Метрологічна надійність термоелектричного наносенсора квантового еталона температури
Date
2018-02-26
Journal Title
Journal ISSN
Volume Title
Publisher
Видавництво Львівської політехніки
Abstract
Можливість упровадження еталона квантової температури потребує зосередження уваги на
перетворювальному елементі I–T як унікальному електронному пристрою, що підлягає істотним навантаженням під час
роботи. Враховуючи його нанорозмірність, оскільки елемент виготовляють на основі CNTFET конструкції,
трансформуючи її у нанорозмірний термоелектричний перетворювач (стік та витік) із надпровідним затвором, ми
передбачаємо особливо жорсткі вимоги до цього елемента. Вирішити цю проблему можна із залученням інженерії
еластичних напружень, яку раніше успішно застосовували для масштабування процесів виготовлення багатозатворних
комплементарних польових транзисторів.
While studying the physical foundations of the temperature standard, we obtained a quantum unit of temperature as the value of the temperature jump when one electron-phonon scattering per unit time. We expressed it in terms of the ratio of fundamental physical constants h/kB; it is equal to 3,199 493 42 · 10–11 K with a relative standard uncertainty of 59,2 · 10–8. The investigated quantum standard is recommended for use as an "intrinsic standard", which does not require continuously repeated measurements (to check its accuracy) in relation to the current unit of temperature. The possibility of the introduction of standard quantum temperature requires paying significant attention to the I (current) – T (temperature) converting element as unique electronic device that is subject to significant stress during operation. Considering its nanosized dimensions, since this element is made on the basis of CNTFET by transforming it into a nanosized thermocouple (source and drain) with a superconducting CNT gate as the thermocouple junction, we foresee particularly stringent requirements for this element. The solution to this problem can be accomplished with help of elastic stress engineering, which has previously been successfully applied to scale the manufacturing processes of multigated complementary FETs. The technology of the I – T converting element of the quantum temperature standard is complicated and provided by the Cu coating (or another similar metallization) of the nanotube free ends. The negative influence of defects in the production of I – T elements, in particular electrodes of the thermoelectric nanosensor, on the quality of subsequent operations can be significant. As result, the metrological characteristics of nanosensor (drift of thermo-EMF, impact of deformation, number of operation cycles etc.) become enough unpredictable. On the basis of nanothermodynamics and elastic stress engineering we have studied the number of impact factors on thermoelectric nanosensor performance, trying to provide the reliable operation of the I – T converting element of the quantum temperature standard. At the same time, there were fulfilled a number of studies of metals, alloys, and metal glasses in various temperature-mechanical and thermodynamic modes
While studying the physical foundations of the temperature standard, we obtained a quantum unit of temperature as the value of the temperature jump when one electron-phonon scattering per unit time. We expressed it in terms of the ratio of fundamental physical constants h/kB; it is equal to 3,199 493 42 · 10–11 K with a relative standard uncertainty of 59,2 · 10–8. The investigated quantum standard is recommended for use as an "intrinsic standard", which does not require continuously repeated measurements (to check its accuracy) in relation to the current unit of temperature. The possibility of the introduction of standard quantum temperature requires paying significant attention to the I (current) – T (temperature) converting element as unique electronic device that is subject to significant stress during operation. Considering its nanosized dimensions, since this element is made on the basis of CNTFET by transforming it into a nanosized thermocouple (source and drain) with a superconducting CNT gate as the thermocouple junction, we foresee particularly stringent requirements for this element. The solution to this problem can be accomplished with help of elastic stress engineering, which has previously been successfully applied to scale the manufacturing processes of multigated complementary FETs. The technology of the I – T converting element of the quantum temperature standard is complicated and provided by the Cu coating (or another similar metallization) of the nanotube free ends. The negative influence of defects in the production of I – T elements, in particular electrodes of the thermoelectric nanosensor, on the quality of subsequent operations can be significant. As result, the metrological characteristics of nanosensor (drift of thermo-EMF, impact of deformation, number of operation cycles etc.) become enough unpredictable. On the basis of nanothermodynamics and elastic stress engineering we have studied the number of impact factors on thermoelectric nanosensor performance, trying to provide the reliable operation of the I – T converting element of the quantum temperature standard. At the same time, there were fulfilled a number of studies of metals, alloys, and metal glasses in various temperature-mechanical and thermodynamic modes
Description
Keywords
температура, еталон фізичної величини, квант температури, термоелектричний наносенсор, конвертувальний елемент, temperature, standard of physical value, quantum of temperature, thermoelectric nanosensor, converting element
Citation
Метрологічна надійність термоелектричного наносенсора квантового еталона температури / Б. І. Стадник, С. П. Яцишин, Т. Фрьоліх, М. М. Микийчук, Я. Т. Луцик, П. І. Скоропад // Вимірювальна техніка та метрологія : міжвідомчий науково-технічний збірник. — Львів : Видавництво Львівської політехніки, 2018. — Том 79. — № 2. — С. 20–28.