Вимірювальна техніка та метрологія

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/2123

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Аналітичний огляд методів та засобів вимірювання температури об’єктів малих розмірів
    (Видавництво Львівської політехніки, 2017-03-28) Кривенчук, Юрій; Кривенчук, Уляна; Kryvenchuk, Yurii; Kryvenchuk, Uliana; Національний університет “Львівська політехніка”; Державне підприємство “Науково-дослідний інститут метрології вимірювальних і управляючих систем”
    Проаналізовано основні переваги та недоліки контактних та безконтактних методів і засобів вимірювання температури та можливість їх застосування для вимірювання температури мікро- та нанооб’єктів. Враховуючи результати виконаного аналізу, переваги та недоліки розглянутих методів, для вимірювання температури об’єктів малих розмірів оптимальним є застосування методу комбінаційного розсіювання світла. Показано доцільність використання методу за зсувом частоти комбінаційного розсіювання світла для побудови засобу вимірювання температури нанооб’єктів, що забезпечує зменшення часу вимірювання та методичної похибки.
  • Thumbnail Image
    Item
    Експериментальні дослідження залежності вимірюваної температури від частоти антистоксової компоненти спектра комбінаційного розсіювання світла для AL2O3
    (Видавництво Львівської політехніки, 2016) Кривенчук, Юрій; Микитин, Ігор; Сегеда, Олег; Національний університет “Львівська політехніка”
    Al2O3 – наноструктурований дрібнодисперсний порошок, який часто використовується як сорбент для очищення води, в матеріалознавстві, для виготовлення конденсаторів. Подано результати експериментальних досліджень спектрів комбінаційного розсіювання світла для Al2O3 у температурному діапазоні від 18 до 70 °С. Знайдено еквівалентну частоту антистоксової компоненти спектра комбінаційного розсіювання світла методом центра мас, також отримано аналітичні залежності еквівалентної частоти антистоксової компоненти спектра комбінаційного розсіювання світла від температури. Досліджено залежність похибки апроксимації від кількості коефіцієнтів апроксимаційної кривої. Обладнання для експериментів: лазер ν = 632,9 нм, спектроаналізатор MS 3501i, оптична схема з використанням вузькосмугового фільтра та призми. Дослідження проводили за нормальних умов. Представлены результаты экспериментальных исследований спектров комбинационного рассеяния света для Al2O3 в температурном диапазоне от 18 до 70 °С. Найдено эквивалентную частоту антистоксовой компоненты спектра комбинационного рассеяния света методом центра масс, также получены аналитические зависимости эквивалентной частоты антистоксовой компоненты спектра комбинационного рассеяния света от температуры. Исследованы зависимость погрешности аппроксимации от количества коэффициентов аппроксимационной кривой. Оборудование для экспериментов: лазер ν = 632,9 нм, спектроанализатор MS 3501i, оптическая схема с использованием узкополосного фильтра и призмы. Исследования проводились при нормальных условиях. On the basis of Raman known at present are two ways to measure temperature. The first and most more common method of measuring temperature by Raman intensity is dependent stokes and antistokes Raman component. This method is relatively simple to implement, since change with temperature integrated area antistokes and stokes component. This method of temperature measurement by Raman has good sensitivity and accuracy, but has several significant drawbacks. The main drawback is a methodological error that occurs as a result of determining the area of integrated antistokes and Stokes components. Spectrophotometer to measure consistently first Stokes then antistokes component of Raman spectroscopy, the measurement time of stokes components of the object and is heated by laser heating antistokes components that it leads to error. Another way is to measure the frequency shift Raman. To measure the temperature shift frequency Raman enough to determine just antistokes component Raman spectroscopy. To measure the temperature shift frequency Raman frequency is not appropriate to use a spectrophotometer and spectrum analyser. The peculiarity of the spectrum analyser is that it measures only antistokes component, and the full range of a whole, not just a stepping stone that can reduce the methodological error. Also unconditional significant advantage of this method within the temperature measurement by Raman is speed. By comparison when measuring the temperature integrated area ratio of the maximum speed is 13 seconds, and the Raman shift frequency of 1 second. By reducing the measurement time is reduced further methodological error caused by heating of the object studied laser. Therefore, based on this method conducted research described in the article. The results of experimental studies Raman spectroscopy for Al2O3 in the temperature range of 18 to 70 °C. Each point temperature for 10 implementations derived components range antistokes Raman method of centre of mass calculated value equivalent frequency components antistokes Raman spectroscopy, and the average value of the equivalent frequency components antistokes range and uncertainty determine an equivalent frequency components antistokes. Analytical dependences equivalent frequency components antistokes Raman spectrum of temperature. The dependence of error of approximation of the number of coefficients approximating curve for each of the objects, and certainly the best number of factors. Equipment using experiments were conducted: laser ν = 632,9 nm spectrum analyser MS 3501i, optical circuit using a narrow band filter and prism, studies were conducted under normal conditions.