Radial Component of Vortex Electric Field Force
dc.citation.epage | 35 | |
dc.citation.issue | 1 | |
dc.citation.spage | 32 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Чабан, Василь | |
dc.contributor.author | Tchaban, Vasyl | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-04-25T10:51:53Z | |
dc.date.available | 2023-04-25T10:51:53Z | |
dc.date.created | 2021-05-05 | |
dc.date.issued | 2021-05-05 | |
dc.description.abstract | У статті одержані диференціальні рівняння руху електрично наладованих тіл у нерівномірному вихровому електричному полі у всіх можливих діапазонах швидкостей. У силовій взаємодії на додачу до двох компонентів – кулонівської і лоренцової сил – задіяно третій компонент досі невідомої сили. Цей компонент, як виявилося, відіграє вирішальну роль у динаміці руху. Рівняння записано у звичному 3D евклідовому просторі і фізичному часі. При цьому враховано скінченну швидкість поширення електричного поля і закон збереження електричного ладунку. На цій підставі просимульовано траєкторію руху електрона в нерівномірному електричному полі, зґенерованому позитивно наладованим сферичним тілом. Дано фізичну інтерпретацію одержаним математичним результатам, поданим у векторній і координатній формах. Приклади симуляції додано. | |
dc.description.abstract | The differential equations of motion of electrically charged bodies in an uneven vortex electric field at all possible range of velocities are obtained in the article. In the force interaction, in addition to the two components – the Coulomb and Lorentz forces – the third component of a hitherto unknown force is involved. This component turned out to play a crucial role in the dynamics of movement. The equations are written in the usual 3D Euclidean space and physical time. This takes into account the finite speed of electric field propagation and the law of electric charge conservation. On this basis, the trajectory of the electron in an uneven electric field generated by a positively charged spherical body is simulated. The equations of motion are written in vector and coordinate forms. A physical interpretation of the obtained mathematical results is given. Examples of simulations are given. | |
dc.format.extent | 32-35 | |
dc.format.pages | 4 | |
dc.identifier.citation | Tchaban V. Radial Component of Vortex Electric Field Force / Vasyl Tchaban // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 11. — No 1. — P. 32–35. | |
dc.identifier.citationen | Tchaban V. (2021) Radial Component of Vortex Electric Field Force. Computational Problems of Electrical Engineering (Lviv), vol. 11, no 1, pp. 32-35. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/58457 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Computational Problems of Electrical Engineering, 1 (11), 2021 | |
dc.relation.references | [1] V. Tchaban, Lorenz Force of Vortex Electric Field. – Computational Problems of Electrical Engineering, vol. 11, no. 2, pp. 33–36, 2020. | |
dc.relation.references | [2] K. S. Demirchan Movable charge in four-dimen– sional space according to Maxwell and Einstein. – М.: Komtekh-Print, 2008. (Russian) | |
dc.relation.references | [3] G. Ivchenkov, “Force interaction of moving charges with each other and with the fields “Relativistic” Coulomb's law”. http://new-idea. kulichki.net/pubfiles/151026192403.pdf. (Russian). | |
dc.relation.references | [4] A. Poincare, On Science (translated from Frans.), Moscow: Science, 1983. (Russian). | |
dc.relation.references | [5] S. Karavashkin, “On the curvature of space-time”. Selfie Proceedings, 2017. | |
dc.relation.references | [6] V. Tchaban, Panta Rhei, Lviv: Space M, p. 118, 2020. | |
dc.relation.references | [7] V. Tchaban, “Dynamic of Motion of Electron in Electrical Field”, Meassuring, Equipment and Metrology, vol. 81, no. 2, pp. 39-42, 2020. (DOI https://doi.org/10.23939/istcmtm2020. 02.039). | |
dc.relation.references | [8] V. Tchaban, On some Joint Lavs of the Field of Gravity- and Electrometry. – Measuring, Equipment and Metrology, vol. 81, no. 3, 2020, pp. 37–40 (DOI https://doi.org/10.23939/istcmtm2020.03. 037). | |
dc.relation.references | [9] V. Tchaban, Сombined equations of electric and gravitational fields. – Technical news, 2020/1(51), 2(52), pp. 9–15. | |
dc.relation.referencesen | [1] V. Tchaban, Lorenz Force of Vortex Electric Field, Computational Problems of Electrical Engineering, vol. 11, no. 2, pp. 33–36, 2020. | |
dc.relation.referencesen | [2] K. S. Demirchan Movable charge in four-dimen– sional space according to Maxwell and Einstein, M., Komtekh-Print, 2008. (Russian) | |
dc.relation.referencesen | [3] G. Ivchenkov, "Force interaction of moving charges with each other and with the fields "Relativistic" Coulomb's law". http://new-idea. kulichki.net/pubfiles/151026192403.pdf. (Russian). | |
dc.relation.referencesen | [4] A. Poincare, On Science (translated from Frans.), Moscow: Science, 1983. (Russian). | |
dc.relation.referencesen | [5] S. Karavashkin, "On the curvature of space-time". Selfie Proceedings, 2017. | |
dc.relation.referencesen | [6] V. Tchaban, Panta Rhei, Lviv: Space M, p. 118, 2020. | |
dc.relation.referencesen | [7] V. Tchaban, "Dynamic of Motion of Electron in Electrical Field", Meassuring, Equipment and Metrology, vol. 81, no. 2, pp. 39-42, 2020. (DOI https://doi.org/10.23939/istcmtm2020. 02.039). | |
dc.relation.referencesen | [8] V. Tchaban, On some Joint Lavs of the Field of Gravity- and Electrometry, Measuring, Equipment and Metrology, vol. 81, no. 3, 2020, pp. 37–40 (DOI https://doi.org/10.23939/istcmtm2020.03. 037). | |
dc.relation.referencesen | [9] V. Tchaban, Sombined equations of electric and gravitational fields, Technical news, 2020/1(51), 2(52), pp. 9–15. | |
dc.relation.uri | http://new-idea | |
dc.relation.uri | https://doi.org/10.23939/istcmtm2020 | |
dc.relation.uri | https://doi.org/10.23939/istcmtm2020.03 | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2021 | |
dc.subject | the third component of the force of electric interaction | |
dc.subject | the finite speed of electric field propagation | |
dc.subject | the equation of motion | |
dc.subject | 3D Euclidean space | |
dc.title | Radial Component of Vortex Electric Field Force | |
dc.title.alternative | Радіальний компонент сили вихрового eлектричного поля | |
dc.type | Article |