Сучасні досягнення геодезичної науки та виробництва
Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/3184
Browse
4 results
Search Results
Item Аналіз сучасних моделей відлікових поверхонь для визначення висот методом GNSS-нівелювання(Видавництво Львівської політехніки, 2022-06-14) Федорчук, А.; Fedorchuk, A.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityУ роботі розглянуто різні джерела інформації, що стосуються проблематики визначення висот методом GNSS-нівелювання. Реалізація цього методу потребує наявності висот геоїда або квазігеоїда, які сьогодні можна отримати із відповідних моделей. В останні десятиліття науковці з різних країн світу розробили чимало глобальних, регіональних та локальних моделей геоїда та квазігеоїда. Це сприяло появі великої кількості наукових досліджень, які стосуються тематики GNSS-нівелювання. Мета роботи – виконати аналіз сучасних моделей відлікових поверхонь на основі матеріалів наукових публікацій за критеріями, що істотно впливають на ведення досліджень у галузі визначення висот методом GNSS-нівелювання. Методика. Розглянуто 44 роботи, опубліковані у 2001–2021 рр. Серед досліджень у цьому напрямі можна виділити три види робіт: 1) 13 публікацій щодо методів побудови самих моделей; 2) 12 – щодо перевірки їх точності та 3) 19 робіт щодо “коригування” модельних висот. На першому етапі дослідження аналіз здійснено за критеріями, що характеризують моделювання поверхні геоїда та квазігеоїда, серед яких питання теорії Стокса і Молоденського, математичні способи аналізу й опрацювання даних, систем припливів, ондуляції геоїда нульового порядку та масштабних рівнів моделей. На другому етапі проаналізовано частоту публікувань за роками та встановлено активність подання наявних моделей геоїда та квазігеоїда з вибірки країн, здійсненої на підставі всіх робіт, вибраних у цьому дослідженні. На третьому етапі виконано кількісний аналіз офіційно опублікованих моделей геоїда та квазігеоїда щодо частоти публікувань за досліджуваний період. Встановлено відношення точності висот глобальних моделей геоїда щодо ступеня/порядку їх обчислення. Результати. Автори 58 % проаналізованих публікацій використовують у своїх дослідженнях теорію Стокса, а у 42 % – теорію Молоденського. Серед математичних способів аналізу та опрацювання даних у 27 % робіт застосовано метод середньої квадратичної колокації, по 20 % – метод найменших квадратів, метод “видалення – відновлення” та метод модифікації формули Стокса найменшими квадратами (або KTH-method), метод швидкого перетворення Фур’є – у 13 %. У публікаціях щодо створення глобальних моделей Землі здебільшого в розрахунках використовують параметри припливної системи “tide free” – загалом 40 %. Не менш важливим критерієм (33 % робіт) можна вважати врахування параметра ондуляції геоїда нульового порядку (“zero degree term”). Загалом 41 % досліджень спрямовано на створення та аналіз моделей квазігеоїда саме регіонального масштабу. За досліджуваний проміжок часу найбільше робіт опубліковано у 2012 та у 2018 рр. Передовими країнами щодо розроблення моделей квазігеоїда є Канада, Польща, Швеція та США, а глобальних моделей геоїда – Німеччина, США та Китай. За 2001–2021 рр. офіційно представлено 99 глобальних моделей геоїда різних ступенів/порядків, серед яких для досліджень найчастіше використовують моделі серій GOCO, EIGEN та EGM. Також за цей проміжок часу запропоновано 177 моделей квазігеоїда, найбільше з яких опубліковано у 2019 р. На основі цих даних простежується зв’язок із частотою публікувань у 2008–2021 рр. Для точності глобальних моделей геоїда щодо ступеня/порядку їхнього обчислення характерні систематичні зміни в межах 0,52–1,92 м, 0,38–0,50 м, 0,23–0,38 м та 0,12–0,14 м для моделей 60-220, 220-260, 260-720 та 720-2190 ступеня/порядку відповідно. Наукова новизна. Аналіз сучасних моделей відлікових поверхонь на основі матеріалів наукових публікацій у сфері використання методу GNSS-нівелювання дає можливість встановити переваги та недоліки досліджень у цій галузі. Практична значущість. Дані такого аналізу можна використати для вирішення ключових проблем щодо визначення висот методом GNSS-нівелювання, які потребують додаткових досліджень, здійснивши пошук модернізованих рішень.Item Аналіз похибок еліпсоїдних висот на основі результатів GNSS-нівелювання(Видавництво Львівської політехніки, 2021-02-16) Федорчук, А.; Fedorchuk, A.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityДослідження впливу похибок на результати вимірювань завжди є актуальним завданням. Аналіз таких величин дає можливість оцінити характер зміни та величину впливу похибок для подальшого врахування або компенсування, або зведення до мінімуму. В цій роботі розглянуто похибки визначення еліпсоїдних висот із GNSSспостережень. У визначенні еліпсоїдної висоти цим методом можна досягти точності 1–2 см у статичному режимі (Static) та 2–4 см у режимі реального часу (RTK). Отже, точність вибраного режиму спостережень вказуватиме на початкові межі впливу похибок еліпсоїдних висот, а чинники, що виникають безпосередньо під час спостережень та під час опрацювання даних, визначатимуть, в яких межах змінюватимуться ці похибки щодо початкових меж. Мета цієї роботи полягає у проведенні аналізу похибок еліпсоїдних висот на основі результатів GNSSнівелювання, отриманих у режимах статики та RTK. Методика. Для дослідження використано дані GNSSнівелювання на 17 пунктах (стінні та ґрунтові репери) ходів нівелювання І–ІІ класів, які розташовані в радіусі 15 км від перманентної станції SULP Національного університету “Львівська політехніка”. Спостереження виконано в режимі статики (4-годинні) та RTK (8–10 вимірювань). Пункти поділено на три категорії (5–6 пунктів): 1) статика на стінних реперах; 2) режим реального часу на стінних реперах; 3) статичний режим на ґрунтових реперах. Комбінуванням режимів спостережень та заданих категорій утворено чотири GNSS-мережі, що містять 11, 11, 12 та 17 пунктів. Результати. Для кожної категорії визначено у процентах, у яких межах змінюються похибки еліпсоїдних висот у статичному режимі спостережень та режимі реального часу, із застосуванням методу GNSS-нівелювання. На основі отриманої інформації встановлено, що для першого випадку похибки еліпсоїдних висот у середньому змінюються у межах ±43 %, для другого – ±36 %, а для третього – ±14 %. Аналіз статистичних характеристик для кожної категорії свідчить про те, що стандартне відхилення даних статичного режиму становить 2 % та 19 %, а режиму RTK – 12 % відповідно. Наукова новизна та практична значущість. Характер зміни меж похибок визначення еліпсоїдних висот дає уявлення про те, якої точності слід очікувати, виконуючи GNSS нівелювання залежно від режиму спостережень. Такі дані відіграють важливу роль у вирішенні науково-прикладних завдань методом GNSS-нівелювання, таких як побудова нових нівелірних мереж або моніторинг пунктів висот вже наявних мереж.Item Гравіметричні роботи на території Дністровської ГАЕС(Видавництво Львівської політехніки, 2019-02-28) Паляниця, Б.; Джуман, Б.; Сідоров, І.; Palanytsa, B.; Dzhuman, B.; Sidorov, I.; Національний університет “Львівська політехніка”; Lviv Polytechnic National UniversityThe purpose of this work is to perform gravimetric measurements at the points of the existing reference geodetic network on the territory of the Dniester hydro-accumulating power station (DHAPS) to study the magnitude of the correction in the leveling for the non-parallelism of the level surfaces. Method. For performance of gravimetric works on the territory of the DHAPS we used three high-precision gravimeters GNU-KV. Before starting the measurements we conducted a number of studies of these gravimeters: adjusting the optical system, adjusting the device to a minimum of tilt sensitivity, detecting and controlling the sensitivity, determining the timing of the reference, determining the temperature characteristics, benchmarking, calculating the range of measurements and its adjustment, determining the displacement of the zero point and its inclusion. One of the most important studies is the standardization (definition of a constant) of gravimeter. Standardization of gravimeters GNU-KV was carried out at the points of the Kiev narrow-band gravimetric polygon. The distance between them is about 10 km. Between these points, with sufficient accuracy, the value of acceleration in free air 5g is known For correction of leveling 7 gravimetric works were performed that covered 10 points of the well-known geodesic network at the DHAPS. At the reference point, the value of acceleration of free fall g was calculated using the global model of the gravitational field of the Earth EGM2008 to 2190 degree/order. Results. Based on the measured data, the difference between free fall acceleration for each work is calculated respectively. After working out gravimetric data it was established that the correction in leveling for the nonparallel level surfaces varies from 0.089 mm to 1.517 mm. For some lines of the network, the correction for the nonparallelism of level surfaces exceeds the permissible systematic error of leveling the first class twice. Accordingly, when working out the leveling of the first class on such lines it is necessary to take into account this correction. Failure to take into account this correction will result in an increase in the systematic error of leveling in proportion to the length of the leveling process, which will result in false results about the height and displacement of the geodetic points. The scientific novelty and practical significance. For the first time in the territory of the Dniester HAPS gravimetric surveying was carried out to calculate corrections in precision leveling for the non-parallelism of level surfaces. The necessity to carry out such removal on the territory of the DHAPS is grounded in order to reduce the systematic error of leveling.Item Accuracy of height measurements for leveling across wide water bodies(Видавництво Львівської політехніки, 2013) Celms, A.; Ratkevičs, A.; Brants, A.; Kauranens, E.The objective is to carry out measurements across the river Lielupe applying geomet ric leveling, trigonometric leveling and global positioning me thods. As the end result the effectiveness of each me thod are evaluated and each method quality parameters are compared. Elevation between the ground marks were measur ed with the digital leveler DiNi12, according to Class I leveling requirements. For leveling directly across the rive r Lielupe were used optical leveler Zeiss Ni002 and new type leveling mark strengthened on leveling rod. Given the estimat ed standard deviation of the measurements, it is concluded that the most accurate measurements performed by geometric leveling with leveling system Zeiss Ni 002. This method significantly increases the overall accuracy of the leveling network, as well as reduces costs without carrying out additional leveling. Мета роботи – встановити точність визначення перевищень при використанні методів геометричного, тригонометричного нівелювання, а також користуючись методами ГНСС. У ході роботи визначені точностні показники отриманих перевищень при використанні кожного з вищеназваних методів і проведено порівняння отриманих точностних показників. Під час проведення робіт дотримувалися вимоги, встановлені для виконання нівелювання мережі 1 класу, в роботі на мостах користу-валися нівеліром Dini12. Для прямих вимірів користувались нівеліром ZEISS Ni002 із застосуванням нівелірних марок для поліпшення прочитування вимірювань. На основі порівняння отриманих середніх квадратичних помилок вимірювань дійшли висновку, що найточніші результати вимірів отримані з використанням системи ZEISS Ni002. Метод значно покращує загальну точність результатів нівелювання і скорочує витрати на виконання робіт (зокрема грошові)– вилучаючи досі існуючу необхідність шукати обхідні маршрути нівелювання для вимірювань, що пересікають значні водні перешкоди. Цель работы – установить точность определения превышений при использовании методов геометрической, тригонометрической нивелировки а также пользуясь методами ГНСС. В ходе работы определены точностные показатели полученных превышений при использовании каждого из вышеназванных методов и проведено сравнение полученных точностных показателей. При проведении работ соблюдались требования, установленные для выполнения нивелировки сети 1 класса, в работе на мостах пользовались нивелиром DiNi12. Для прямых измерений пользовались нивелиром ZEISS Ni002 с применением нивелирных марок для улучшения считывания измерений. На основе сравнения полученных средних квадратических ошибок измерений пришли к выводу, что самые точные результаты измерений получены с использованием системы ZEISS Ni002. Метод значительно улучшает общую точность результатов нивелировки и сокращает затраты на выполнение работ (в том числе денежные)– исключая до сих пор существовавшую необходимость искать обходные маршруты нивелировки для измерений, пересекающих значительные водные преграды.