Recurrence and structuring of sequences of transformations 3n + 1 as arguments for confirmation of the collatz hypothesis
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Lviv Politechnic Publishing House
Abstract
Показано, що необмеженість підпослідовності непарних чисел не контраргумент порушення гіпотези Коллатца, а універсальна характеристика перетворень натуральних чисел за алгоритмом 3n+1. Встановлений рекурентний зв’язок між параметрами послідовності Коллатца перетворень довільної пари натуральних чисел n і 2n .
It is shown that infinites of the subsequence of odd numbers is not a counterargument of the violation of the Collatz hypothesis, but a universal characteristic of transformations of natural numbers by the 3n + 1 algorithm. A recurrent relationship is established between the parameters of the sequence of Collatz transformations of an arbitrary pair of natural numbers n and 2n.
It is shown that infinites of the subsequence of odd numbers is not a counterargument of the violation of the Collatz hypothesis, but a universal characteristic of transformations of natural numbers by the 3n + 1 algorithm. A recurrent relationship is established between the parameters of the sequence of Collatz transformations of an arbitrary pair of natural numbers n and 2n.
Description
Citation
Kosobutskyy P. Recurrence and structuring of sequences of transformations 3n + 1 as arguments for confirmation of the collatz hypothesis / Petro Kosobutskyy, Volodymyr Karkulovskyy // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 28–33.