Density based fuzzy support vector machine: application to diabetes dataset

dc.citation.epage760
dc.citation.issue4
dc.citation.spage747
dc.contributor.affiliationУніверситет Сіді Мохаммеда бен Абдалли
dc.contributor.affiliationUniversity Sidi Mohamed Ben Abdellah
dc.contributor.authorЕль Уісарі, А.
dc.contributor.authorЕль Мутауакіл, К.
dc.contributor.authorEl Ouissari, A.
dc.contributor.authorEl Moutaouakil, K.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-11-01T07:49:29Z
dc.date.available2023-11-01T07:49:29Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractУ роботі запропоновано систему глибокого прогнозування діабету, засновану на новій версії моделі машинної оптимізації опорних векторів. Спочатку визначаються три типи пацієнтів (шум, зв’язкові та внутрішні) на основі конкретних параметрів. Далі врівноважуються набори клінічних даних, пригнічуючи шумних та зв’язкових пацієнтів. Після того визначаються вектори підтримки, розв’язуючи програму оптимізації розумного розміру. Запропонована система виконується на добре відомому наборі даних про діабет PIMA. Результати експериментів показують, що запропонований метод покращує точність прогнозування, а запропонована система значно перевершує всі інші версії SVM, а також літературні методи класифікації.
dc.description.abstractIn this work, we propose a deep prediction diabetes system based on a new version of the support vector machine optimization model. First, we determine three types of patients (noisy, cord, and interior) basing on specific parameters. Second, we equilibrate the clinical data sets by suppressing noisy and cord patients. Third, we determine the support vectors by solving an optimization program with a reasonable size. Our system is performed on the well-known diabetes dataset PIMA. The experimental results show that the proposed method improves the prediction accuracy and the proposed system significantly outperforms all other versions of SVM as well as literature methods of classification.
dc.format.extent747-760
dc.format.pages14
dc.identifier.citationEl Ouissari A. Density based fuzzy support vector machine: application to diabetes dataset / A. El Ouissari, K. El Moutaouakil // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 747–760.
dc.identifier.citationenEl Ouissari A. Density based fuzzy support vector machine: application to diabetes dataset / A. El Ouissari, K. El Moutaouakil // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 747–760.
dc.identifier.doi10.23939/mmc2021.04.747
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60439
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 4 (8), 2021
dc.relation.references[1] WHO. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 1 June 2020).
dc.relation.references[2] IDF Diabetes Atlas, A.D. Type 2 Diabetes. Available online: https://www.idf.org/aboutdiabetes/type-2-diabetes.html (accessed on 20 March 2020).
dc.relation.references[3] El Moutaouakil K., Touhafi A. A New Recurrent Neural Network Fuzzy Mean Square Clustering Method. 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech). 1–5 (2020).
dc.relation.references[4] Vapnik V. N. The Nature of Statistical Learning Theory. Springer Science and Business Media (1999).
dc.relation.references[5] Burges C. J. C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery. 2, 121–167 (1998).
dc.relation.references[6] Vapnik V. N., Chervonenkis A. Ya. A class of algorithms for pattern recognition learning. Avtomat. i Telemekh. 25 (6), 937–945 (1964).
dc.relation.references[7] El Moutaouakil K., El Ouissari A., Touhafi A., Aharrane N. An Improved Density Based Support Vector Machine (DBSVM). 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech). 1–7 (2020).
dc.relation.references[8] Mercer J. XVI. Functions of positive and negative type, and their connection the theory of integral equations. Philosophical Transactions of The Royal Society of London. Series A. 209 (441–458), 415–446 (1909).
dc.relation.references[9] Mangasarian O. L. Generalized Support Vector Machines. Advanced in Large Margin Classifiers. 135–146 (2000).
dc.relation.references[10] Lin C. F., Wang S. D. Fuzzy support vector machines. IEEE transactions on neural networks. 13 (2), 464–471 (2002).
dc.relation.references[11] Sch¨olkopf B., Smola A. J., Williamson R. C., Bartlett P. L. New support vector algorithms. Neural computation. 12 (5), 1207–1245 (2000).
dc.relation.references[12] Suykens J. A. K., Vandewalle J. Least squares support vector machine classifiers. Neural processing letters. 9 (3), 293-300 (1999).
dc.relation.references[13] Sch¨olkopf B., Platt J. C., Shawe-Taylor J., Smola A. J., Williamson R. C. Estimating the support of a highdimensional distribution. Neural computation. 13 (7), 1443–1471 (2001).
dc.relation.references[14] Bi J., Zhang T. Support vector classification with input data uncertainty. Advances in neural information processing systems. 161–168 (2005).
dc.relation.references[15] Yang X., Song Q., Cao A. Weighted support vector machine for data classification. Proceedings. 2005 IEEE International Joint Conference on Neural Networks. 2, 859–864 (2005).
dc.relation.references[16] Bi J., Vapnik V. N. Learning with rigorous support vector machines. Learning Theory and Kernel Mahines. 243–257 (2003).
dc.relation.references[17] Tang Y., Jin B., Sun Y., Zhang Y. Q. Granular support vector machines for medical binary classification problems. 2004 Symposium on Computational Intelligence in Bioinformatics and Computational Biology. 73–78 (2004).
dc.relation.references[18] Lee Y. J., Mangasarian O. L. SSVM: A smooth support vector machine for classification. Computational optimization and Applications. 20 (1), 5–22 (2001).
dc.relation.references[19] Lee Y. J., Mangasarian O. L. RSVM: Reduced support vector machines. Proceedings of the 2001 SIAM International Conference on Data Mining. 1–17 (2001).
dc.relation.references[20] Sch¨olkopf B., Smola A. J., Bach F. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press (2002).
dc.relation.references[21] Mangasarian O. L., Wild E. W. Proximal support vector machine classifiers. Proceedings KDD-2001: Knowlborder discovery and data mining (2001).
dc.relation.references[22] Mangasarian O. L., Wild E. W. Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE transactions on pattern analysis and machine intelligence. 28 (1), 69–74 (2005).
dc.relation.references[23] Khemchandani R., Chandra S. Twin support vector machines for pattern classification. IEEE Transactions on pattern analysis and machine intelligence. 29 (5), 905–910 (2007).
dc.relation.references[24] Cortes, C., Vapnik, V. Support-vector networks. Machine learning, 20(3), 273-297 (1995).
dc.relation.references[25] Wang Y., Wang S., Lai K. K. A new fuzzy support vector machine to evaluate credit risk. IEEE Transactions on Fuzzy Systems. 13 (6), 820–831 (2005).
dc.relation.references[26] Huang H. P., Liu Y. H. Fuzzy support vector machines for pattern recognition and data mining. Int. J. Fuzzy Syst. 4, 826–835 (2002).
dc.relation.references[27] Batuwita R., Palade V. FSVM-CIL: fuzzy support vector machines for class imbalance learning. IEEE Transactions on Fuzzy Systems. 18 (3), 558–571 (2010).
dc.relation.references[28] Yu H., Sun C., Yang X., Zheng S., Zou H. Fuzzy support vector machine with relative density information for classifying imbalanced data. IEEE transactions on fuzzy systems. 27 (12), 2353–2367 (2019).
dc.relation.references[29] Khanam J. J., Foo S. Y. A comparison of machine learning algorithms for diabetes prediction. ICT Express. (2021).
dc.relation.references[30] Tigga N. P., Garg S. Prediction of type 2 diabetes using machine learning classification methods. Procedia Computer Science. 167, 706–716 (2020).
dc.relation.references[31] Shuja M., Mittal S., Zaman M. Effective prediction of type ii diabetes mellitus using data mining classifiers and SMOTE. Advances in computing and intelligent systems. 195–211 (2020).
dc.relation.references[32] Devi R. D. H., Bai A., Nagarajan N. A novel hybrid approach for diagnosing diabetes mellitus using farthest first and support vector machine algorithms. Obesity Medicine. 17, 100152 (2020).
dc.relation.referencesen[1] WHO. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 1 June 2020).
dc.relation.referencesen[2] IDF Diabetes Atlas, A.D. Type 2 Diabetes. Available online: https://www.idf.org/aboutdiabetes/type-2-diabetes.html (accessed on 20 March 2020).
dc.relation.referencesen[3] El Moutaouakil K., Touhafi A. A New Recurrent Neural Network Fuzzy Mean Square Clustering Method. 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech). 1–5 (2020).
dc.relation.referencesen[4] Vapnik V. N. The Nature of Statistical Learning Theory. Springer Science and Business Media (1999).
dc.relation.referencesen[5] Burges C. J. C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery. 2, 121–167 (1998).
dc.relation.referencesen[6] Vapnik V. N., Chervonenkis A. Ya. A class of algorithms for pattern recognition learning. Avtomat. i Telemekh. 25 (6), 937–945 (1964).
dc.relation.referencesen[7] El Moutaouakil K., El Ouissari A., Touhafi A., Aharrane N. An Improved Density Based Support Vector Machine (DBSVM). 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech). 1–7 (2020).
dc.relation.referencesen[8] Mercer J. XVI. Functions of positive and negative type, and their connection the theory of integral equations. Philosophical Transactions of The Royal Society of London. Series A. 209 (441–458), 415–446 (1909).
dc.relation.referencesen[9] Mangasarian O. L. Generalized Support Vector Machines. Advanced in Large Margin Classifiers. 135–146 (2000).
dc.relation.referencesen[10] Lin C. F., Wang S. D. Fuzzy support vector machines. IEEE transactions on neural networks. 13 (2), 464–471 (2002).
dc.relation.referencesen[11] Sch¨olkopf B., Smola A. J., Williamson R. C., Bartlett P. L. New support vector algorithms. Neural computation. 12 (5), 1207–1245 (2000).
dc.relation.referencesen[12] Suykens J. A. K., Vandewalle J. Least squares support vector machine classifiers. Neural processing letters. 9 (3), 293-300 (1999).
dc.relation.referencesen[13] Sch¨olkopf B., Platt J. C., Shawe-Taylor J., Smola A. J., Williamson R. C. Estimating the support of a highdimensional distribution. Neural computation. 13 (7), 1443–1471 (2001).
dc.relation.referencesen[14] Bi J., Zhang T. Support vector classification with input data uncertainty. Advances in neural information processing systems. 161–168 (2005).
dc.relation.referencesen[15] Yang X., Song Q., Cao A. Weighted support vector machine for data classification. Proceedings. 2005 IEEE International Joint Conference on Neural Networks. 2, 859–864 (2005).
dc.relation.referencesen[16] Bi J., Vapnik V. N. Learning with rigorous support vector machines. Learning Theory and Kernel Mahines. 243–257 (2003).
dc.relation.referencesen[17] Tang Y., Jin B., Sun Y., Zhang Y. Q. Granular support vector machines for medical binary classification problems. 2004 Symposium on Computational Intelligence in Bioinformatics and Computational Biology. 73–78 (2004).
dc.relation.referencesen[18] Lee Y. J., Mangasarian O. L. SSVM: A smooth support vector machine for classification. Computational optimization and Applications. 20 (1), 5–22 (2001).
dc.relation.referencesen[19] Lee Y. J., Mangasarian O. L. RSVM: Reduced support vector machines. Proceedings of the 2001 SIAM International Conference on Data Mining. 1–17 (2001).
dc.relation.referencesen[20] Sch¨olkopf B., Smola A. J., Bach F. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press (2002).
dc.relation.referencesen[21] Mangasarian O. L., Wild E. W. Proximal support vector machine classifiers. Proceedings KDD-2001: Knowlborder discovery and data mining (2001).
dc.relation.referencesen[22] Mangasarian O. L., Wild E. W. Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE transactions on pattern analysis and machine intelligence. 28 (1), 69–74 (2005).
dc.relation.referencesen[23] Khemchandani R., Chandra S. Twin support vector machines for pattern classification. IEEE Transactions on pattern analysis and machine intelligence. 29 (5), 905–910 (2007).
dc.relation.referencesen[24] Cortes, C., Vapnik, V. Support-vector networks. Machine learning, 20(3), 273-297 (1995).
dc.relation.referencesen[25] Wang Y., Wang S., Lai K. K. A new fuzzy support vector machine to evaluate credit risk. IEEE Transactions on Fuzzy Systems. 13 (6), 820–831 (2005).
dc.relation.referencesen[26] Huang H. P., Liu Y. H. Fuzzy support vector machines for pattern recognition and data mining. Int. J. Fuzzy Syst. 4, 826–835 (2002).
dc.relation.referencesen[27] Batuwita R., Palade V. FSVM-CIL: fuzzy support vector machines for class imbalance learning. IEEE Transactions on Fuzzy Systems. 18 (3), 558–571 (2010).
dc.relation.referencesen[28] Yu H., Sun C., Yang X., Zheng S., Zou H. Fuzzy support vector machine with relative density information for classifying imbalanced data. IEEE transactions on fuzzy systems. 27 (12), 2353–2367 (2019).
dc.relation.referencesen[29] Khanam J. J., Foo S. Y. A comparison of machine learning algorithms for diabetes prediction. ICT Express. (2021).
dc.relation.referencesen[30] Tigga N. P., Garg S. Prediction of type 2 diabetes using machine learning classification methods. Procedia Computer Science. 167, 706–716 (2020).
dc.relation.referencesen[31] Shuja M., Mittal S., Zaman M. Effective prediction of type ii diabetes mellitus using data mining classifiers and SMOTE. Advances in computing and intelligent systems. 195–211 (2020).
dc.relation.referencesen[32] Devi R. D. H., Bai A., Nagarajan N. A novel hybrid approach for diagnosing diabetes mellitus using farthest first and support vector machine algorithms. Obesity Medicine. 17, 100152 (2020).
dc.relation.urihttps://www.who.int/news-room/fact-sheets/detail/diabetes
dc.relation.urihttps://www.idf.org/aboutdiabetes/type-2-diabetes.html
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectметод опорних векторів
dc.subjectмашинне навчання
dc.subjectоптимізація
dc.subjectкласифікація
dc.subjectдіабет
dc.subjectsupport vector machine
dc.subjectmachine learning
dc.subjectoptimization
dc.subjectclassification
dc.subjectdiabetes
dc.titleDensity based fuzzy support vector machine: application to diabetes dataset
dc.title.alternativeАдаптивний метод опорних векторів на основі функції щільності: застосування до набору даних про діабет
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2021v8n4_El_Ouissari_A-Density_based_fuzzy_747-760.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2021v8n4_El_Ouissari_A-Density_based_fuzzy_747-760__COVER.png
Size:
389.02 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: