Computational Problems of Electrical Engineering
Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12128
Науково-технічний журнал
Засновник і видавець Національний університет «Львівська політехніка». Виходить двічі на рік з 2011 року.
Browse
4 results
Search Results
Item Gamification in Educational Process: Realization(Видавництво Львівської політехніки, 2022-04-04) Шаховська, Наталія; Рейман, Кшиштоф; Бобало, Юрій; Бригілевич, Володимир; Shakhovska, Nataliya; Rejman, Krzysztof; Bobalo, Yuriy; Brygilevych, Volodymyr; Lviv Polytechnic National University; State Higher School of Technology and Economics in Jarosław, PolandУ статті наведено архітектуру системи освіти з гейміфікацією. Система оцінювання практичних знань і умінь через гру покликана оптимізувати навчально-виховний процес та прояви творчого мислення студентів. Основна мета цієї системи – спрощення та автоматизація процесу навчання в закладах освіти.Item Multilayer Neural Networks – As Determined Systems(Видавництво Львівської політехніки, 2021-10-10) Свелеба, Сергій; Бригілевич, Володимир; Катеринчук, Іван; Куньо, Іван; Карпа, Іван; Семотюк, Остап; Шмигельський, Ярослав; Свелеба, Назар; Sveleba, Sergii; Brygilevych, Volodymyr; Katerynchuk, Ivan; Kuno, Ivan; Karpa, Ivan; Semotiuk, Ostap; Shmyhelskyy, Yaroslav; Sveleba, Nazar; Ivan Franko National University of Lviv; State Higher School of Technology and Economics in Jarosław, Poland; Ukrainian Academy of PrintingВ роботі досліджено вплив швидкості навчання (η) на процес навчання багатошарової нейронної мережі. Програма для багатошарової нейронної мережі була написана мовою Python. Швидкість навчання розглядалась як постійна величина і визначалась її оптимальна величина, за якої досягалось найкраще навчання. Для аналізу впливу швидкості навчання використовувалась логістична функція, яка описує процес навчання. Показано, що функція похибки навчання характеризується біфуркаційними процесами, які призводять до хаотичного стану, якщо η>0,8. Визначено оптимальне значення швидкості навчання, яке визначає появу процесу подвоєння кількості локальних мінімумів, і становить для тришарової нейронної мережі з 4 нейронами в кожному шарі η=0,62. Збільшення кількості прихованих шарів (3÷30), та кількості нейронів у кожному шарі (4÷150) не приводить до кардинальної зміни діаграми логістичної функції (xn,η), а отже, і оптимальної величини швидкості навчання.Item Calculation of the Phase State of the [N(CH3)4]2CUCL4 Crystals(Видавництво Львівської політехніки, 2020-02-24) Свелеба, Сергій; Катеринчук, Іван; Куньо, Іван; Карпа, Іван; Семотюк, Остап; Бригілевич, Володимир; Sveleba, Sergii; Katerynchuk, Ivan; Kuno, Ivan; Karpa, Ivan; Semotiuk, Ostap; Brygilevych, Volodymyr; Ivan Franko National University of Lviv; Ukrainian Academy of Printing; The State Higher School of Technology and Economics in JarosławРозрахунок просторових змін станів амплітуди й фази параметрів було виконано у середовищі Python з використанням бібліотек Skipy та JiTCODE. У криталах [N(CH3)4]2CuCl4 існує неспіврозмірна фаза I1 при малих значеннях величини дальньої взаємодії (T<0.6) та неспіврозмірна фаза I2 при T≥1.0. Це та ж сама неспіврозмірна фаза, хоча поведінка амплітудних та фазових функцій у ней відрізняється за різних умов, згаданих вище. При T = 0.6 ÷ 1.0, спостерігається співіснування цих двох фаз, що проявляється у відсутності аномальних змін q під час переходу від синусоїдного режиму модуляції неспіврозмірної фази до режиму солітона.Item Encryption of Text Messages Using Multilayer Neural Networks(Видавництво Львівської політехніки, 2020-02-24) Бригілевич, Володимир; Пелипець, Назар; Рабик, Василь; Brygilevych, Volodymyr; Pelypets, Nazar; Rabyk, Vasyl; Ivan Franko National University of Lviv; The State Higher School of Technology and Economicsin in JarosławРозглянуто алгоритм шифрування/ дешифрування текстових повідомлень з використанням MLNN, який складається з трьох кроків: навчання нейронної мережі на основі навчаючих пар, сформованих з базового набору символів, що зустрічаються в тексті; шифрування повідомлення з використанням ваг прихованих шарів; його дешифрування з використанням ваг вихідного шару. Сформовано необхідні умови для успішного шифрування/ дешифрування цим алгоритмом, підкреслено його обмеження. Описано архітектуру і алгоритм навчання MLNN. Приведено експериментальні дослідження з допомогою програми NeuralNet: навчання MLNN методами BP(Sequential), BP(Batch), Rprop, QuickProp; приклад шифрування/ дешифрування текстового повідомлення.