |
dc.relation.references | [34] Kusuma, H.; Putri, D.; Dewi, I.; Mahfud, M. Solvent-free Microwave Extraction as the Useful Tool for Extraction of Edible Essential Oils. Chem. Chem. Technol. 2016, 10, 213-218. https://doi.org/10.23939/chcht10.02.213 | |
dc.relation.references | [35] Starchevskyy, V.; Bernatska, N.; Typilo, I.; Oliynyk, L.; Strogan, O. Establishment of the Regularities of the Concentrations Change of Microorganisms and Water-Soluble Compounds in Polluted Water After Ultrasound Treatment. Chem. Chem. Technol. 2021, 15, 408–413. https://doi.org/10.23939/chcht15.03.408 | |
dc.relation.references | [36] Lubenets, V.; Yarish, M.E.; Vid, L.V. ChemInfrom Abstract: Synthesis of Acylation Sulfanilic Esters. Zh. Org. Khim. 1987, 23, 157-161. https://doi:10.1002/chin.198723133 | |
dc.relation.references | [37] Manual of Clinical Microbiology, 6th edition; Murray, P.R.; Baron, E.J.; Pfaller, M.A., Eds.; ASM Press: Washington, 1995. | |
dc.relation.references | [38] Pfaller, M.A. National Committee for Clinical Laboratory Standard, Reference method for broth dilution antifungal susceptibility tes¬ting of yeasts; approved standard – second edition M-38. Conidium For¬ming Filamentous Fungi: Proposed Standard. NCCLS. 1998, 22, M27-A2. | |
dc.relation.references | [39] Cutler, R.R.; Odent, M.; Hajj, H.; Maharjan, S.; Bennett, N.; Josling, P.; Ball, V.; Hatton, P.; Dall'antonia, M. In vitro Activity of an Aqueous Allicin Extract and a Novel Allicin Topical Gel Formulation against Lancefield Group B Streptococci. J. Antimicrob. Chemother. 2009, 63, 151-154. https://doi.org/10.1093/jac/dkn457 | |
dc.relation.references | [40] Weber, N.D.; Andersen, D.O.; North, J.A.; Murray, B.K.; Lawson, L.D.; Hughes, B.G. In vitro Virucidal Effects of Allium Sativum (Garlic) Extract and Compounds. Planta Med. 1992, 58, 417-423. https://doi.org/10.1055/s-2006-961504 | |
dc.relation.referencesen | [1] Kubin, C.J.; McConville, T.H.; Dietz, D.; Zucker, J.; May, M.; Nelson, B.; Istorico, E.; Bartram, L.; Small-Saundres, J.; Sobieszczyk, M.E.; et al. Characterization of Bacterial and Fungal Infections in Hospitalized Patients with Coronavirus Disease 2019 and Factors Associated with Health Care-Associated Infections. Open Forum Infect. Dis. 2021, 8, ofab201. https://doi.org/10.1093/ofid/ofab201 | |
dc.relation.referencesen | [2] Reddy, R.J.; Waheed, Md.; Kumar J.J. A Straightforward and Convenient Synthesis of Functionalized Allyl Thiosulfonates and Allyl Disulfanes. RSC Adv. 2018, 8, 40446-40453. https://doi.org/10.1039/P.8ra06938g | |
dc.relation.referencesen | [3] Mampuys, P.; McElroy, C.R.; Clark, J.; Orru, R.V.A.; Maes, B.U.W. Thiosulfonates as Emerging Reactants: Synthesis and Applications. Adv. Synth. Catal. 2020, 362, 3-64. https://doi.org/10.1002/adsc.201900864 | |
dc.relation.referencesen | [4] Batiha, G.E.S.; Beshbishy, A.M.; Wasef, L.G.; Elewa Y.H.A., Al-Sagan, A.A.; Abd El-Hack, M.E.; Taha, A.E.; Abd-Elhakim, Y.M.; Devkota, H.P. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.). Nutrients 2020, 12, 872. https://doi.org/10.3390/nu12030872 | |
dc.relation.referencesen | [5] Gabriele, E.; Ricci, C.; Meneghetti, F.; Ferri, N.; Asai, A.; Sparatore, A. Methanethiosulfonate Derivatives as Ligands of the STAT3-SH2 Domain. J Enzyme Inhib Med Chem. 2017, 32, 337-344. http://dx.doi.org/10.1080/14756366.2016.1252757 | |
dc.relation.referencesen | [6] Alseeni, M.N., Allheani, E. M., Qusti, S.Y., Qusti, N. Y., Alotaibi, S.A., Alotaibi, H.A.. Antimicrobial Activities of Some Plant Extracts against Some. Int. j. pharm. biol. sci. 2019, 14, 01-10. | |
dc.relation.referencesen | [7] Sharma, N.; Behl, T.; Singh, S.; Bansal, A.; Kumari Singh, S.; Zahoor, I. Expatiating the Therapeutic Profile of Garlic (Allium sativum): a Bench to Bedside Approach. Biointerface Res. Appl. Chem. 2021, 11, 14225-14239. https://doi.org/10.33263/BRIAC116.1422514239 | |
dc.relation.referencesen | [8] Sorlozano-Puerto, A.; Albertuz-Crespo, M.; Lopez-Machado, I.; Gil-Martinez, L.; Ariza-Romero, J. J.; Maroto-Tello, A.; Baños-Arjona, A.; Gutierrez-Fernandez, J. Antibacterial and Antifungal Activity of Propyl-Propane-Thiosulfinate and Propyl-Propane-Thiosulfonate, Two Organosulfur Compounds from Allium cepa: In Vitro Antimicrobial Effect via the Gas Phase. Pharmaceuticals 2021, 14, 21. https://doi.org/10.3390/ph14010021 | |
dc.relation.referencesen | [9] Gruhlke, M.C.H.; Nicco, C.; Batteux, F.; Slusarenko, A.J. The Effects of Allicin, a Reactive Sulfur Species from Garlic, on a Selection of Mammalian Cell Lines. Antioxidants (Basel) 2016, 6, 1. https://doi.org/10.3390/antiox6010001 | |
dc.relation.referencesen | [10] Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Puerto, M.; Pichardo, S.; Javier Moreno, F.; Baños, A.; Nuñez, C.; Guillamón, E.; Cameán, A. M. Acute Toxicological Studies of the Main Organosulfur Compound Derived from Allium sp. Intended to be Used in Active Food Packaging. Food Chem. Toxicol. 2015, 82, 1-11. https://doi.org/10.1016/j.fct.2015.04.027 | |
dc.relation.referencesen | [11] Zilbeyaz, K.; Oztekin, A.; Kutluana, E.G. Design and Synthesis of Garlic-Related Unsymmetrical Thiosulfonates as Potential Alzheimer’s Disease Therapeutics: In Vitro and In Silico Study. Bioorg. Med. Chem. 2021, 40, 116194. https://doi.org/10.1016/j.bmc.2021.116194 | |
dc.relation.referencesen | [12] Oriabinska, L.B.; Starovoitova, S.O.; Vasylyuk, S.V.; Novikov, V.P.; Lubenets, V.I. Ethylthiosulfanilate Effect on Candida Tropicalis. Ukr. Biochem. J. 2017, 89, 70-76. https://doi.org/10.15407/ubj89.05.070 | |
dc.relation.referencesen | [13] Martyrosian, I.A.; Pakholiuk, O.V.; Semak, B.D.; Komarovska-Porokhnyavets, O.; Lubenets, V.I.; Pambuk, S.A. New Technologies of Effective Protection of Textiles Against Microbiological Damage. Nanosistemi, Nanomateriali, Nanotehnologii 2019, 17, 621-636. https://doi.org/10.15407/nnn | |
dc.relation.referencesen | [14] Lubenets, V.; Stadnytska, N.; Baranovych, D.; Vasylyuk, S.; Karpenko, O.; Havryliak, V.; Novikov, V. Thiosulfonates. The Prospective Substances against Fungal Infections. In Fungal Infection; Silva de Loreto, É.; Moraes Tondolo, J.S., Eds.; 2019. http://dx.doi.org/10.5772/intechopen.84436 | |
dc.relation.referencesen | [15] Liubas, N.; Iskra, R.; Stadnytska, N.; Monka, N.; Havryliak, V.; Lubenets, V. Antioxidant Activity of Thiosulfonate Compounds in Experiments In Vitro and In Vivo. Biointerface Res. Appl. Chem 2022, 12, 3106-3116. https://doi.org/10.33263/BRIAC123.31063116 | |
dc.relation.referencesen | [16] Kotyk, B.I.; Iskra, R.Ya.; Slivinska, O.M.; Liubas, N.M.; Pylypetes, A.Z.; Lubenets, V.I.; Pryimych, V.I. Effects of Ethylthiosulfanylate and Chromium (VI) on the State of Pro/Antioxidant System in Rat Liver. Ukr. Biochem. J. 2020, 92, 78-86. https://doi.org/10.15407/ubj92.05.078 | |
dc.relation.referencesen | [17] Halenova, T.I.; Nikolaeva, I.V.; Nakonechna, A.V.; Bolibrukh, K.B.; Monka, N.Y.; Lubenets, V.I.; Savchuk, O.M.; Novikov, V.P.; Ostapchenko, L.I. The Search of Compounds with Antiaggregation Activity Among S-esters of Thiosulfonic Acids. Ukr. Biochem. J. 2015, 87, 83-92. https://doi.org/10.15407/ubj87.05.083 | |
dc.relation.referencesen | [18] Dmitryjuk, M.; Szczotko, M.; Kubiak, K.; Trojanowicz, R.; Parashchyn, Z.; Khomitska, H.; Lubenets, V. S-Methyl-(2-Methoxycarbonylamino-Benzimidazole-5) Thiosulfonate as a Potential Antiparasitic Agent-Its Action on the Development of Ascaris suum Eggs In Vitro. Pharmaceuticals (Basel) 2020, 13, 332. https://doi.org/10.3390/ph13110332 | |
dc.relation.referencesen | [19] Lubenets, V.I.; Vasylyuk, S.V.; Novikov, V.P. Synthesis of S-(3-chloroquinoxalin-2-YL) Esters of Aliphatic and Aromatic Thiosulfonic Acids. Chem. Heterocycl. Compd. 2005, 41, 1547-1548. https://doi.org/10.1007/s10593-006-0039-9 | |
dc.relation.referencesen | [20] Vasylyuk, S.; Komarovska-Porokhnyavets, O.; Novikov, V.; Lubenets, V. Modification of Alkyl Esters of 4-Aminobenzenethiosulfonic Acid by S-triazine Fragment and Investigation of their Growth-Regulative Activity. Chem. Chem. Technol. 2018, 12, 24-28. https://doi.org/10.23939/chcht12.01.024 | |
dc.relation.referencesen | [21] Kuz'menko, L.; Avdeenko, A.; Konovalova, S.; Vasylyuk, S.; Fedorova, O.; Monka, N.; Krychkovska, A.; Lubenets, V. Synthesis and Study of Pesticidal Activity of Some N-Arylthio-1,4-Benzoquinone Imines. Biointerface Res. Appl. Chem. 2019, 9, 4232-4238. https://doi.org/10.33263/BRIAC95.232238 | |
dc.relation.referencesen | [22] Cheng, Y.; Pham, A.-T.; Kato, T.; Lim, B.; Moreau, D.; Lopez-Andarias, J.; Zong, L.; Sakai, N.; Matile, S. Inhibitors of Thiol-Mediated Uptake. Chem. Sci. 2021, 12, 626-631. https://doi.org/10.1039/D0SC05447J | |
dc.relation.referencesen | [23] Focke, M.; Feld, A.; Lichtenthaler, K. Allicin, a Naturally Occurring Antibiotic from Garlic, Specifically Inhibits Acetyl-CoA Synthesis. FEBS Lett. 1990, 261, 106-108. https://doi.org/10.1016/0014-5793(90)80647-2 | |
dc.relation.referencesen | [24] Roth, P.J.; Theato, P. Thiol–Thiosulfonate Chemistry in Polymer Science: Simple Fictionalization of Polymers via Disulfide linkages. In Thiol-X Chemistries in Polymer and Materials Science; Lowe, A., Bowman, C., Eds.; Abingdon: Nashville, TN, USA, 2013; pp 76-94. | |
dc.relation.referencesen | [25] Borlinghaus, J.; Albrecht, F.; Gruhlke, M.C.H.; Nwachukwu, I.D; Slusarenko, A.J. Allicin: Chemistry and Biological Properties. Molecules 2014, 19, 12591-12618. https://doi.org/10.3390/molecules190812591 | |
dc.relation.referencesen | [26] Whitley, R.J.; Roizman, B. Herpes Simplex Virus Infections. Lancet 2001, 357, 1513-1518. https://doi.org/10.1016/S0140-6736(00)04638-9 | |
dc.relation.referencesen | [27] Looker, K.J.; Welton, N.J.; Sabin, K. M.; Dalal, S.; Vickerman, P.; Prof, Turner, K.M.E.; Boily, M.-C.; Gottlieb, S. L. Global and Regional Estimates of the Contribution of Herpes Simplex Virus Type 2 Infection to HIV Incidence: A Population Attributable Fraction Analysis Using Published Epidemiological Data. Lancet Infect. Dis. 2019, 20, 240-249. https://doi.org/10.1016/S1473-3099(19)30470-0 | |
dc.relation.referencesen | [28] Reid, G.E.; Lynch, J.P.; Weigt, S.; Sayah, D.; Belperio, J.A.; Grim, S. A.; Clark, N.M. Herpesvirus Respiratory Infections in Immunocompromised Patients: Epidemiology, Management, and Outcomes. Semin Respir Crit Care Med. 2016, 37, 603-630. https://doi.org/10.1055%2Fs-0036-1584793 | |
dc.relation.referencesen | [29] Lubenets, V.; Karpenko, O.; Ponomarenko, M.; Zahoriy, G.; Krychkovska, A, Novikov V. Development of New Antimicrobial Compositions of Thiosulfonate Structure. Chem. Chem. Technol. 2013, 7, 119-124. https://doi.org/10.23939/chcht07.02.119 | |
dc.relation.referencesen | [30] Lubenets, V.; Vasylyuk, S.; Monka, N.; Bolibrukh, K.; Koma-rovska-Porokhnyavets, O.; Baranovych, D.; Musyanovych, R.; Zaczynska, E,; Czarny, A.; Nawrot, U. et al. Synthesis and Antimi-crobial Properties of 4-Acylaminobenzenethiosulfoacid S-Esters. Saudi. Pharm. J. 2017, 25, 266-274. https://doi.org/10.1016/j.jsps.2016.06.007 | |
dc.relation.referencesen | [31] Smith, C.D.; Craft, D.W.; Shiromoto, R.S.; Yan, P.O. Alternative Cell Line for Virus Isolation. J. Clin. Microbiol. 1986, 24, 265-268. https://doi.org/10.1128/jcm.24.2.265-268.1986 | |
dc.relation.referencesen | [32] Hansen, M.B.; Nielsen, S.E.; Berg, K. Re-examination and Further Development of a Precise and Rapid dye Method for Measuring Cell Growth/cell Kill. J. Immunol. Methods 1989, 119, 203-210. https://doi.org/10.1016/0022-1759(89)90397-9 | |
dc.relation.referencesen | [33] Heydari, S.; Habibi, D.; Faraji, A. A Green and Efficient Solvent- and Catalyst-Free Ultrasonic Dibenzylation Procedure. Chem. Chem. Technol. 2022, 16, 126-132. https://doi.org/10.23939/chcht16.01.126 | |
dc.relation.referencesen | [34] Kusuma, H.; Putri, D.; Dewi, I.; Mahfud, M. Solvent-free Microwave Extraction as the Useful Tool for Extraction of Edible Essential Oils. Chem. Chem. Technol. 2016, 10, 213-218. https://doi.org/10.23939/chcht10.02.213 | |
dc.relation.referencesen | [35] Starchevskyy, V.; Bernatska, N.; Typilo, I.; Oliynyk, L.; Strogan, O. Establishment of the Regularities of the Concentrations Change of Microorganisms and Water-Soluble Compounds in Polluted Water After Ultrasound Treatment. Chem. Chem. Technol. 2021, 15, 408–413. https://doi.org/10.23939/chcht15.03.408 | |
dc.relation.referencesen | [36] Lubenets, V.; Yarish, M.E.; Vid, L.V. ChemInfrom Abstract: Synthesis of Acylation Sulfanilic Esters. Zh. Org. Khim. 1987, 23, 157-161. https://doi:10.1002/chin.198723133 | |
dc.relation.referencesen | [37] Manual of Clinical Microbiology, 6th edition; Murray, P.R.; Baron, E.J.; Pfaller, M.A., Eds.; ASM Press: Washington, 1995. | |
dc.relation.referencesen | [38] Pfaller, M.A. National Committee for Clinical Laboratory Standard, Reference method for broth dilution antifungal susceptibility tes¬ting of yeasts; approved standard – second edition M-38. Conidium For¬ming Filamentous Fungi: Proposed Standard. NCCLS. 1998, 22, M27-A2. | |
dc.relation.referencesen | [39] Cutler, R.R.; Odent, M.; Hajj, H.; Maharjan, S.; Bennett, N.; Josling, P.; Ball, V.; Hatton, P.; Dall'antonia, M. In vitro Activity of an Aqueous Allicin Extract and a Novel Allicin Topical Gel Formulation against Lancefield Group B Streptococci. J. Antimicrob. Chemother. 2009, 63, 151-154. https://doi.org/10.1093/jac/dkn457 | |
dc.relation.referencesen | [40] Weber, N.D.; Andersen, D.O.; North, J.A.; Murray, B.K.; Lawson, L.D.; Hughes, B.G. In vitro Virucidal Effects of Allium Sativum (Garlic) Extract and Compounds. Planta Med. 1992, 58, 417-423. https://doi.org/10.1055/s-2006-961504 | |
dc.relation.uri | https://doi.org/10.1093/ofid/ofab201 | |
dc.relation.uri | https://doi.org/10.1039/c8ra06938g | |
dc.relation.uri | https://doi.org/10.1002/adsc.201900864 | |
dc.relation.uri | https://doi.org/10.3390/nu12030872 | |
dc.relation.uri | http://dx.doi.org/10.1080/14756366.2016.1252757 | |
dc.relation.uri | https://doi.org/10.33263/BRIAC116.1422514239 | |
dc.relation.uri | https://doi.org/10.3390/ph14010021 | |
dc.relation.uri | https://doi.org/10.3390/antiox6010001 | |
dc.relation.uri | https://doi.org/10.1016/j.fct.2015.04.027 | |
dc.relation.uri | https://doi.org/10.1016/j.bmc.2021.116194 | |
dc.relation.uri | https://doi.org/10.15407/ubj89.05.070 | |
dc.relation.uri | https://doi.org/10.15407/nnn | |
dc.relation.uri | http://dx.doi.org/10.5772/intechopen.84436 | |
dc.relation.uri | https://doi.org/10.33263/BRIAC123.31063116 | |
dc.relation.uri | https://doi.org/10.15407/ubj92.05.078 | |
dc.relation.uri | https://doi.org/10.15407/ubj87.05.083 | |
dc.relation.uri | https://doi.org/10.3390/ph13110332 | |
dc.relation.uri | https://doi.org/10.1007/s10593-006-0039-9 | |
dc.relation.uri | https://doi.org/10.23939/chcht12.01.024 | |
dc.relation.uri | https://doi.org/10.33263/BRIAC95.232238 | |
dc.relation.uri | https://doi.org/10.1039/D0SC05447J | |
dc.relation.uri | https://doi.org/10.1016/0014-5793(90)80647-2 | |
dc.relation.uri | https://doi.org/10.3390/molecules190812591 | |
dc.relation.uri | https://doi.org/10.1016/S0140-6736(00)04638-9 | |
dc.relation.uri | https://doi.org/10.1016/S1473-3099(19)30470-0 | |
dc.relation.uri | https://doi.org/10.1055%2Fs-0036-1584793 | |
dc.relation.uri | https://doi.org/10.23939/chcht07.02.119 | |
dc.relation.uri | https://doi.org/10.1016/j.jsps.2016.06.007 | |
dc.relation.uri | https://doi.org/10.1128/jcm.24.2.265-268.1986 | |
dc.relation.uri | https://doi.org/10.1016/0022-1759(89)90397-9 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.01.126 | |
dc.relation.uri | https://doi.org/10.23939/chcht10.02.213 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.03.408 | |
dc.relation.uri | https://doi:10.1002/chin.198723133 | |
dc.relation.uri | https://doi.org/10.1093/jac/dkn457 | |
dc.relation.uri | https://doi.org/10.1055/s-2006-961504 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Zaczynska E., Czarny A., Karpenko O., Vasylyuk S., Monka N., Stadnytska N., Fizer L., Komarovska-Porokhnyavets O., Jaranowski M., Lubenets V., ZimeckiM., 2023 | |
dc.subject | тіосульфонати | |
dc.subject | антибактеріальна активність | |
dc.subject | противірусна активність | |
dc.subject | antibacterial activity | |
dc.subject | antiviral activity | |
dc.title | Obtaining and Determining Antiviral and Antibacterial Activity of S-Esters of 4-R-Aminobenzenethiosulfonic Acid | |
dc.title.alternative | Одержання та визначення противірусної й антибактеріальної активності S-естерів 4-R-амінобензенетіосульфокислоти | |
dc.type | Article |
Files
License bundle
1 - 1 of 1