Modeling of optimized cascade of quantum cascade detector operating in far infrared range

dc.citation.epage195
dc.citation.issue1
dc.citation.spage186
dc.contributor.affiliationЧернiвецький нацiональний унiверситет iм.Ю. Федьковича
dc.contributor.affiliationYuriy Fedkovych Chernivtsi National University
dc.contributor.authorСеті, Ю. О.
dc.contributor.authorТкач, М. В.
dc.contributor.authorВерешко, Є. Ю.
dc.contributor.authorВойцехівська, О. М.
dc.contributor.authorSeti, Ju. O.
dc.contributor.authorTkach, M. V.
dc.contributor.authorVereshko, E. Ju.
dc.contributor.authorVoitsekhivska, O. M.
dc.date.accessioned2023-03-06T12:28:18Z
dc.date.available2023-03-06T12:28:18Z
dc.date.created2020-01-01
dc.date.issued2020-01-01
dc.description.abstractНа основi розвиненої у моделi координато-залежної ефективної маси та прямокутних потенцiалiв теорiї енергетичного спектра електрона та сил осциляторiв мiжпiдзонних квантових переходiв запропоновано геометричний дизайн компактного каскаду квантового каскадного детектора далекого IЧ дiапазону з двоямною активною зоною. Екстрактор каскаду оптимiзовано так, щоб енергетичнi щаблi його фононної драбинки резонували з енергiєю оптичного фонона, що забезпечує ефективне фононсупровiдне тунелювання електронiв мiж активними зонами каскадiв наноприладу. Встановлено, що зменшення товщини бар’єра мiж ямами активної зони внаслiдок збiльшення вiдстанi мiж рiвнями в антикросингу приводить до розширення смуги поглинання детектора.
dc.description.abstractUsing the theory for electron energy spectrum and oscillator strengths of inter-subband quantum transitions, developed in the model of position-dependent effective mass and rectangular potentials, the geometrical design for the compact cascade of a quantum cascade detector (with a two-well active region) operating in far infrared range is proposed. The extractor of the cascade is optimized in such a way that the energy steps of its phonon ladder resonate with optical phonon energy, providing effective phonon-assisted tunneling of electrons between the active regions of cascades. It is shown that increasing thickness of the barrier between the wells of active region, causes the broadening of detector absorption band due to the bigger distance between energy levels in anti-crossing.
dc.format.extent186-195
dc.format.pages10
dc.identifier.citationModeling of optimized cascade of quantum cascade detector operating in far infrared range / Seti Ju. O., Tkach M. V., Vereshko E. Ju., Voitsekhivska O. M. // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 7. — No 1. — P. 186–195.
dc.identifier.citationenSeti Ju. O., Tkach M. V., Vereshko E. Ju., Voitsekhivska O. M. (2020) Modeling of optimized cascade of quantum cascade detector operating in far infrared range. Mathematical Modeling and Computing (Lviv), vol. 7, no 1, pp. 186-195.
dc.identifier.doiDOI: 10.23939/mmc2020.01.186
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57513
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (7), 2020
dc.relation.references[1] LeiW., Jagadish C. Lasers and photodetectors for mid-infrared 2 − 3µm applications. J. Appl. Phys. 104(9), 091101 (2008).
dc.relation.references[2] Tournie E., Cerutti L. Mid-infrared Optoelectronics. Woodhead Publishing (2019).
dc.relation.references[3] Beeler M., Trichas E., Monroy E. III-nitride semiconductors for intersubband optoelectronics: a review. Semicond. Sci. Technol. 28 (7), 074022 (2013).
dc.relation.references[4] Gunapala S., Bandara S., Liu J., Mumolo J., Rafol S., Ting D. Z., Soibel A., Hill C. Quantum Well Infrared Photodetector Technology and Applications. IEEE J. Sel. Top. Quantum Electron. 20 (6), 3802312 (2014).
dc.relation.references[5] Levine B., Choi K., Bethea C., Walker J., Malik R. New 10µm infrared detector using intersubband absorption in resonant tunneling GaAIAs superlattices. Appl. Phys. Lett. 50 (16), 1092–1094, (1987).
dc.relation.references[6] Gendron L., Carras M., Huynh A., Ortiz V. Quantum cascade photodetector. Appl. Phys. Lett. 85 (4),2824–2826 (2004).
dc.relation.references[7] Schneider H., Liu H. Quantum Well Infrared Photodetectors. Physics and Applications. (2006).
dc.relation.references[8] Gueriaux V., Nedelcu A., Bois Ph. Double barrier strained quantum well infrared photodetectors for the3 − 5µm atmospheric window. J. Appl. Phys. 105 (11), 114515 (2009).
dc.relation.references[9] Kaya Ya., Ravikumar A., Chen G., Tamargo M. C., Shen A., Gmachl C. Two-band ZnCdSe/ZnCdMgSe quantum well infrared photodetector. AIP Advances. 8 (7), 075105 (2018).
dc.relation.references[10] Hofstetter D., Schad S., Wu H., SchaffW., Eastman L. GaN/AlN-based quantum-well infrared photodetector for 1.55µm. Appl. Phys. Lett. 83 (3), 572–574 (2003).
dc.relation.references[11] Mensz P., Dror B., Ajay A., Bougerol C., Monroy E., Orenstein M., Bahir G. Design and implementation of boundto-quasibound GaN/AlGaN photovoltaic quantum well infrared photodetectors operating in the short wavelength infrared range at room temperature. J. Appl. Phys. 125 (17), 174505 (2019).
dc.relation.references[12] Giorgetta F., Baumann E., Graf M., Yang Q., Manz C., Kohler K., Beere H. E., Ritchie D. A., Linfield E., Davies A. G., Fedoryshyn Yu., Jackel H., Fischer M., Faist J., Hofstetter D. Quantum Cascade Detectors. Journal of quantum electronics. 45 (8), 1039–1052 (2009).
dc.relation.references[13] Reininger P., Zederbauer T., Schwarz B., Detz H., MacFarland D., Andrews A. M., SchrenkW., Strasser G. InAs/AlAsSb based quantum cascade detector. Appl. Phys. Lett. 107 (8), 081107 (2015).
dc.relation.references[14] Liu J., Zhou Y., Zhai S., Liu F., Liu S., Zhang J., Zhuo N., Wang L., Wang Z. High-frequency very long wave infrared quantum cascade detectors. Semicond. Sci. Technol. 33 (12), 125016 (2018).
dc.relation.references[15] Sakr S., Giraud E., Dussaigne A., Tchernycheva M., Grandjean N., Julien F. H. Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7µm. Appl. Phys. Lett. 100 (18),181103 (2012).
dc.relation.references[16] Sakr S., Crozat P., Gacemi D., Kotsar Y., Pesach A., Quach P., Isac N., Tchernycheva M., Vivien L., Bahir G., Monroy E., Julien F. H. GaN/AlGaN waveguide quantum cascade photodetectors at 1.55 m with enhanced responsivity and 40 GHz frequency bandwidth. Appl. Phys. Lett. 102 (1), 011135 (2013).
dc.relation.references[17] Hofstetter D., Giorgetta F., Baumann E., Yang Q., Manz C., K¨ohler K. Midinfrared quantum cascade detector with a spectrally broad response. Appl. Phys. Lett. 93 (22), 221106 (2008).
dc.relation.references[18] Zhou X., Li N., LuW. Progress in quantum well and quantum cascade infrared photodetectors in SITP. Chin. Phys. B. 28 (2), 027801 (2019).
dc.relation.references[19] Nelson D., Miller R., Kleinman D. Band nonparabolicity effects in semiconductor quantum wells. Phys.Rev. B. 35 (14), 7770–7773 (1987).
dc.relation.references[20] BenDaniel D., Duke C. Space-Charge Effects on Electron Tunneling. Phys. Rev. 152 (2), 683–692 (1966).
dc.relation.references[21] Harrison P., Valavanis A. Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures. Wiley, West Sussex, United Kingdom (2016).
dc.relation.references[22] Tkach M., Seti Ju., Voitsekhivska O. Spectrum of electron in quantum well within the linearly-dependent effective mass model with the exact solution. Superlattice Microst. 109, 905–914 (2017).
dc.relation.references[23] Davydov A. Theory of solids. Nauka, Moscow (1976).
dc.relation.references[24] Li L., Zhou X., Tang Z., Zhou Y.,Zheng Y., Li N., Chen P., Li Z., LuW. Long wavelength infrared quantum cascade detector with a broadband response. J. Phys. D: Appl. Phys. 51 (37), 37LTO1 (2018).
dc.relation.references[25] Tkach M., Seti Ju., Grynyshyn Y., Voitsekhivska O. Dynamic Conductivity of Electrons and Electron Phonon Interaction in Open Three-Well Nanostructures. Acta Phys. Pol. A. 128 (3), 343–352 (2015).
dc.relation.referencesen[1] LeiW., Jagadish C. Lasers and photodetectors for mid-infrared 2 − 3µm applications. J. Appl. Phys. 104(9), 091101 (2008).
dc.relation.referencesen[2] Tournie E., Cerutti L. Mid-infrared Optoelectronics. Woodhead Publishing (2019).
dc.relation.referencesen[3] Beeler M., Trichas E., Monroy E. III-nitride semiconductors for intersubband optoelectronics: a review. Semicond. Sci. Technol. 28 (7), 074022 (2013).
dc.relation.referencesen[4] Gunapala S., Bandara S., Liu J., Mumolo J., Rafol S., Ting D. Z., Soibel A., Hill C. Quantum Well Infrared Photodetector Technology and Applications. IEEE J. Sel. Top. Quantum Electron. 20 (6), 3802312 (2014).
dc.relation.referencesen[5] Levine B., Choi K., Bethea C., Walker J., Malik R. New 10µm infrared detector using intersubband absorption in resonant tunneling GaAIAs superlattices. Appl. Phys. Lett. 50 (16), 1092–1094, (1987).
dc.relation.referencesen[6] Gendron L., Carras M., Huynh A., Ortiz V. Quantum cascade photodetector. Appl. Phys. Lett. 85 (4),2824–2826 (2004).
dc.relation.referencesen[7] Schneider H., Liu H. Quantum Well Infrared Photodetectors. Physics and Applications. (2006).
dc.relation.referencesen[8] Gueriaux V., Nedelcu A., Bois Ph. Double barrier strained quantum well infrared photodetectors for the3 − 5µm atmospheric window. J. Appl. Phys. 105 (11), 114515 (2009).
dc.relation.referencesen[9] Kaya Ya., Ravikumar A., Chen G., Tamargo M. C., Shen A., Gmachl C. Two-band ZnCdSe/ZnCdMgSe quantum well infrared photodetector. AIP Advances. 8 (7), 075105 (2018).
dc.relation.referencesen[10] Hofstetter D., Schad S., Wu H., SchaffW., Eastman L. GaN/AlN-based quantum-well infrared photodetector for 1.55µm. Appl. Phys. Lett. 83 (3), 572–574 (2003).
dc.relation.referencesen[11] Mensz P., Dror B., Ajay A., Bougerol C., Monroy E., Orenstein M., Bahir G. Design and implementation of boundto-quasibound GaN/AlGaN photovoltaic quantum well infrared photodetectors operating in the short wavelength infrared range at room temperature. J. Appl. Phys. 125 (17), 174505 (2019).
dc.relation.referencesen[12] Giorgetta F., Baumann E., Graf M., Yang Q., Manz C., Kohler K., Beere H. E., Ritchie D. A., Linfield E., Davies A. G., Fedoryshyn Yu., Jackel H., Fischer M., Faist J., Hofstetter D. Quantum Cascade Detectors. Journal of quantum electronics. 45 (8), 1039–1052 (2009).
dc.relation.referencesen[13] Reininger P., Zederbauer T., Schwarz B., Detz H., MacFarland D., Andrews A. M., SchrenkW., Strasser G. InAs/AlAsSb based quantum cascade detector. Appl. Phys. Lett. 107 (8), 081107 (2015).
dc.relation.referencesen[14] Liu J., Zhou Y., Zhai S., Liu F., Liu S., Zhang J., Zhuo N., Wang L., Wang Z. High-frequency very long wave infrared quantum cascade detectors. Semicond. Sci. Technol. 33 (12), 125016 (2018).
dc.relation.referencesen[15] Sakr S., Giraud E., Dussaigne A., Tchernycheva M., Grandjean N., Julien F. H. Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7µm. Appl. Phys. Lett. 100 (18),181103 (2012).
dc.relation.referencesen[16] Sakr S., Crozat P., Gacemi D., Kotsar Y., Pesach A., Quach P., Isac N., Tchernycheva M., Vivien L., Bahir G., Monroy E., Julien F. H. GaN/AlGaN waveguide quantum cascade photodetectors at 1.55 m with enhanced responsivity and 40 GHz frequency bandwidth. Appl. Phys. Lett. 102 (1), 011135 (2013).
dc.relation.referencesen[17] Hofstetter D., Giorgetta F., Baumann E., Yang Q., Manz C., K¨ohler K. Midinfrared quantum cascade detector with a spectrally broad response. Appl. Phys. Lett. 93 (22), 221106 (2008).
dc.relation.referencesen[18] Zhou X., Li N., LuW. Progress in quantum well and quantum cascade infrared photodetectors in SITP. Chin. Phys. B. 28 (2), 027801 (2019).
dc.relation.referencesen[19] Nelson D., Miller R., Kleinman D. Band nonparabolicity effects in semiconductor quantum wells. Phys.Rev. B. 35 (14), 7770–7773 (1987).
dc.relation.referencesen[20] BenDaniel D., Duke C. Space-Charge Effects on Electron Tunneling. Phys. Rev. 152 (2), 683–692 (1966).
dc.relation.referencesen[21] Harrison P., Valavanis A. Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures. Wiley, West Sussex, United Kingdom (2016).
dc.relation.referencesen[22] Tkach M., Seti Ju., Voitsekhivska O. Spectrum of electron in quantum well within the linearly-dependent effective mass model with the exact solution. Superlattice Microst. 109, 905–914 (2017).
dc.relation.referencesen[23] Davydov A. Theory of solids. Nauka, Moscow (1976).
dc.relation.referencesen[24] Li L., Zhou X., Tang Z., Zhou Y.,Zheng Y., Li N., Chen P., Li Z., LuW. Long wavelength infrared quantum cascade detector with a broadband response. J. Phys. D: Appl. Phys. 51 (37), 37LTO1 (2018).
dc.relation.referencesen[25] Tkach M., Seti Ju., Grynyshyn Y., Voitsekhivska O. Dynamic Conductivity of Electrons and Electron Phonon Interaction in Open Three-Well Nanostructures. Acta Phys. Pol. A. 128 (3), 343–352 (2015).
dc.rights.holder©2020 Lviv Polytechnic National University CMM IAPMM NASU
dc.subjectнаносистема
dc.subjectквантовий каскадний детектор
dc.subjectенергетичний спектр
dc.subjectфонон-супровiдне тунелювання
dc.subjectnanosystem
dc.subjectquantum cascade detector
dc.subjectenergy spectrum
dc.subjectphonon-assisted tunneling
dc.subject.udc81-10
dc.subject.udc81V19
dc.subject.udc92F99
dc.titleModeling of optimized cascade of quantum cascade detector operating in far infrared range
dc.title.alternativeМоделювання оптимізованого каскаду квантового каскадного детектора далекого інфрачервоного діапазону
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2020v7n1_Seti_Ju_O-Modeling_of_optimized_cascade_186-195.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Plain Text
Description: