Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Item
    Густинна модель Коломийської палеодолини по геотраверсу СГ-І (67) Надвірна – Отинія – Івано-Франківськ
    (Видавництво Львівської політехніки, 2017-06-13) Анікеєв, С. Г.; Максимчук, В. Ю.; Мельник, М. М.; Anikeyev, S.; Maksymchuk, V.; Melnyk, M.; Аникеев, С. Г.; Максимчук, В. Е.; Мельник, М. М.; Івано-Франківський національний технічний університет нафти і газу; Карпатське відділення Інституту геофізики ім. С. І. Субботіна НАН України; Ivano-Frankivsk national technical university of oil and gas; Carpathian Branch of S. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine; Ивано-Франковский национальный технический университет нефти и газа; Карпатское отделение Института геофизики им. С. И. Субботина НАН Украины
    Мета. Метою роботи є уточнення глибинної будови та перспектив нафтогазоносності Коломийсь- кої палеодолини за сейсмогеотраверсом СГ-І (67), який проходить уздовж лінії Надвірна – Коломия – Отинія – Івано-Франківськ. Сейсмогеотраверс СГ-І (67) частково захоплює Бориславо-Покутський покрив, перетинає Самбірську і Більче-Волицьку зони та заходить на Східноєвропейську платформу. Методика. Геолого-гравітаційне моделювання будови геологічного розрізу є методом кількісної інтерпретації аномального поля сили тяжіння в редукції Буге, який заснований на рішенні прямих та обернених задач гравірозвідки для складнопобудованих середовищ та призначений для побудови оптимальних геогустинних моделей геологічного розрізу. Оптимальна геогустинна модель – це модель, яка узгоджена зі спостереженим гравітаційним полем, не суперечить даним буріння, сейсморозвідки та враховує припущення (гіпотези) інтерпретатора. Передумовою достовірності вказаної методики є її геологічна підпорядкованість, зокрема врахування даних буріння, сейсморозвідки та геолого-тектонічних карт щодо блокової будови фундаменту, закономірностей формування осадового комплексу та зон перетину глибинних розломів, які є потенційними шляхами міграції флюїдів і якими формуються сприятливі умови виникнення структурних і літологічно або тектонічно екранованих пасток вуглеводнів. Крім того, геолого-гравітаційне моделювання використовують для перевірки, уточнення та деталізації структурно-густинних побудов, виконаних за будь-якими іншими способами. Результати. Модель сейсмогеологічного розрізу за геотраверсом СГ-І (67) доповнено густинами товщ, які визначено за даними буріння та за результатами моделювання за близько розташованими інтерпретаційними профілями. За результатами геолого-гравітаційного моделювання уточнено геометрію структур та блоків фундаменту. Також отримано деталізований розподіл густини гірських порід уздовж геотраверсу до глибини 20 км. У результаті моделювання у межах певних стратиграфічних комплексів виявлено зони ущільнення і розущільнення. Зони розущільнення у межах додатних структурних форм ідентифіковано як перспективні. Наукова новизна. Уточнено та деталізовано структурно-густинні побудови геологічного розрізу уздовж геотраверсу СГ-І (67), що дало змогу отримати нові дані про глибинну будову перерізу Коломийської палеодолини та про перспективи нафтогазоносності окремих її ділянок. Встановлено, що загальні риси покривів, пов’язані з глибинно-розломною тектонікою, відображаються у аномальному гравітаційному полі, що свідчить про достовірність прогнозу елементів глибинної тектонічної і структурної будови регіону за даними геолого-гравітаційного моделювання. Практична значущість. Отримані результати свідчать про високу інформативність геогустинного моделювання під час вивчення глибинної будови земної кори у складних сейсмогеологічних умовах Передкарпатського прогину. Виявлені зони розущільнення у палеозойських відкладах у Коломийській палеодолині є перспективними для постанови нафтопошукових робіт.
  • Thumbnail Image
    Item
    До прогнозування землетрусів у зонах напруження земної кори за вимірами станцій глобальних навігаційних систем
    (Видавництво Львівської політехніки, 2015) Крупський, Ю. З.; Бодлак, В. П.
    Метою досліджень є встановлення взаємозв’язку між силами напружень у земній корі і силами, які діють у навколоземному космічному просторі та землетрусами в надрах Землі, і на цій основі виявлення можливостей короткочасного прогнозу землетрусів. Методика. Нагромадження статистичної інформації по бальності землетрусів, їх локалізації і часу прояву, а також інформації про місцерозташування Місяця і Сонця (власні спостереження, дані з літератури та інтернет-сайтів). Аналіз отриманих даних та їх зіставлення. Результати. Напруження земної кори пов’язані переважно з рухом літосферних плит на суші в зонах їх колізії, субдукції, обдукції, а також пов’язані з “гарячими” точками та розломами і зонами пересічення цих розломів. Саме з цими напруженнями земної кори на території України пов’язані сейсмонебезпечні території на півдні України, в Закарпатті, у розломах зони Тейссейре-Торнквіста, та з “гарячими” точками і трансформними розломами в західній частині України. Розглянуто сили, які діють у космосі. Тут універсальним законом є закон всесвітнього тяжіння. Діють припливні сили Місяця, Сонця і планет, які знакоперемінні в часі, та відцентрова сила, зумовлена обертанням Землі навколо своєї осі, яка різна в різних частинах Землі. Ці сили зумовлюють знакоперемінні припливні деформації земної поверхні. За власними спостереженнями протягом 2002–2011 рр. і даними інтернет-ресурсів встановлено значну кореляцію між проявленням значних сил тяжіння (затемнення Сонця і Місяця, час нового місяця) і землетрусами в надрах Землі. Тепер, враховуючи теорію літосферних плит Землі, відомі основні райони проявлення землетрусів у зонах спредінгу, колізії, субдукції і в “гарячих” точках, а наявність станцій глобальних навігаційних супутникових систем (ГНСС) дає змогу з великою точністю вимірювати висоту припливних горбів. Ці роботи пропонується розпочати в Закарпатті з використанням ГНСС SULP. Наукова новизна. Встановлено ознаки кореляції і залежності між висотним положенням земної поверхні (інформація з ГНСС-станцій), розташуванням небесних світил і проявами землетрусів. Практична значущість. Запропонований глобальний моніторинг дасть можливість прогнозувати час і місце проявів землетрусів на основі встановлених залежностей між явищами в космічному просторі та напруженістю земної кори. Целью исследований является установление взаимосвязи между силами напряжений в земной коре и силами, которые действуют в околоземном космическом пространстве и землетрясениями в недрах Земли, и на этой основе выявления возможностей кратковременного прогноза землетрясений. Методика. Накопление статистической информации по бальности землетрясений, их локализации и времени проявления, а также информации о местоположении Луны и Солнца (собственные наблюдения, данные по литературе и интернет-сайтов). Анализ полученных данных и их сопоставление. Результаты. Напряжение земной коры связаны, в основном, с движением литосферных плит на суше в зонах их коллизии, субдукции, обдукции, а также связанные с “горячими” точками, разломами и зонами пересечения этих разломов. Именно с этими напряжениями земной коры на территории Украины связаны сейсмоопасные территории на юге Украины, в Закарпатье, в разломах зоны Тейссейре-Торнквиста, и с “горячими” точками, рансформными разломами в западной части Украины. Рассмотрены силы, действующие в космосе. Здесь универсальным законом является закон всемирного тяготения. Действуют приливные силы Луны, Солнца и планет, знакопеременных во времени, и центробежная сила, вызвана вращением Земли вокруг своей оси, различна в разных частях Земли. Эти силы вызывают знакопеременные приточные деформации земной поверхности. По собственным наблюдениям в течение 2002–2011 гг. и данных интернет ресурсов установлено значительную корреляцию между проявлением весомых сил притяжения (затмение Солнца и Луны, время новолуния) и землетрясениями в недрах Земли. Теперь, исходя из теории литосферных плит Земли. известны основные районы проявления землетрясений в зонах спрединга, коллизии, субдукции и в “горячих” точках, а наличие станций глобальных навигационных спутниковых систем (ГНСС) позволяет с большой точностью измерять высоту приточных холмов. Эти работы предлагается начать в Закарпатье с использованием ГНСС SULP. Научная новизна. Установлены признаки корреляции и зависимости между высотным положением земной поверхности (информация из ГНСС станций), расположением небесных светил и проявлениями землетрясений. Практическая значимость. Предложенный глобальный мониторинг позволит прогнозировать время и место проявлений землетрясений на основе установленных зависимостей между явлениями в космическом пространстве и напряженностью земной коры. The research objective is to determine relationship between crust tension forces and forces that operate in near-Earth space and earthquakes in entrails of the Earth, based on that was identifying opportunities for short-term earthquake prediction. Methods. Accumulation of earthquakes scores statistical information, their location and display time, as well as moon and sun (own observations, data from literature and Internet-resources) location information. Analysis of obtained data its comparison. Results. Crustal tensions associated mainly with movement of lithospheric plates on ground in collision zones, subduction, obduction as well as related “hot” points fractures and zones of their intersections. Exactly with crustal tension in Ukraine related seismic areas in the Transcarpathian south Ukraine fracture zones Teysseyre-Tornquist, and with “hot” points and fractures in western Ukraine. We consider forces acting in space. The universal law here is law of gravity. There acting tidal forces of moon, sun and planets variables in time, and the centrifugal force caused by earth's rotation on its axis, which varies in different parts of Earth. These forces cause variables tidal deformation of earth's surface. According to own observations during the 2002-2011 and online resources defining a close correlation between significant display of gravitational forces (solar and moon eclipse, a new moon time) and earthquakes in the bowels of Earth. Now, based on theory of Earth lithospheric plates know main areas of earthquake zones spreading display of collision, subduction and “hot” spots stations and the presence of global navigation satellite systems (GNSS) can very accurately measure the height of tidal hills. This work are proponed to begin in Transcarpathian using GNSS SULP. Scientific innovation. Defining signs of correlations and dependencies between high-rise provisions Earth surface (information from GNSS stations), location of celestial bodies and displays earthquakes. The practical significance. The proposed global monitoring will predict time and location of earthquakes displays based on defined relationships between phenomena in space and the earth's crust tensions.
  • Thumbnail Image
    Item
    Апріорна просторова геолого-геофізична модель Леськівсько-Коротицької структурно-тектонічної підзони Північного борту ДДЗ за даними комплексних геофізичних та петрофізичних досліджень
    (Видавництво Львівської політехніки, 2013) Петровський, О. П.; Федченко, Т. О.; Рига, І. В.; Суятінов, В. Н.
    Представлені результати одного з етапів дослідження глибинної будови Леськівсько-Коротицької структурно-тектонічної підзони Північного борту ДДЗ – створення просторової інтегральної геолого-геофізичної моделі на основі всебічного аналізу наявних геолого-геофізичних даних. При визначенні кількісних параметрів апріорної геолого-геофізичної моделі використані структурні побудови за даними 3D сейсморозвідувальних робіт МСГТ, результати інтерпретації даних геофізичних досліджень у свердловинах, результати петрофізичних досліджень зразків гірських порід, отриманих в процесі буріння пошукових та розвідувальних свердловин. Представлены результаты одного из этапов исследования глубинного строения Лесковско-Коротицкой структурно-тектонической подзоны Северного борта ДДВ – создание пространственной интегральной геолого-геофизической модели на основе всестороннего анализа имеющихся геолого-геофизических данных. При определении количественных параметров априорной геолого-геофизической модели использованы структурные построения по данным 3D сейсморазведочных работ МСГТ, результаты интерпретации данных геофизических исследований в скважинах, результаты петрофизических исследований образцов горных пород, полученных в процессе бурения поисковых и разведочных скважин. One phase study results of the deep structure of Leskivska-Korotetska structural-tectonic subzone of the North DDD edge – the creating of spatial integrated geological and geophysical model are represented based on a detailed analysis of the available geological and geophysical data. In determining the quantitative parameters of primary geological and geophysical model, the structural imaging according to 3D seismic data from method of common deep point, the results of well logging interpretation, the results of petrophysical studies of rock samples obtained during drilling exploration and production wells were used.
  • Thumbnail Image
    Item
    Прогнозування нафтогазоперспективних ділянок у межах південно-західної частини Срібненської депресії Дніпровсько-Донецької западини за даними гравірозвідки
    (Видавництво Львівської політехніки, 2015) Анікеєв, С. Г.; Шуровський, О. Д.
    Мета. Метою роботи є інтерпретація гравіметричних матеріалів з використанням даних сейсморозвідки для виявлення зон розущільнення у товщах візейських карбонатів Срібненської депресії Дніпровсько-Донецької западини. Ці зони ймовірно пов’язані з розвитком перспективних на поклади вуглеводнів масивів органогенних вапняків. Методика. Методика досліджень полягає в інтерпретації локальних аномалій поля сили тяжіння масштабу 1:50000, матеріалів детального високоточного гравітаційного знімання та у моделюванні розподілу густин у межах товщ візейських карбонатів по профілях і ділянках, де проведено сейсмічну розвідку. Гравітаційне моделювання виконано за допомогою авторських комп’ютерних технологій рішення 2D і 3D обернених задач гравірозвідки. Результати. За фондовими гравіметричними матеріалами побудовано карти локальних аномалій поля сили тяжіння. Виявлено низку від’ємних локальних аномалій, пов’язаних з пастками вуглеводнів. За матеріалами профільних високоточних гравіметричних спостережень по сейсмічних профілях виконано моделювання розподілу густин у межах карбонатної “плити”. За результатами комп’ютерної інтерпретації детальних площинних гравіметричних спостережень масштабу 1:10000, які проведено на Гнідинсько-Білоусівській площі, побудовано тривимірну модель розподілу густини у межах візейських карбонатів. За результатами 2D і 3D гравітаційного моделювання виявлено зони розущільнених карбонатів, які тяжіють до піднятих ділянок поверхні карбонатної “плити” і до ділянок підвищеної товщини карбонатів, у межах яких, за даними сейсморозвідки, прогнозовано розвиток біогермних споруд. У тривимірній детальній густинній моделі, крім зон розущільнення ізометричної або складної форми, виявлено кільцеві аномалії розущільнення, що оточують ущільнені карбонати. Результати моделювання використано для дослідження перспектив Гнідинсько-Білоусівської площі ДДЗ на нафтогазоносність. Наукова новизна. Показано, що у складних геолого-геофізичних умовах засто¬сування високоточної гравірозвідки і комп’ютерних технологій інтерпретації її матеріалів є недорогим і геологічно ефективним інструментом вирішення завдань детального розчленування за густиною об’єктів незначної потужності в об’ємі і по розрізу, навіть, на великих глибинах (більше ніж 4000 м). Практична значущість. Встановлено, що комп’ютерна переінтерпретація фондових кондиційних гравіметричних карт масштабу 1:50000 значно підвищує їх інформативність та може бути основою для виявлення нових ділянок, перспективних на пошуки і розвідку родовищ нафти і газу. Детальне тривимірне гравітаційне моделювання дало змогу окреслити перспективні густинні аномалії: локальні зони розущільнення та зони ущільнення, що обрамлені аномаліями розущільнення. Цель. Целью работы является интерпретация гравиметрических материалов с использованием данных сейсморазведки для выявления зон разуплотнения в толщи визейских карбонатов Сребненской депрессии Днепровско-Донецкой впадины. Эти зоны могут быть связаны с развитием перспективных на месторождения углеводородов массивов органогенных известняков. Методика. Методика исследований заключается в интерпретации локальных аномалий поля силы тяжести масштаба 1:50000, материалов детальной высокоточной гравитационной съемки и моделировании распределения плотностей в пределах толщ визейских карбонатов по профилям и участкам, где проведена сейсмическая разведка. Гравитационное моделирование выполнено с помощью авторских компьютерных технологий решения 2D и 3D обратных задач гравиразведки. Результаты. По фондовым гравиметрическим материалам построены карты локальных аномалий поля силы тяжести. Выявлен ряд отрицательных локальных аномалий, связанных с залежами углеводородов. По материалам профильных высокоточных гравиметрических наблюдений по сейсмическим профилям выполнено моделирование распределения плотностей в пределах карбонатной “плиты”. По результатам компьютерной интерпретации детальных площадных гравиметрических наблюдений масштаба 1:10000, проведенных на Гнидинско-Белоусовской площади, построена трехмерная модель распределения плотностей в пределах визейских карбонатов. По результатам 2D и 3D гравитационного моделирования выявлены зоны разуплотнения карбонатов, которые тяготеют к приподнятым участкам поверхности карбонатной “плиты” и к участкам повышенной толщины карбонатов, в пределах которых по данным сейсморазведки прогнозировались биогермные постройки. В трехмерной детальной штотностной модели кроме зон разуплотнения изометрической или сложной форм выявлены кольцевые аномалии разуплотнения, которые обрамляют уплотненные карбонаты. Результаты моделирования использованы для исследования перспектив Гнидинско-Белоусовской площади ДДВ на нефтегазоносность. Научная новизна. Доказано, что в сложных геолого-геофизических условиях применение высокоточной гравиразведки и компьютерных технологий интерпретации ее материалов является недорогим и геологически эффективным инструментом решения задачи детального расчленения по плотности объектов незначительной мощности в объеме и в разрезе, даже, на больших глубинах (более 4000 м). Практичекая значимость. Практика свидетельствует, что компьютерная переинтерпретация фондовых кондиционных гравиметрических карт масштаба 1:50000 значительно повышает их информативность и может быть основой для выявления новых участков, перспективных на поиски и разведку месторождений нефти и газа. По данным детального трехмерного гравитационного моделирования оконтурены перспективные плотностные аномалии: локальные зоны разуплотнения и зоны уплотнения, которые обрамлены аномалиями разуплотнения. Purpose. The purpose of the article is the interpretation of the gravity data with using the seismic data for revealing of zones of decompression with high porosity in the Visean carbonate of the Srebnenska depression (within Dnepro-Donetsk Basin). These zones may be associated with the development of organic Limestone massives, which are promising for hydrocarbon deposits. Methodology. The studying methods include a interpretation of local anomalies of the Gravity field of Scale 1:50 000, data of the detailed and precise gravity survey and modeling of the distribution of densities within the Visean carbonate thickness on zones and along profiles, where a seismic research has been done. The gravity modelling has been done with the help of some copyrights computer technology in 2D and 3D direct and inverse problems of gravity. Results. Local anomaly maps of the gravity field have been designed with the help of stock gravimetric materials. Identified a number of negative local anomalies are associated with the hydrocarbon deposits. According to the materials of specialized precision gravity observations from seismic profiles modeled density distribution within the carbonate "plate". According to the results of computer interpretation of detailed gravimetric observations of scale of 1:10,000, carried out in the region of Gnidynsko-Belousivska square, built a three-dimensional model of the density distribution within the Visean carbonate. According to the results of 2D and 3D gravity modeling there were zones of carbonate decompression revealed, which tend to the elevated surface areas of the carbonate "plate" and to the areas with increased carbonate thickness within which bioherm constructions were predicted by seismic data to be situated. In this detailed three-dimensional density model in addition to the decompression of isometric zones or complex forms there are also circle anomalies of decompression, which cover sealed carbonates, has been revealed. The simulation results are used to study the prospects Gnidynsko-Belousivska Square of DDB for petroleum potential. Originality. It’s proved that in complex geological-geophysical conditions the use of high-precized gravity research and computer technology of interpretation of its materials is actually inexpensive and geologically effective instrument of solving of a detailed discomposition task for low power density of objects in the volume and in the section, even in the depths more than 4000 m. Practical significance. On practice its shown that the computer re-interpretation of its conditioning stock gravimetric maps of scale 1:50 000 significantly increases its informative value and it can be the basis for the identifying of new sites, that are promising for the prospecting and exploration of oil and gas. According to of three-dimensional detailed model has allowed outlining prospective density anomalies: local zones and decompression zones, which are framed by the anomalies of decompression.
  • Thumbnail Image
    Item
    Про анізотропні трансформації потенціальних полів
    (Видавництво Львівської політехніки, 2013) Анікеєв, С. Г.
    Приведені результати дослідження геологічної інформативності анізотропних трансформацій потенціальних полів. На тестах та на спостереженому полі сили тяжіння Українських Карпат показано ефективність анізотропних трансформацій щодо виділення локальних аномалій, зумовлених глибинною розломною тектонікою та лінійними ускладненнями в осадовому покрові. Представлены результаты исследований геологической информативности анизотропных трансформаций потенциальных полей. На тестах и на наблюденном поле силы тяжести Украинских Карпат показана эффективность анизотропных трансформаций по выделению локальных аномалий, обусловленных глубинной разломной тектоникой и линейными дислокациями в осадочном чехле. The geological informative study results of the potential field anisotropic transformations are presented. The effectiveness of anisotropic transformations for allocation of local anomalies which are caused by deep fault tectonic and linear dislocations in the sedimentary cover are demonstrated on the test gravity field as well as measured in Ukrainian Carpathians one.
  • Thumbnail Image
    Item
    Визначення геоїда, поля сили тяжіння та топографії Чорного моря за даними супутникової альтиметрії
    (Видавництво Львівської політехніки, 2015) Марченко, О. М.; Лопушанський, О. М.
    Мета роботи - розробити методику розв’язування основного завдання геодезії на акваторіях шляхом використання даних супутникової альтиметрії, а саме - визначити стаціонарну топографію Світового океану відносно геоїда. Метод супутникової альтиметрії як порівняно новий підхід високоточного супутникового знімання забезпечує різні галузі наук про Землю найповнішою інформацією про стан океану та його зміни в часі, яку використовують, зокрема в наукових дослідженнях геодезії, океанографії та кліматології. Моделі динамічної топографії океану основані головно на даних альтиметрії. Методика. Методика грунтується на інверсії висот поверхні моря або визначення залишкових SAg аномалій сили тяжіння за залишковими висотами геоїда, 8С, виконується також у межах процедури видалення-відновлення та засновується на оберненій формулі Молоденського і фундаментальному співвідношенні фізичної геодезії, записаному через висоти геоїда. З появою супутникових технологій поверхня Світового океану картографується з рівнем точності в 1-5 см за допомогою дуже простого методу, який базується на альтиметричних вимірах різних супутникових місій. Виміри відстані від бортового супутникового альтиметра до океанічної поверхні та визначення його положення в просторі на основі SLR, GNSS, або DORIS-технологій відкриває можливість обчислення висот SSH (Sea Surface Heights) поверхні океану над прийнятим референц-еліпсоїдом. За попереднього опрацювання даних SSH за рахунок введення поправок за вплив середовища та різноманітних геофізичних факторів до вихідної інформації, які залежать від часу, в результаті чого обчислюються скореговані висоти рівня океану CorSSH. Серед останніх особливо слід виділити найвпливовіші поправки, які пов’язані з припливним ефектом Сонця і Місяця. Ці ефекти поділено на дві частини: океанічний приплив і приплив твердої Землі. Океанічний приплив являє собою відхилення миттєвої океанічної поверхні відносно її середнього значення. Середньою поверхнею може бути, наприклад, поверхня, яка визначена за даними спостережень мареографів. Поправка за припливи твердої Землі пов’язана головно з класичними деформаціями еластичної Землі і вміщує прямий та непрямий ефекти. Незбурена поверхня океану названа геоїдом, або основною рівневою поверхнею, і є однією з найважливіших референцних поверхонь у науках про Землю. При цьому до 1983 р. в обчисленні геоїда не брали до уваги будь-які ефекти, пов’язані з припливами. У 1983 р. згідно з резолюцією IAG поверхню геоїда стали будувати з врахуванням непрямого припливу твердої Землі. Наукова новизна і практична значущість. Амплітуда висот геоїда, побудованого за даними CorSSH, відносно загальноземного еліпсоїда GRS80, не перевищує значень ±100 м. Інша ситуація спостерігається в океанографії, де найціннішими даними стають відхилення рівня океану від геоїда, які отримали назву висот топографії моря SST (Sea Surface Topography) з амплітудою ±2 м. Результати. За останні два роки основні моделі гравітаційного поля Землі побудовані за даними супутника GOCE, як правило, до 250 степеня\порядку. На основі цих моделей GOCE, застовуючи процедуру видалення-відновлення, в роботі розглянуто та вирішено задачі побудови висот SSH за фільтрованими, поля висот аномалій сили тяжіння, побудова гравіметричного квазігеоїда та обчислення стаціонарної моделі топографії моря. Цель работы заключается в разработке методики решения основной задачи геодезии на акваториях путем использования данных спутниковой альтиметрии, а именно - определение стационарной топографии Мирового океана относительно геоида.Метод спутниковой альтиметрии как относительно новый подход высокоточного спутниковой съемки, который обеспечивает различные области наук о Земле наиболее полной информации о состоянии океана и его изменения во времени, которая используется, в частности, в научных исследованиях геодезии, океанографии и климатологии. Модели динамической топографии океана базируются главным образом на данных альтиметрии. Методика. Методика базируется на инверсии высот поверхности моря или определения окончательных аномалий силы тяжести за окончательными высотами геоида выполняется также в рамках процедуры удаления-обновления и основывается на обратной формуле Молоденского и фундаментальном соотношению физической геодезии, записанном через высоты геоида. С появлением спутниковых технологий поверхность Мирового океана картографируемого с уровнем точности в 1-5 см с помощью очень простого метода, который базируется на альтиметрических измерениях различных спутниковых миссий. Измерения расстояния от бортового спутникового альтиметра к океанической поверхности и определения его положения в пространстве на основе SLR, GNSS, или DORIS технологий открывает возможность вычисления высот SSH (Sea Surface Heights) поверхности океана над принятым референи-эллипсоидом. При предварительной обработке данных SSH за счет введения поправок за влияние среды и различных геофизических факторов к исходной информации, которые зависят от времени, в результате чего вычисляются скорректированы высоты уровня океана CorSSH. Среди последних особо следует выделить наиболее влиятельные поправки, связанные с приточным эффектом Солнца и Луны. Эти эффекты делятся на две части: океанический прилив и приток твердой Земли. Океанический прилив представляет собой отклонение мгновенной океанической поверхности относительно ее среднего значения. Средней поверхностью может быть, например, поверхность, которая определена по данным наблюдений мареографа. Поправка за приливы твердой Земли связана главным образом с классическими деформациями эластичной Земли и включает прямой и косвенный эффекты. Невозмущенная поверхность океана была названа геоидом или основной уровневой поверхностью и является одной из наиболее важных референцных поверхностей в науках о Земле. При этом к 1983 при исчислении геоида не принимали во внимание любые эффекты, связанные с приливами. В 1983 согласно резолюции IAG поверхность геоида стали строить с учетом косвенного притока твердой Земли. Практическая значимость. Амплитуда высот геоида, построенного по данным CorSSH относительно общеземного эллипсоида GRS80, не превышает значений ±100 м. Другая ситуация наблюдается в океанографии, где наиболее ценными данными становятся отклонения уровня океана от геоида, которые получили название высот топографии моря SST (Sea Surface Topography) с амплитудой ±2 м. Результаты. За последние два года основные модели гравитационного поля Земли построены по данным спутника GOCE, как правило до 250 степень \ порядке. На основе этихмоделей GOCE, применяя процедуру удаления-восстановления, в работе рассмотрены и решены задачи построения высот SSH по фильтруемым, поля высот аномалий силы тяжести, построение гравиметрического квазигеоида и вычисления стационарной модели топографии моря. The method of satellite altimetry as a relatively new approach to precise satellite surveying, which provides the different Earth sciences by a most complete information about the state of the ocean and its changes over time. In particular this method uses in scientific researches of geodesy, oceanography and climatology. The models of ocean dynamic topography are based on the altimetry data also. Methodology. With the modern of satellite technology the oceans surface is mapped with a very simple approach, which are based on altimetric satellite measurements of different missions with the level of accuracy 1-5 cm. Distance measuring from altimetry satellite to the ocean surface and determining its position in the space based on SLR, GNSS, or DORIS technologies open the possibility of calculating the Sea Surface Heights passed over the ocean surface reference ellipsoid. Heights of the ocean CorSSH are estimated based on the previous SSH data processing. Which are govered by different corrections for the environment and the impact of various geophysical factors to initial dependent time information. These corrections the most impact is caused by the tidal effect of the Sun and the Moon. Tidel effects consist to from two parts: the ocean tide and the tide of the solid Earth. The ocean tide is an instant deviation of the ocean surface relative to its average value. The middle surface, for example, can be the surface which is defined according to observations of a tide gauge. Undisturbed ocean surface was named the geoid or primary level surface and is one of the most important referential surfaces in geosciences. In 1983 according to the resolution of IAG the geoid surface was constract taking into account indirect tides of the solid Earth. The practical significance. The amplitudes of the geoid heights have obtain using to CorSSH as with respect to GRS80 system are not more than ±100 m. Another situation occurs in the oceanography, where the most valuable data are ocean surface deviations from geoid with the amplitude of ±2 m this data are called Sea Surface Topography (SST). Results. Thus, this paper focuses on the problem of constraction filtered heights SSH, field heights gravity anomalies, construction and calculation gravimetric quasigeoid, calculation of the stationary model of the sea topography (SST). In all cases the procedure of remove/restore was edopted based on the atellite-only GOCE gravitational field up to degree \ order 250.
  • Thumbnail Image
    Item
    Аналіз впливу еліпсоїдальності фігури Землі на її внутрішню структуру на прикладі моделі PREM
    (Видавництво Львівської політехніки, 2011) Фис, М. М.; Нікулішин, В. І.
    Для існуючих одновимірних розподілів мас для еліпсоїдальної планети не розроблені методи обчислення її гравітаційного потенціалу V та гравітаційної енергії Е, тому є актуальним отримання формул для одночасного знаходження густини розподілу мас, потенціалу та енергії для еліпсоїдального тіла. Для существующих одномерных распределений масс для эллипсоидальной планеты не разработаны методы вычисления ее гравитационного потенциала V и гравитационной энергии Е, в связи с чем является актуальным получение формул для одновременного вычисления плотности распределения масс, потенциала и энергии для эллипсоидального тела. The methods of calculation of gravity potential V and potential energy E for ellipsoidal planet for existing onedimensional mass distribution were not worked out. That’s why now the derivation of formulas for simultaneous calculation of density mass’s distribution and potential and energy for the ellipsoidal body is actual.