Modeling of optimized cascade of quantum cascade detector operating in far infrared range
dc.citation.epage | 195 | |
dc.citation.issue | 1 | |
dc.citation.spage | 186 | |
dc.contributor.affiliation | Чернiвецький нацiональний унiверситет iм.Ю. Федьковича | |
dc.contributor.affiliation | Yuriy Fedkovych Chernivtsi National University | |
dc.contributor.author | Сеті, Ю. О. | |
dc.contributor.author | Ткач, М. В. | |
dc.contributor.author | Верешко, Є. Ю. | |
dc.contributor.author | Войцехівська, О. М. | |
dc.contributor.author | Seti, Ju. O. | |
dc.contributor.author | Tkach, M. V. | |
dc.contributor.author | Vereshko, E. Ju. | |
dc.contributor.author | Voitsekhivska, O. M. | |
dc.date.accessioned | 2023-03-06T12:28:18Z | |
dc.date.available | 2023-03-06T12:28:18Z | |
dc.date.created | 2020-01-01 | |
dc.date.issued | 2020-01-01 | |
dc.description.abstract | На основi розвиненої у моделi координато-залежної ефективної маси та прямокутних потенцiалiв теорiї енергетичного спектра електрона та сил осциляторiв мiжпiдзонних квантових переходiв запропоновано геометричний дизайн компактного каскаду квантового каскадного детектора далекого IЧ дiапазону з двоямною активною зоною. Екстрактор каскаду оптимiзовано так, щоб енергетичнi щаблi його фононної драбинки резонували з енергiєю оптичного фонона, що забезпечує ефективне фононсупровiдне тунелювання електронiв мiж активними зонами каскадiв наноприладу. Встановлено, що зменшення товщини бар’єра мiж ямами активної зони внаслiдок збiльшення вiдстанi мiж рiвнями в антикросингу приводить до розширення смуги поглинання детектора. | |
dc.description.abstract | Using the theory for electron energy spectrum and oscillator strengths of inter-subband quantum transitions, developed in the model of position-dependent effective mass and rectangular potentials, the geometrical design for the compact cascade of a quantum cascade detector (with a two-well active region) operating in far infrared range is proposed. The extractor of the cascade is optimized in such a way that the energy steps of its phonon ladder resonate with optical phonon energy, providing effective phonon-assisted tunneling of electrons between the active regions of cascades. It is shown that increasing thickness of the barrier between the wells of active region, causes the broadening of detector absorption band due to the bigger distance between energy levels in anti-crossing. | |
dc.format.extent | 186-195 | |
dc.format.pages | 10 | |
dc.identifier.citation | Modeling of optimized cascade of quantum cascade detector operating in far infrared range / Seti Ju. O., Tkach M. V., Vereshko E. Ju., Voitsekhivska O. M. // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 7. — No 1. — P. 186–195. | |
dc.identifier.citationen | Seti Ju. O., Tkach M. V., Vereshko E. Ju., Voitsekhivska O. M. (2020) Modeling of optimized cascade of quantum cascade detector operating in far infrared range. Mathematical Modeling and Computing (Lviv), vol. 7, no 1, pp. 186-195. | |
dc.identifier.doi | DOI: 10.23939/mmc2020.01.186 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57513 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 1 (7), 2020 | |
dc.relation.references | [1] LeiW., Jagadish C. Lasers and photodetectors for mid-infrared 2 − 3µm applications. J. Appl. Phys. 104(9), 091101 (2008). | |
dc.relation.references | [2] Tournie E., Cerutti L. Mid-infrared Optoelectronics. Woodhead Publishing (2019). | |
dc.relation.references | [3] Beeler M., Trichas E., Monroy E. III-nitride semiconductors for intersubband optoelectronics: a review. Semicond. Sci. Technol. 28 (7), 074022 (2013). | |
dc.relation.references | [4] Gunapala S., Bandara S., Liu J., Mumolo J., Rafol S., Ting D. Z., Soibel A., Hill C. Quantum Well Infrared Photodetector Technology and Applications. IEEE J. Sel. Top. Quantum Electron. 20 (6), 3802312 (2014). | |
dc.relation.references | [5] Levine B., Choi K., Bethea C., Walker J., Malik R. New 10µm infrared detector using intersubband absorption in resonant tunneling GaAIAs superlattices. Appl. Phys. Lett. 50 (16), 1092–1094, (1987). | |
dc.relation.references | [6] Gendron L., Carras M., Huynh A., Ortiz V. Quantum cascade photodetector. Appl. Phys. Lett. 85 (4),2824–2826 (2004). | |
dc.relation.references | [7] Schneider H., Liu H. Quantum Well Infrared Photodetectors. Physics and Applications. (2006). | |
dc.relation.references | [8] Gueriaux V., Nedelcu A., Bois Ph. Double barrier strained quantum well infrared photodetectors for the3 − 5µm atmospheric window. J. Appl. Phys. 105 (11), 114515 (2009). | |
dc.relation.references | [9] Kaya Ya., Ravikumar A., Chen G., Tamargo M. C., Shen A., Gmachl C. Two-band ZnCdSe/ZnCdMgSe quantum well infrared photodetector. AIP Advances. 8 (7), 075105 (2018). | |
dc.relation.references | [10] Hofstetter D., Schad S., Wu H., SchaffW., Eastman L. GaN/AlN-based quantum-well infrared photodetector for 1.55µm. Appl. Phys. Lett. 83 (3), 572–574 (2003). | |
dc.relation.references | [11] Mensz P., Dror B., Ajay A., Bougerol C., Monroy E., Orenstein M., Bahir G. Design and implementation of boundto-quasibound GaN/AlGaN photovoltaic quantum well infrared photodetectors operating in the short wavelength infrared range at room temperature. J. Appl. Phys. 125 (17), 174505 (2019). | |
dc.relation.references | [12] Giorgetta F., Baumann E., Graf M., Yang Q., Manz C., Kohler K., Beere H. E., Ritchie D. A., Linfield E., Davies A. G., Fedoryshyn Yu., Jackel H., Fischer M., Faist J., Hofstetter D. Quantum Cascade Detectors. Journal of quantum electronics. 45 (8), 1039–1052 (2009). | |
dc.relation.references | [13] Reininger P., Zederbauer T., Schwarz B., Detz H., MacFarland D., Andrews A. M., SchrenkW., Strasser G. InAs/AlAsSb based quantum cascade detector. Appl. Phys. Lett. 107 (8), 081107 (2015). | |
dc.relation.references | [14] Liu J., Zhou Y., Zhai S., Liu F., Liu S., Zhang J., Zhuo N., Wang L., Wang Z. High-frequency very long wave infrared quantum cascade detectors. Semicond. Sci. Technol. 33 (12), 125016 (2018). | |
dc.relation.references | [15] Sakr S., Giraud E., Dussaigne A., Tchernycheva M., Grandjean N., Julien F. H. Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7µm. Appl. Phys. Lett. 100 (18),181103 (2012). | |
dc.relation.references | [16] Sakr S., Crozat P., Gacemi D., Kotsar Y., Pesach A., Quach P., Isac N., Tchernycheva M., Vivien L., Bahir G., Monroy E., Julien F. H. GaN/AlGaN waveguide quantum cascade photodetectors at 1.55 m with enhanced responsivity and 40 GHz frequency bandwidth. Appl. Phys. Lett. 102 (1), 011135 (2013). | |
dc.relation.references | [17] Hofstetter D., Giorgetta F., Baumann E., Yang Q., Manz C., K¨ohler K. Midinfrared quantum cascade detector with a spectrally broad response. Appl. Phys. Lett. 93 (22), 221106 (2008). | |
dc.relation.references | [18] Zhou X., Li N., LuW. Progress in quantum well and quantum cascade infrared photodetectors in SITP. Chin. Phys. B. 28 (2), 027801 (2019). | |
dc.relation.references | [19] Nelson D., Miller R., Kleinman D. Band nonparabolicity effects in semiconductor quantum wells. Phys.Rev. B. 35 (14), 7770–7773 (1987). | |
dc.relation.references | [20] BenDaniel D., Duke C. Space-Charge Effects on Electron Tunneling. Phys. Rev. 152 (2), 683–692 (1966). | |
dc.relation.references | [21] Harrison P., Valavanis A. Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures. Wiley, West Sussex, United Kingdom (2016). | |
dc.relation.references | [22] Tkach M., Seti Ju., Voitsekhivska O. Spectrum of electron in quantum well within the linearly-dependent effective mass model with the exact solution. Superlattice Microst. 109, 905–914 (2017). | |
dc.relation.references | [23] Davydov A. Theory of solids. Nauka, Moscow (1976). | |
dc.relation.references | [24] Li L., Zhou X., Tang Z., Zhou Y.,Zheng Y., Li N., Chen P., Li Z., LuW. Long wavelength infrared quantum cascade detector with a broadband response. J. Phys. D: Appl. Phys. 51 (37), 37LTO1 (2018). | |
dc.relation.references | [25] Tkach M., Seti Ju., Grynyshyn Y., Voitsekhivska O. Dynamic Conductivity of Electrons and Electron Phonon Interaction in Open Three-Well Nanostructures. Acta Phys. Pol. A. 128 (3), 343–352 (2015). | |
dc.relation.referencesen | [1] LeiW., Jagadish C. Lasers and photodetectors for mid-infrared 2 − 3µm applications. J. Appl. Phys. 104(9), 091101 (2008). | |
dc.relation.referencesen | [2] Tournie E., Cerutti L. Mid-infrared Optoelectronics. Woodhead Publishing (2019). | |
dc.relation.referencesen | [3] Beeler M., Trichas E., Monroy E. III-nitride semiconductors for intersubband optoelectronics: a review. Semicond. Sci. Technol. 28 (7), 074022 (2013). | |
dc.relation.referencesen | [4] Gunapala S., Bandara S., Liu J., Mumolo J., Rafol S., Ting D. Z., Soibel A., Hill C. Quantum Well Infrared Photodetector Technology and Applications. IEEE J. Sel. Top. Quantum Electron. 20 (6), 3802312 (2014). | |
dc.relation.referencesen | [5] Levine B., Choi K., Bethea C., Walker J., Malik R. New 10µm infrared detector using intersubband absorption in resonant tunneling GaAIAs superlattices. Appl. Phys. Lett. 50 (16), 1092–1094, (1987). | |
dc.relation.referencesen | [6] Gendron L., Carras M., Huynh A., Ortiz V. Quantum cascade photodetector. Appl. Phys. Lett. 85 (4),2824–2826 (2004). | |
dc.relation.referencesen | [7] Schneider H., Liu H. Quantum Well Infrared Photodetectors. Physics and Applications. (2006). | |
dc.relation.referencesen | [8] Gueriaux V., Nedelcu A., Bois Ph. Double barrier strained quantum well infrared photodetectors for the3 − 5µm atmospheric window. J. Appl. Phys. 105 (11), 114515 (2009). | |
dc.relation.referencesen | [9] Kaya Ya., Ravikumar A., Chen G., Tamargo M. C., Shen A., Gmachl C. Two-band ZnCdSe/ZnCdMgSe quantum well infrared photodetector. AIP Advances. 8 (7), 075105 (2018). | |
dc.relation.referencesen | [10] Hofstetter D., Schad S., Wu H., SchaffW., Eastman L. GaN/AlN-based quantum-well infrared photodetector for 1.55µm. Appl. Phys. Lett. 83 (3), 572–574 (2003). | |
dc.relation.referencesen | [11] Mensz P., Dror B., Ajay A., Bougerol C., Monroy E., Orenstein M., Bahir G. Design and implementation of boundto-quasibound GaN/AlGaN photovoltaic quantum well infrared photodetectors operating in the short wavelength infrared range at room temperature. J. Appl. Phys. 125 (17), 174505 (2019). | |
dc.relation.referencesen | [12] Giorgetta F., Baumann E., Graf M., Yang Q., Manz C., Kohler K., Beere H. E., Ritchie D. A., Linfield E., Davies A. G., Fedoryshyn Yu., Jackel H., Fischer M., Faist J., Hofstetter D. Quantum Cascade Detectors. Journal of quantum electronics. 45 (8), 1039–1052 (2009). | |
dc.relation.referencesen | [13] Reininger P., Zederbauer T., Schwarz B., Detz H., MacFarland D., Andrews A. M., SchrenkW., Strasser G. InAs/AlAsSb based quantum cascade detector. Appl. Phys. Lett. 107 (8), 081107 (2015). | |
dc.relation.referencesen | [14] Liu J., Zhou Y., Zhai S., Liu F., Liu S., Zhang J., Zhuo N., Wang L., Wang Z. High-frequency very long wave infrared quantum cascade detectors. Semicond. Sci. Technol. 33 (12), 125016 (2018). | |
dc.relation.referencesen | [15] Sakr S., Giraud E., Dussaigne A., Tchernycheva M., Grandjean N., Julien F. H. Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7µm. Appl. Phys. Lett. 100 (18),181103 (2012). | |
dc.relation.referencesen | [16] Sakr S., Crozat P., Gacemi D., Kotsar Y., Pesach A., Quach P., Isac N., Tchernycheva M., Vivien L., Bahir G., Monroy E., Julien F. H. GaN/AlGaN waveguide quantum cascade photodetectors at 1.55 m with enhanced responsivity and 40 GHz frequency bandwidth. Appl. Phys. Lett. 102 (1), 011135 (2013). | |
dc.relation.referencesen | [17] Hofstetter D., Giorgetta F., Baumann E., Yang Q., Manz C., K¨ohler K. Midinfrared quantum cascade detector with a spectrally broad response. Appl. Phys. Lett. 93 (22), 221106 (2008). | |
dc.relation.referencesen | [18] Zhou X., Li N., LuW. Progress in quantum well and quantum cascade infrared photodetectors in SITP. Chin. Phys. B. 28 (2), 027801 (2019). | |
dc.relation.referencesen | [19] Nelson D., Miller R., Kleinman D. Band nonparabolicity effects in semiconductor quantum wells. Phys.Rev. B. 35 (14), 7770–7773 (1987). | |
dc.relation.referencesen | [20] BenDaniel D., Duke C. Space-Charge Effects on Electron Tunneling. Phys. Rev. 152 (2), 683–692 (1966). | |
dc.relation.referencesen | [21] Harrison P., Valavanis A. Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures. Wiley, West Sussex, United Kingdom (2016). | |
dc.relation.referencesen | [22] Tkach M., Seti Ju., Voitsekhivska O. Spectrum of electron in quantum well within the linearly-dependent effective mass model with the exact solution. Superlattice Microst. 109, 905–914 (2017). | |
dc.relation.referencesen | [23] Davydov A. Theory of solids. Nauka, Moscow (1976). | |
dc.relation.referencesen | [24] Li L., Zhou X., Tang Z., Zhou Y.,Zheng Y., Li N., Chen P., Li Z., LuW. Long wavelength infrared quantum cascade detector with a broadband response. J. Phys. D: Appl. Phys. 51 (37), 37LTO1 (2018). | |
dc.relation.referencesen | [25] Tkach M., Seti Ju., Grynyshyn Y., Voitsekhivska O. Dynamic Conductivity of Electrons and Electron Phonon Interaction in Open Three-Well Nanostructures. Acta Phys. Pol. A. 128 (3), 343–352 (2015). | |
dc.rights.holder | ©2020 Lviv Polytechnic National University CMM IAPMM NASU | |
dc.subject | наносистема | |
dc.subject | квантовий каскадний детектор | |
dc.subject | енергетичний спектр | |
dc.subject | фонон-супровiдне тунелювання | |
dc.subject | nanosystem | |
dc.subject | quantum cascade detector | |
dc.subject | energy spectrum | |
dc.subject | phonon-assisted tunneling | |
dc.subject.udc | 81-10 | |
dc.subject.udc | 81V19 | |
dc.subject.udc | 92F99 | |
dc.title | Modeling of optimized cascade of quantum cascade detector operating in far infrared range | |
dc.title.alternative | Моделювання оптимізованого каскаду квантового каскадного детектора далекого інфрачервоного діапазону | |
dc.type | Article |