Study of surface microstrains by electron speckle-interferometrymethods
Date
2017-01-01
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Lviv Politechnic Publishing House
Abstract
Despite the fact that speckle interferometry methods began to develop more than
30 years ago, they still remain a rather exotic laboratory tool that has not received wide practical
application in tensometry measurements and flaw detection. There are two reasons. The first one is
the problem to interpret the interferograms by the right way. The second one is the extremely low
measurement speed, which makes it impossible to use these methods for study of fast processes.
In this paper we propose the advanced algorithm for electronic speckle interferometry (ESPI)
method, which uses the arctangent of the intensity ratio of the speckles of two quarter-phase shifted
specklograms, from that the position of the surface points with a known time step is calculated.
Summing the increments of displacements after each measurement, we obtain a picture of the
distribution of the strains of the surface of the object under study in the 3-dimensional representation
customary for the experimenter. This approach effectively solves the first mentioned problem.
While considering the second problem, it is shown that the measurement speed can be raised
to the speed of the camera used (up to 1000 measurements per second in the flesh) if at the
calibration stage a pair of speckles on the spectrograph is determined, whose phase is shifted by a
quarter, and then take the arctangent of their ratio Intensities.
In this case, there is no need to displace the reference beam, and the calculation of the
displacement of the surface is made entirely from one specklogram only. Despite the fact that in this case
the resolving power of the method bit decreases, the measurement speed increases substantially and
there is no effect of the dynamic characteristics of the elements of the reference arm of the speckle
interferometer on the measurement result, which is especially important in high-speed photography.
The suggested algorithm for ESPI provides the extension of the diapason of recorded
microstrains to hundreds of microns as well as on-line observation in 3D mode. New perspectives of
nanoscale technologies could be opened on this way.
Description
Keywords
speckle interferometry, tensometry measurements, space distribution of strains
Citation
Zhukovskiy V. Study of surface microstrains by electron speckle-interferometrymethods / Vadym Zhukovskiy, Olexsandr Gokhman, Marianna Kondrya // Ukrainian Journal Of Mechanical Engineering Andmaterials Science. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 3. — No 1. — P. 37–42.