Комп'ютерні науки та інформаційні технології. – 2011. – №710

Permanent URI for this collectionhttps://ena.lpnu.ua/handle/ntb/12093

Вісник Національного університету "Львівська політехніка"

У віснику публікуються статті за результатами досліджень з актуальних питань комп’ютерних наук та інформаційних технологій, виконаних професорсько-викладацьким складом Національного університету “Львівська політехніка” та провідними вченими України в галузі проектування архітектури і компонентів комп’ютерних систем, моделювання складних об’єктів, процесів і систем та розробки і використання новітніх інформаційних технологій. Для науковців, викладачів вищих навчальних закладів, інженерів, що спеціалізуються у сфері новітніх обчислювальних систем, мереж, комп’ютеризованих засобів розв’язання задач цифрового опрацювання сигналів і зображень, автоматизованого проектування та керування, а також докторантів, аспірантів та студентів старших курсів відповідних спеціальностей.

Вісник Національного університету «Львівська політехніка» : [збірник наукових праць] / Міністерство освіти і науки України, Національний університет «Львівська політехніка» – Львів : Видавництво Львівської політехніки, 2011 . – № 710: Комп’ютерні науки та інформаційні технології / відповідальний редактор Ю. М. Рашкевич. – 295 с. : іл.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Адаптивний вейвлет-фаззі-нейрон типу-2
    (Видавництво Львівської політехніки, 2011) Бодянський, Є.; Винокурова, О.; Харченко, О.
    Запропоновано архітектуру вейвлет-фаззі-нейрона типу-2 та алгоритм навчання усіх його параметрів. Також запропоновано метод редукції моделі, що дає змогу проводити інтелектуальну обробку даних в on-line режимі при високій швидкості надходження даних. Проведено низку комп’ютерних експериментів на реальних даних, що підтверджують доцільність підходу, що розвивається. In the paper the architecture of type-2 wavelet-fuzzy neuron and learning algorithm its of all-parameters are proposed. The type-reduction model method which allows data mining in on-line mode under high speed feeding of data is proposed too. The computational experiments confirm to effectiveness of developed approach.