Regularity for entropy solutions of degenerate parabolic equations with Lm data

dc.citation.epage132
dc.citation.issue1
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage119
dc.contributor.affiliationАлжирський університет
dc.contributor.affiliationUniversity of Algiers
dc.contributor.authorХеліфі, Х.
dc.contributor.authorKhelifi, H.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:54:54Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ цій статті досліджуються регулярні результати для ентропійних розв’язків класу параболічних нелінійних рівнянь із виродженою коерцитивністю, коли права частина знаходиться в Lm з m > 1.
dc.description.abstractIn this paper, we study the regularity results for entropy solutions of a class of parabolic nonlinear parabolic equations with degenerate coercivity, when the right-hand side is in Lm with m > 1.
dc.format.extent119-132
dc.format.pages14
dc.identifier.citationKhelifi H. Regularity for entropy solutions of degenerate parabolic equations with Lm data / H. Khelifi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 119–132.
dc.identifier.citationenKhelifi H. Regularity for entropy solutions of degenerate parabolic equations with Lm data / H. Khelifi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 119–132.
dc.identifier.doi10.23939/mmc2023.01.119
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63504
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 1 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 1 (10), 2023
dc.relation.references[1] Li F. Regularity for entropy solution of a class of parabolic equations with irregular data. Commentationes Mathematicae Universitatis Carolinae. 48 (1), 69–82 (2007).
dc.relation.references[2] Prignet A. Existence and uniqueness of “entropic” solutions of parabolic problems with L1 data. Nonlinear Analysis: Theory, Methods & Applications. 28 (12), 1943–1954 (1997).
dc.relation.references[3] Segura de Le´on S, Toledo J. Regularity for entropy solutions of parabolic p-Laplacian equations. Publicacions Matem`atiques. 43 (2), 665–683 (1999).
dc.relation.references[4] Blanchard D., Murat F. Renormalised solutions of nonlinear parabolic problems with L1 data: existence and uniqueness. Proceedings of the Royal Society of Edinburgh. Section A: Mathematics. 127 (6), 1137–1152 (1997).
dc.relation.references[5] Li F. Existence and regularity results for some parabolic equations with degenerate coercivity. Annales Academiæ Scientiarum Fennicæ Mathematica. 37, 605–633 (2012).
dc.relation.references[6] Mokhtari F., Khelifi H. Regularity results for degenerate parabolic equations with Lm data. Complex Variables and Elliptic Equations. 1–15 (2022).
dc.relation.references[7] B´enilan P. H., Boccardo L., Gallou¨et T., Gariepy R, Pierre M, Vazquez J. L. An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Annali della Scuola Normale Superiore di Pisa –Classe di Scienze, Serie 4. 22 (2), 241–273 (1995).
dc.relation.references[8] Boccardo L, Dall’Aglio A, Orsina A. Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Del Seminario Matematico E Fisico Universita Di Modena. 46, 51–81 (1998).
dc.relation.references[9] B´enilan P. H, Brezis H, Crandall M. G. A semilinear equation in L1(RN ). Annali della Scuola Normale Superiore di Pisa – Classe di Scienze, Serie 4. 2 (4), 523–555 (1975).
dc.relation.references[10] Lions J. L. Quelques m´ethodes de r´esolution des probl`emes aux limites nonlin´eaires. Dunod, Paris (1969).
dc.relation.references[11] Simon J. Compact sets in the space Lp (0, T ; B). Annali di Matematica Pura ed Applicata. 146, 65–96 (1987).
dc.relation.references[12] Porretta A. Exestence results for nonlinear parabolic equations via strong convergence of truncations. Annali di Matematica Pura ed Applicata. 177, 143–172 (1999).
dc.relation.references[13] Di Benedetto E. Degenerate parabolic equations. Springer–Verlag, New York (1993).
dc.relation.referencesen[1] Li F. Regularity for entropy solution of a class of parabolic equations with irregular data. Commentationes Mathematicae Universitatis Carolinae. 48 (1), 69–82 (2007).
dc.relation.referencesen[2] Prignet A. Existence and uniqueness of "entropic" solutions of parabolic problems with L1 data. Nonlinear Analysis: Theory, Methods & Applications. 28 (12), 1943–1954 (1997).
dc.relation.referencesen[3] Segura de Le´on S, Toledo J. Regularity for entropy solutions of parabolic p-Laplacian equations. Publicacions Matem`atiques. 43 (2), 665–683 (1999).
dc.relation.referencesen[4] Blanchard D., Murat F. Renormalised solutions of nonlinear parabolic problems with L1 data: existence and uniqueness. Proceedings of the Royal Society of Edinburgh. Section A: Mathematics. 127 (6), 1137–1152 (1997).
dc.relation.referencesen[5] Li F. Existence and regularity results for some parabolic equations with degenerate coercivity. Annales Academiæ Scientiarum Fennicæ Mathematica. 37, 605–633 (2012).
dc.relation.referencesen[6] Mokhtari F., Khelifi H. Regularity results for degenerate parabolic equations with Lm data. Complex Variables and Elliptic Equations. 1–15 (2022).
dc.relation.referencesen[7] B´enilan P. H., Boccardo L., Gallou¨et T., Gariepy R, Pierre M, Vazquez J. L. An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Annali della Scuola Normale Superiore di Pisa –Classe di Scienze, Serie 4. 22 (2), 241–273 (1995).
dc.relation.referencesen[8] Boccardo L, Dall’Aglio A, Orsina A. Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Del Seminario Matematico E Fisico Universita Di Modena. 46, 51–81 (1998).
dc.relation.referencesen[9] B´enilan P. H, Brezis H, Crandall M. G. A semilinear equation in L1(RN ). Annali della Scuola Normale Superiore di Pisa – Classe di Scienze, Serie 4. 2 (4), 523–555 (1975).
dc.relation.referencesen[10] Lions J. L. Quelques m´ethodes de r´esolution des probl`emes aux limites nonlin´eaires. Dunod, Paris (1969).
dc.relation.referencesen[11] Simon J. Compact sets in the space Lp (0, T ; B). Annali di Matematica Pura ed Applicata. 146, 65–96 (1987).
dc.relation.referencesen[12] Porretta A. Exestence results for nonlinear parabolic equations via strong convergence of truncations. Annali di Matematica Pura ed Applicata. 177, 143–172 (1999).
dc.relation.referencesen[13] Di Benedetto E. Degenerate parabolic equations. Springer–Verlag, New York (1993).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectрегулярність
dc.subjectентропійні розв’язки
dc.subjectвироджена коерцитивність
dc.subjectдані Lm
dc.subjectregularity
dc.subjectentropy solutions
dc.subjectdegenerate coercivity
dc.subjectLm data
dc.titleRegularity for entropy solutions of degenerate parabolic equations with Lm data
dc.title.alternativeРегулярність ентропійних розв’язків вироджених параболічних рівнянь із даними Lm
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n1_Khelifi_H-Regularity_for_entropy_119-132.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n1_Khelifi_H-Regularity_for_entropy_119-132__COVER.png
Size:
257.44 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: