Mathematical modeling of stationary thermoelastic state in a half plane containing an inclusion and a crack due to local heating by a heat flux

dc.citation.epage95
dc.citation.issue1
dc.citation.spage88
dc.contributor.affiliationНацiональний унiверситет “Львiвська полiтехнiка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМ, Зеленяк В.
dc.contributor.authorZelenyak, V. M.
dc.date.accessioned2023-03-06T12:28:24Z
dc.date.available2023-03-06T12:28:24Z
dc.date.created2020-01-01
dc.date.issued2020-01-01
dc.description.abstractРозглянуто двовимiрнi стацiонарнi задачi теплопровiдностi та термопружностi для напiвнескiнченного пружного тiла, що мiстить включення та трiщину. Для цього побудовано математичнi моделi цих двовимiрних задач у виглядi системи сингулярних iнтегральних рiвнянь (СIР) першого та другого роду. Числовий розв’язок системи iнтегральних рiвнянь одержано методом механiчних квадратур у разi пружної пiвплощини, що локально нагрiвається тепловим потоком i мiстить кругове виключення та теплоiзольовану прямолiнiйну трiщину. Отримано графiчнi залежностi коефiцiєнтiв iнтенсивностi напружень (КIН), якi характеризують розподiл iнтенсивностi напруженнь у вершинах трiщини, залежно вiд пружних та термопружних характеристик включення та матрицi, вiд вiдносного положення трiщини та включення. Отриманi результати використанi для визначення критичних значень теплового потоку, за якого трiщина починає рости. Ця модель є розвитком вiдомих моделей двовимiрних стацiонарних задач теплопровiдностi та термопружностi для кусково-однорiдних тiл з трiщинами.
dc.description.abstractThe two-dimensional stationary problems of heat conduction and thermoelasticity for a semi-infinite elastic body containing an inclusion and a crack are considered. For this purpose, mathematical models of these two-dimensional problems in the form of a system of singular integral equations (SIEs) of the first and the second kinds are constructed. The numerical solution of the system of integral equations in the case of a half plane containing an inclusion and thermally insulated crack due to local heating by a heat flux is obtained using the method of mechanical quadratures. We present graphical dependencies of stress intensity factors (SIFs), which characterize the distribution of intensity of stresses on the tops of a crack, on the elastic and thermoelastic characteristics of an inclusion and a matrix, as well as on a relative position of a crack and an inclusion. The obtained results are subsequently used to determine the critical values of a heat flux at which a crack starts to grow. This model is the development of known models of two-dimensional stationary problems of heat conduction and thermoelasticity for piecewise-homogeneous bodies with cracks.
dc.format.extent88-95
dc.format.pages8
dc.identifier.citationZelenyak V. M. Mathematical modeling of stationary thermoelastic state in a half plane containing an inclusion and a crack due to local heating by a heat flux / Zelenyak V. M. // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 7. — No 1. — P. 88–95.
dc.identifier.citationenZelenyak V. M. (2020) Mathematical modeling of stationary thermoelastic state in a half plane containing an inclusion and a crack due to local heating by a heat flux. Mathematical Modeling and Computing (Lviv), vol. 7, no 1, pp. 88-95.
dc.identifier.doiDOI: 10.23939/mmc2020.01.088
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57523
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (7), 2020
dc.relation.references[1] Sekine H. Thermal stress singularities at tips of a crack in a semi–infinite medium under uniform heat flow. Engineering Fracture Mechanics. 7 (4), 713–729 (1975).
dc.relation.references[2] Sekine H. Thermal stresses near tips of an insulated line crack in a semi–infinite medium under uniform heat flow. Engineering Fracture Mechanics. 9 (2), 499–507 (1977).
dc.relation.references[3] Tweed I., Lowe S. The thermoelastic problem for a half-plane with an internal line crack. International Journal of Engineering Science. 17 (4), 357–363 (1979).
dc.relation.references[4] Konechnyj S., Evtushenko A., Zelenyak V. The effect of the shape of distribution of the friction heat flow on the stress-strain state of a semispace. Trenie i Iznos. 23, 115–119 (2002).
dc.relation.references[5] Matysiak S. J., Evtushenko A. A., Zelenyak V. M. Frictional heating of a half–space with cracks. I. Single or periodic system of subsurface cracks. Tribology International. 32 (5), 237–242 (1999).
dc.relation.references[6] Zelenyak V. M., Kolyasa L. I. Thermoelastic state of a half plane with curvilinear crack under the conditions of local heating. Materials Science. 52, 315–322 (2016).
dc.relation.references[7] Konechny S., Evtushenko A., Zelenyak V. Heating of the semispace with edge cracks by friction. Trenie i Iznos. 22, 39–45 (2001).
dc.relation.references[8] Matysiak S., Evtushenko A., Zelenyak V. Heating of a half space containing an inclusion and a crack. Materials Science. 40, 467–474 (2004).
dc.relation.references[9] Hasebe N., Wang X., Saito T., Sheng W. Interaction between a rigid inclusion and a line crack under uniform heat flux. International Journal of Solids and Structures. 44 (7–8), 2426–2441 (2007).
dc.relation.references[10] Kit G. S., Krivtsun M. G. Plane thermoelasticity problems for bodies with cracks. Kiev, Naukova dumka(1983), (in Russian).
dc.relation.references[11] Kit H. S., Chernyak M. S. Stressed state of bodies with thermal cylindrical inclusions and cracks (plane deformation). Materials Science. 46, 315–324 (2010).
dc.relation.references[12] Chen H., Wang Q., Liu G., Sun J. Simulation of thermoelastic crack problems using singular edge-based smoothed finite element method. International Journal of Mechanical Sciences. 115–116, 123–134 (2016).
dc.relation.references[13] Choi H. J. Thermoelastic interaction of two offset interfacial cracks in bonded dissimilar half-planes with a functionally graded interlayer. Acta Mechanica. 225, 2111–2131 (2014).
dc.relation.references[14] Savruk M. P. Two-dimensional elasticity problem for bodies with cracks. Kiev, Naukova dumka (1981), (in Russian).
dc.relation.references[15] Erdogan F., Gupta G. D., Cook T. S. Numerical solution of singular integral equations. In: Sih G. C. (eds) Methods of analysis and solutions of crack problems. Mechanics of fracture, vol. 1. Springer, Dordrecht.368–425 (1973).
dc.relation.references[16] Podstrigach Ya. S., Burak Ya. Y., Hachkevych O. R., Chernyavskaya L. V. Thermoelasticity of electrically conductive bodies. Kiev, Naukova Dumka (1977), (in Russian).
dc.relation.references[17] Panasyuk V. V., Savruk M. P., Datsyshin A. P. Stress distribution around cracks in plates and shells. Kiev, Naukova Dumka (1976), (in Russian).
dc.relation.referencesen[1] Sekine H. Thermal stress singularities at tips of a crack in a semi–infinite medium under uniform heat flow. Engineering Fracture Mechanics. 7 (4), 713–729 (1975).
dc.relation.referencesen[2] Sekine H. Thermal stresses near tips of an insulated line crack in a semi–infinite medium under uniform heat flow. Engineering Fracture Mechanics. 9 (2), 499–507 (1977).
dc.relation.referencesen[3] Tweed I., Lowe S. The thermoelastic problem for a half-plane with an internal line crack. International Journal of Engineering Science. 17 (4), 357–363 (1979).
dc.relation.referencesen[4] Konechnyj S., Evtushenko A., Zelenyak V. The effect of the shape of distribution of the friction heat flow on the stress-strain state of a semispace. Trenie i Iznos. 23, 115–119 (2002).
dc.relation.referencesen[5] Matysiak S. J., Evtushenko A. A., Zelenyak V. M. Frictional heating of a half–space with cracks. I. Single or periodic system of subsurface cracks. Tribology International. 32 (5), 237–242 (1999).
dc.relation.referencesen[6] Zelenyak V. M., Kolyasa L. I. Thermoelastic state of a half plane with curvilinear crack under the conditions of local heating. Materials Science. 52, 315–322 (2016).
dc.relation.referencesen[7] Konechny S., Evtushenko A., Zelenyak V. Heating of the semispace with edge cracks by friction. Trenie i Iznos. 22, 39–45 (2001).
dc.relation.referencesen[8] Matysiak S., Evtushenko A., Zelenyak V. Heating of a half space containing an inclusion and a crack. Materials Science. 40, 467–474 (2004).
dc.relation.referencesen[9] Hasebe N., Wang X., Saito T., Sheng W. Interaction between a rigid inclusion and a line crack under uniform heat flux. International Journal of Solids and Structures. 44 (7–8), 2426–2441 (2007).
dc.relation.referencesen[10] Kit G. S., Krivtsun M. G. Plane thermoelasticity problems for bodies with cracks. Kiev, Naukova dumka(1983), (in Russian).
dc.relation.referencesen[11] Kit H. S., Chernyak M. S. Stressed state of bodies with thermal cylindrical inclusions and cracks (plane deformation). Materials Science. 46, 315–324 (2010).
dc.relation.referencesen[12] Chen H., Wang Q., Liu G., Sun J. Simulation of thermoelastic crack problems using singular edge-based smoothed finite element method. International Journal of Mechanical Sciences. 115–116, 123–134 (2016).
dc.relation.referencesen[13] Choi H. J. Thermoelastic interaction of two offset interfacial cracks in bonded dissimilar half-planes with a functionally graded interlayer. Acta Mechanica. 225, 2111–2131 (2014).
dc.relation.referencesen[14] Savruk M. P. Two-dimensional elasticity problem for bodies with cracks. Kiev, Naukova dumka (1981), (in Russian).
dc.relation.referencesen[15] Erdogan F., Gupta G. D., Cook T. S. Numerical solution of singular integral equations. In: Sih G. C. (eds) Methods of analysis and solutions of crack problems. Mechanics of fracture, vol. 1. Springer, Dordrecht.368–425 (1973).
dc.relation.referencesen[16] Podstrigach Ya. S., Burak Ya. Y., Hachkevych O. R., Chernyavskaya L. V. Thermoelasticity of electrically conductive bodies. Kiev, Naukova Dumka (1977), (in Russian).
dc.relation.referencesen[17] Panasyuk V. V., Savruk M. P., Datsyshin A. P. Stress distribution around cracks in plates and shells. Kiev, Naukova Dumka (1976), (in Russian).
dc.rights.holder©2020 Lviv Polytechnic National University CMM IAPMM NASU
dc.subjectтермопружнiсть
dc.subjectкоефiцiєнт iнтенсивностi напружень
dc.subjectсингулярне iнтегральне рiвняння
dc.subjectвключення
dc.subjectтеплопровiднiсть
dc.subjectтрiщина
dc.subjectтепловий потiк
dc.subjectstress intensity factor
dc.subjectsingular integral equation
dc.subjectinclusion
dc.subjectheat conduction
dc.subjectthermoelasticity
dc.subjectcrack
dc.subjectheat flux
dc.subject.udc74K25
dc.titleMathematical modeling of stationary thermoelastic state in a half plane containing an inclusion and a crack due to local heating by a heat flux
dc.title.alternativeМатематичне моделювання стаціонарного термопружного стану в півплощині з включенням і тріщиною за дії локального нагрівання тепловим потоком
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2020v7n1_Zelenyak_V_M-Mathematical_modeling_88-95.pdf
Size:
880.71 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: