Комп'ютерні науки та інформаційні технології. – 2014. – №800

Permanent URI for this collectionhttps://ena.lpnu.ua/handle/ntb/25807

Вісник Національного університету "Львівська політехніка"

Вісник Національного університету “Львівська політехніка” “Комп’ютерні науки та інформаційні технології” входить до переліку видань ВАК, в яких друкуються матеріали дисертаційних робіт у галузі технічних наук У віснику публікуються статті за результатами досліджень з актуальних питань комп’ютерних наук та інформаційних технологій, виконаних професорсько-викладацьким складом Національного університету “Львівська політехніка” та провідними вченими України і зарубіжними вченими в галузі проектування архітектури і компонентів комп’ютерних систем, моделювання складних об’єктів, процесів і систем та розроблення і використання новітніх інформаційних технологій. Для науковців, викладачів вищих закладів освіти, інженерів, що спеціалізуються у сфері новітніх обчислювальних систем, мереж, комп’ютеризованих засобів розв’язання задач цифрового опрацювання сигналів і зображень, автоматизованого проектування та керування, а також докторантів, аспірантів та студентів старших курсів відповідних спеціальностей.

Вісник Національного університету «Львівська політехніка» : [збірник наукових праць] / Міністерство освіти і науки України, Національний університет «Львівська політехніка» – Львів : Видавництво Львівської політехніки, 2014 . – № 800: Комп’ютерні науки та інформаційні технології / відповідальний редактор Ю. М. Рашкевич. – 287 с. : іл.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    An evolving reservoir neo-fuzzy network for time series prediction
    (Видавництво Львівської політехніки, 2014) Tyshchenko, O.; Pliss, I.
    Компютінгове сховище – це парадигма навчання періодичних нейронних мереж на основі використання рекуррентної частина (так званого “резервуара”) інших показників. Еволюція систем визначила новий підхід, який фокусується на навчанні нечітких систем, що і мають своїми параметрами їх структуру адаптації он-лайн. У даній роботі розвивається сховище нео-нечітка мережі, побудованої з використанням елементів затримки і нелінійних нео-нечітких синапсів, що означає еволюціонування систем і м’які обчислення об’єднуються в нову обчислювальну систему. Reservoir Computing is a paradigm of training Recurrent Neural Networks based on treating the recurrent part (the so-called “reservoir”) differently from the readouts. This paradigm has become so popular recently due to its computational efficiency and the fact that it’s enough to train only a supervised readout. Meanwhile Evolving Systems define a new approach which focuses on learning fuzzy systems that have both their parameters and their structure adapting on-line. In this paper an evolving reservoir neo-fuzzy network is built using time delay elements and nonlinear neo-fuzzy synapses which means that Reservoir Computing, Evolving Systems and Soft Computing are combined in a new computational system.