Про деякі особливості прямого і оберненого перетворення випадкових величин

Date

2019-02-28

Journal Title

Journal ISSN

Volume Title

Publisher

Видавництво Львівської політехніки
Lviv Politechnic Publishing House

Abstract

Завжди актуальні задачі отримання і опрацювання експериментальних результатів в складних системах. Випадкові завади, похибки вимірювань, недосконалість та обмеженість математичних моделей та алгоритмів обробки даних здатні змінювати вигляд розподілу і призводити до некоректності використання алгоритмів, наприклад, як це має місце з фільтрації по Калману в системах керування. Складні методи ідентифікації законів розподілу потребують дослідження квантових систем, природніх явищ, екологічних, біологічних, тощо процесів, для яких характерна наявність сингулярностей і багатомодовості розподілів. Тому часто для моделювання ймовірнісних розподілів експериментальних даних рекомендують застосовувати не окремі закони розподілів, а узагальнений розподіл як єдину статистичну систему, яка відомі розподіли включає в себе як окремі часткові випадки. Так узагальнений гамма-розподіл включає в себе розподіли Релея, Максвелла, Вейбулла, Леві, хі-квадрат, які широко використовують в прикладних задачах, зв’язаних із статистичними методами досліджень фізичних процесів, дистанційним зондуванням, в теорії надійності, для опису дисперсійного складу частинок дроблення та розрахунку ефективності розділення фаз у газорідинних потоках.
Always actual tasks of obtaining and processing experimental results in complex systems. Random obstacles (errors), measurement errors, imperfections and limitations of mathematical models and data processing algorithms can change the appearance of the distribution and lead to incorrect use of algorithms, for example, as is the case with Kalman filtering in control systems. Complex methods for the identification of distribution laws require the study of quantum systems, natural phenomena, environmental, biological, etc. processes, which are characterized by the presence of singularities and multimodality of distributions. Therefore, it is often not recommended to apply separate distribution laws to simulate probabilistic experimental data distributions, but a generalized distribution as a single statistical system, which known distributions include as individual partial cases. Thus, the generalized gamma distribution includes Rayleigh, Maxwell, Weibull, Levy, Hi-Square distributions, which are widely used in applied problems associated with statistical methods of physical processes research, remote sensing, in the theory of reliability, for describing the dispersion composition of particles fragmentation and calculation of the efficiency of phase separation in gas-liquid streams.

Description

Keywords

Citation

Кособуцький П. С. Про деякі особливості прямого і оберненого перетворення випадкових величин / П. С. Кособуцький, Р. А. Ференс // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 1. — P. 50–60.

Endorsement

Review

Supplemented By

Referenced By