Вимірювальна техніка та метрологія
Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/2123
Browse
Search Results
Item Багаторівнева метрологічна перевірка кіберфізичних систем(Видавництво Львівської політехніки, 2015) Олеськів, ОльгаПроаналізовано особливості функціонування кіберфізичних систем та їх компонентів. Розглянуто можливості під’єднання первинних перетворювачів до кіберфізичних систем. Запропоновано варіанти структурної реалізації кіберфізичних систем. Запропоновано багаторівневу метрологічну перевірку кіберфізичних систем. Запропоновано алгоритми перевірки програмного забезпечення кіберфізичних систем на системному, підсистемному рівнях та на рівні інтелектуальних первинних перетворювачів. Проанализированы особенности функционирования киберфизических систем и их компонентов. Рассмотрены возможности подключения первичных преобразователей к киберфизическим системам. Предложены варианты структурной реализации киберфизических систем. Предложено многоуровневую метрологическую проверку киберфизических систем. Предложены алгоритмы проверки программного обеспечения киберфизических систем на системном и подсистемном уровнях, а также на уровне интеллектуальных первичных преобразователей. This article presents the features of functioning the cyber-physical systems and their components. The cyber-physical systems are complex systems which components may be located at great distance from one another. The cyber-physical systems perform processing of information and functions of monitoring and control equipment. Cyber-physical systems infrastructure mainly consists of subsystems, which electronic components are implemented through the embedded system control and get information about the environment through sensors and measuring device and can influence it through actuators. The analysis opportunity of sensors possible accession to embedded system control is examined. The classification by the sensors output signal type is considered. On the basis of the sensors classification concluded that the cyber-physical systems is most expedient to use intelligent sensors. Intelligent sensors have a number of properties that significantly distinguish them from other types of sensors. Intelligent sensors can automatically choose measuring range, carry out algorithmic correction of the measurement results, operate in a dialogue with the central control system, take decisions, transfer measurement results in digital form, as well as alarms and others. Intelligent sensors can conduct self-tuning, selftesting and self-examination. Intelligent sensors performing necessary conversion of measurement data andmathematical processing of measurement results. Therefore, the use of intelligent sensors enables to release embedded system control from storage and processing of a large number of intermediate data. Given the above information allows considering the optimal use of intelligent sensors in cyber-physical systems. A structural implementation of cyber-physical systems in two ways is proposed: 1) all subsystems of cyber-physical systems is equal, able to form task and together with other components to participate in solving them, carry out a self-testing, self-examination, etc.; 2) in the cyber-physical systems are basic subsystem that controls and verification all other subsystems, primary means, and sensors performs. According to the results of the analysis of the cyber-physical system and those components characteristics, amultilevel remote metrological verification of cyber-physical systems is proposed.With the proposed algorithm the cyber-physical system components can be verified at the request of any component, subsystem or system as a whole. Also a person can initiate ametrological testing process, if there is suspicion of incorrect operation or its time for cyber-physical system routine verification. The algorithms of metrological verification the software of cyber-physical systems at the system, subsystem and sensors levels are proposed. Ideally, the human factor is excluded from the verification process. The person will be involved in the verification of the cyber-physical systems software only when are errors with which the system can not cope on their own.Item Встановлення зв’язків між вимогами замовника та показниками виробу з використанням методу QFD та Fuzzy Logic(Видавництво Львівської політехніки, 2015) Бойко, Тарас; Мельник, ВолодимирЗапропоновано алгоритм, який використовує розгортання функції якості для перетворення вимоги замовника на характеристики властивостей виробів, їх матеріалів, вимоги виробничих процесів, нормативних документів тощо. Алгоритм використовує також нечітку логіку для підвищення точності оцінювання вимог, оскільки забезпечує математичні операції із лінгвістичними змінними. Запропонована практична реалізація алгоритму на прикладі напірної поліетиленової труби для підземних газогонів. Сформовано структуру показників, що характеризують перелічені складові й можуть бути використані для діагностування готового виробу. Предложен алгоритм, который использует развертывание функции качества для преобразованиятребования заказчика в характеристики свойств изделий, их материалов, требования производственных процессов, нормативных документов итому подобное. Алгоритм используеттакже нечеткую логику для повышения точности оценкитребований, поскольку обеспечивает математические операции с лингвистическими переменными. Предложенная практическая реализация алгоритма на примере напорной полиэтиленовойтрубы для подземных газопроводов. Сформирована структура показателей, характеризующих перечисленные составляющие, которые могут быть использованы для диагностики готового изделия. Now for the developed countries of the world community is inherent to ensure quality by organizational and management measures, namely development, implementation, certification and continuous improvement of quality systems. Proceedings of the outstanding scientists of the twentieth century W. Shewhart, W. E. Deming, Joseph M. Juran (first introduced the concept of “quality control”), F. Crosby, K. Ishikawa, Armand V. Feigenbaum, H. Taguchi, T. Seyfi formed a modern strategy based on the application of quality management systems (QMS). Within an effective QMS in the company created an environment so that products could be of high quality. In particular, the main criterion for evaluating the QMS is to have a continuous improvement process that should lead to greater customer satisfaction, apparently due to the continuous improvement of products, or, in other words, increase its quality. Therefore, the development of new methods of generating quality factors and their importance for evaluating the quality of products is an urgent task. Mixed-economic approach to forming index of products quality using standard economic “tools” for enhancing the competitiveness of enterprises, such as benchmarking, reverse engineering analysis and quality function deployment is proposed. Overall benchmarking is the process of finding a standard or reference more cost effective enterprise-rival to compare with their own and adopting best practice. The essence of the present interpretation of benchmarking can be formulated as nonstop systematic search and implementation of best practices that will lead the organization to a more perfect form. Therefore it is considered that benchmarking is an effective tool for determining the position of your company compared to others of a similar size and / or scope of activities and organizations. To elucidate the causes of advantages competitors perform the so-called reverse engineering analysis, which is also a form of benchmarking. The method is aimed at answering the following question – how to provide with high performance products? The results of engineering analysis are also presented in the form of matrices that are recommended to be built separately for components, materials, methods of manufacture and assembly, although it complicates their comparison. The weak point of engineering analysis is the lack of algorithm for continuous communication engineering parameters of the product with manufacturing operations and production requirements. This algorithm can be realized on the base of QFD (quality function deployment), in fact, it is a technology of engineering design products and processes for their manufacture and “converts” the wishes of consumers in the technical specifications of the product as well as process parameters of its production. Besides, QFD allows to assess the importance of consumer product options, linking them to the requirements of customers. Moreover consumers’ wishes are taken into consideration for their “transformation” into the measured parameters by using tools of qualimetry. The basis of the quality function deployment - QFD, or as it is called simultaneous engineering method is the use of a series of two-or even three-dimensional tables, matrices, socalled “houses of quality”. These matrices allow consumers to link requirements to the quality of the performance of the product, product performance link with characteristics of engineering components, component specifications link with manufacturing operations and production operations to the requirements of production. Thus, it is preferable to use four table-matrix. As a result, it can be stated that the method QFD provides: – the relationship between the demands of consumers, product specifications, options of its functional subsystems and their components at all stages of development; – way of shifting consumer demands in a controlled set of features (most of this activity requires benchmarking) and requirements for manufacturing technology products.