Дослідження особливостей гелеутворення та властивостей гідрогелів при структуруванні форполімерів акриламіду

dc.citation.epage185
dc.citation.issue1
dc.citation.spage179
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМайкович, О. В.
dc.contributor.authorДронь, І. А.
dc.contributor.authorБукартик, Н. М.
dc.contributor.authorБорденюк, О. Ю.
dc.contributor.authorНосова, Н. Г.
dc.contributor.authorMaikovych, O. V.
dc.contributor.authorDron, I. A.
dc.contributor.authorBukartyk, N. M.
dc.contributor.authorBordeniuk, O. Yu.
dc.contributor.authorNosova, N. G.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:14:48Z
dc.date.available2024-01-22T08:14:48Z
dc.date.created2021-03-16
dc.date.issued2021-03-16
dc.description.abstractНаведено результати досліджень утворення полімерної матриці гідрогелю унаслідок структурування поліакриламіду його реакційноздатним полімерним похідним – полі-N- (гідроксиметил)акриламідом, визначено зони оптимальних умов синтезу та отримано характеристики гідрогелю залежно від рН-середовища, концентрації форполімерів, співвідношення між форполімерами та тривалості синтезу. Встановлено, що водневий показник реакційного середовища під час синтезу гідрогелів є одним із вагомих факторів, який у разі конструювання полімерного каркаса гідрогелів дає змогу в широких межах регулювати їхні колоїдно-хімічні властивості.
dc.description.abstractThe paper represents the results of the investigation of the formation of a polymeric matrix of hydrogel due to the structuring of polyacrylamide using its reactive polymeric derivative – poly-N- (hydroxymethyl) acrylamide. Research determined zones of optimum conditions of synthesis and characterized hydrogel depending on pH of media, the ratio between the concentration of prepolymers, and time of synthesis. The investigation of the reaction mixture showed that the hydrogen index of the synthesis of hydrogels is one of the important factors, which in the design of the polymer framework of hydrogels allows regulating their colloidal chemical properties in a wide range.
dc.format.extent179-185
dc.format.pages7
dc.identifier.citationДослідження особливостей гелеутворення та властивостей гідрогелів при структуруванні форполімерів акриламіду / О. В. Майкович, І. А. Дронь, Н. М. Букартик, О. Ю. Борденюк, Н. Г. Носова // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2021. — Том 4. — № 1. — С. 179–185.
dc.identifier.citationenInvestigation of gel formation peculiarities and properties of hydrogels obtained by the structuring of acrylamide prepolymers / O. V. Maikovych, I. A. Dron, N. M. Bukartyk, O. Yu. Bordeniuk, N. G. Nosova // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 179–185.
dc.identifier.doidoi.org/10.23939/ctas2021.01.179
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60856
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (4), 2021
dc.relation.references1. Tavakoli, S., & Klar, A. S. (2020). Advanced Hydrogels as Wound Dressings. Biomolecules, 10(8), 1169. doi:10.3390/biom10081169
dc.relation.references2. Li, Y., Huang, G., Zhang, X., Li, B., Chen, Y., Lu, T., Xu, F. (2012). Magnetic Hydrogels and Their Potential Biomedical Applications. Advanced Functional Materials, 23(6), 660–672. doi:10.1002/adfm.201201708
dc.relation.references3. Chai, Q., Jiao, Y., & Yu, X. (2017). Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels, 3(1), 6. doi:10.3390/gels3010006
dc.relation.references4. Samchenko Yu. M., Konovalova V. V., Kryklia S. O., Pasmurtseva N.O. (2015). Nanorozmirni ferohidroheli na osnovi N-izopropil-akrylamidu dlia kontrolovanoho transportu likarskykh preparativ. Polimernyi zhurnal, 37(4), 416–422.
dc.relation.references5. Gong, C., Qi, T., Wei, X., Qu, Y., Wu, Q., Luo, F., & Qian, Z. (2012). Thermosensitive Polymeric Hydrogels As Drug Delivery Systems. Current Medicinal Chemistry, 20(1), 79–94. doi:10.2174/0929867311302010009.
dc.relation.references6. Mir, M., Ali, M. N., Barakullah, A., Gulzar, A., Arshad, M., Fatima, S., & Asad, M. (2018). Synthetic polymeric biomaterials for wound healing: A review. Progress in Biomaterials, 7(1), 1–21. doi:10.1007/s40204-018-0083-4.
dc.relation.references7. Shantha, K., & Harding, D. (2000). Preparation and in-vitro evaluation of poly[N-vinyl-2-pyrrolidonepolyethylene glycol diacrylate]-chitosan interpolymeric pH-responsive hydrogels for oral drug delivery. International Journal of Pharmaceutics, 207(1–2), 65–70. doi:10.1016/s0378-5173(00)00533-0.
dc.relation.references8. Xiong, L., Luo, Q., Wang, Y., Li, X., Shen, Z., & Zhu, W. (2015). An injectable drug-loaded hydrogel based on a supramolecular polymeric prodrug. Chemical Communications, 51(78), 14644–14647. doi:10.1039/c5cc06025g.
dc.relation.references9. Seliktar, D., Black, R. A., Vito, R. P., & Nerem, R. M. (2000). Dynamic Mechanical Conditioning of Collagen-Gel Blood Vessel Constructs Induces Remodeling In Vitro. Annals of Biomedical Engineering, 28(4), 351–362. doi:10.1114/1.275.
dc.relation.references10. George. M., Joseph L., Francis L. T. (2017). Development and evaluation of silver sulphadiazine loaded sodium alginate gelatin film for wound dressing applications. European Journal of Pharmaceutical and Medical Research, 4(11), 420–423.
dc.relation.references11. Naik, E. R., Reddy, K. V., & Swetha, N. (2019). Super Porous Hydrogels. Research Journal of Pharmacy and Technology, 12(1), 434. doi:10.5958/0974-360x.2019.00079.9.
dc.relation.references12. Lin, R., Chen, Y., Moreno-Luna, R., Khademhosseini, A., & Melero-Martin, J. M. (2013). Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials, 34(28), 6785–6796. doi:10.1016/j.biomaterials.2013.05.060.
dc.relation.references13. Stoica, A. E., Chircov, C., & Grumezescu, A. M. (2020). Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview. Materials, 13(12), 2853. doi:10.3390/ma13122853.
dc.relation.references14. Tavakoli, J., & Tang, Y. (2017). Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies. Materials Science and Engineering: C, 77, 318–325. doi:10.1016/j.msec.2017.03.272.
dc.relation.references15. El-Mohdy, H. A., & Safrany, A. (2008). Preparation of fast response superabsorbent hydrogels byradiation polymerization and crosslinking of Nisopropylacrylamide in solution. Radiation Physics and Chemistry, 77(3), 273–279. doi:10.1016/j.radphyschem. 2007.05.006.
dc.relation.references16. Rodrigues, F. H., Spagnol, C., Pereira, A. G., Martins, A. F., Fajardo, A. R., Rubira, A. F., & Muniz, E. C. (2013). Superabsorbent hydrogel composites with a focus on hydrogels containing nanofibers or nanowhiskers of cellulose and chitin. Journal of Applied Polymer Science, 131(2). doi:10.1002/app.39725.
dc.relation.references17. Park, J., Kim, H., Choi, J., Gwon, H., Shin, Y., Lim, Y., Nho, Y. (2012). Effects of annealing and the addition of PEG on the PVA based hydrogel by gamma ray. Radiation Physics and Chemistry, 81(7), 857–860. doi:10.1016/j.radphyschem.2012.02.005.
dc.relation.references18. Neimash V. B., Kupianskyi H. D., Olkhovyk I. V., Povarchuk V. Yu., Rohutskyi I. S. (2017). Fizychni vlastyvosti radiatsiino-zshytykh hidroheliv polivinilovyi spyrt-polietylenhlikol v konteksti zastosuvannia v medychnykh poviazkakh. Ukrainskyi Fizychnyi Zhurnal, 62(5), 400–409.
dc.relation.references19. Zhang, Y., Wu, F., Li, M., & Wang, E. (2005). PH switching on-off semi-IPN hydrogel based on crosslinked poly(acrylamide-co-acrylic acid) and linear polyallyamine. Polymer, 46(18), 7695–7700. doi:10.1016/j.polymer.2005.05.121.
dc.relation.references20. Nosova N. H., Samaryk V. Ia., Varvarenko S. M., Ferens M. V., Voronovska A. V., Nahorniak M. I., Khomiak S. V., Nadashkevych Z. Ia., Voronov S. A. (2016). Porysti poliakrylamidni hidroheli – oderzhannia ta vlastyvosti. Voprosy khymyy y khymycheskoi tekhnolohyy, 5(6), 78–86.
dc.relation.references21. Samaryk, V., Varvarenko, S., Nosova, N., Fihurka, N., Musyanovych, A., Landfester, K., Voronov, S. (2017). Optical properties of hydrogels filled with dispersed nanoparticles. Chemistry & Chemical Technology, 11(4), 449–453. doi:10.23939/chcht11.04.449.
dc.relation.references22. Christensen, L., Breiting, V., Vuust, J., & Hogdall, E. (2005). Adverse reactions following injection with a permanent facial filler polyacrylamide hydrogel (Aquamid): Causes and treatment. European Journal of Plastic Surgery, 28(7), 464–471. doi:10.1007/s00238-005-0005-2.
dc.relation.references23. Abramova L. Y., Baiburdov T. A., Hryhorian E. P. Polyakrylamyd (1992). Khymyia.
dc.relation.references24. Nilimanka D. Preparation methods and properties of hydrogel: a review. (2013). International Journal of Pharmacy and Pharmaceutical Sciences, 5(3), 112–117.
dc.relation.references25. Dwivedi S., Khatri P., Mehra G.R., Kumar V. Conceptual hydrogel-A, overview. (2001). International Journal of Pharmaceutical and Biological Archive, 2(6), 1588–1597.
dc.relation.references26. Sonali B. D., Ganesh V. D., Sandeep S. T., Atul S. B., Avinash P. T., Hrishikesh A. J., Rajendra N. P. Hydrogel new trend in drug delivery system. Review. (2017). European Journal of Pharmaceutical and Medical Research, 4(1), 503–512.
dc.relation.referencesen1. Tavakoli, S., & Klar, A. S. (2020). Advanced Hydrogels as Wound Dressings. Biomolecules, 10(8), 1169. doi:10.3390/biom10081169
dc.relation.referencesen2. Li, Y., Huang, G., Zhang, X., Li, B., Chen, Y., Lu, T., Xu, F. (2012). Magnetic Hydrogels and Their Potential Biomedical Applications. Advanced Functional Materials, 23(6), 660–672. doi:10.1002/adfm.201201708
dc.relation.referencesen3. Chai, Q., Jiao, Y., & Yu, X. (2017). Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels, 3(1), 6. doi:10.3390/gels3010006
dc.relation.referencesen4. Samchenko Yu. M., Konovalova V. V., Kryklia S. O., Pasmurtseva N.O. (2015). Nanorozmirni ferohidroheli na osnovi N-izopropil-akrylamidu dlia kontrolovanoho transportu likarskykh preparativ. Polimernyi zhurnal, 37(4), 416–422.
dc.relation.referencesen5. Gong, C., Qi, T., Wei, X., Qu, Y., Wu, Q., Luo, F., & Qian, Z. (2012). Thermosensitive Polymeric Hydrogels As Drug Delivery Systems. Current Medicinal Chemistry, 20(1), 79–94. doi:10.2174/0929867311302010009.
dc.relation.referencesen6. Mir, M., Ali, M. N., Barakullah, A., Gulzar, A., Arshad, M., Fatima, S., & Asad, M. (2018). Synthetic polymeric biomaterials for wound healing: A review. Progress in Biomaterials, 7(1), 1–21. doi:10.1007/s40204-018-0083-4.
dc.relation.referencesen7. Shantha, K., & Harding, D. (2000). Preparation and in-vitro evaluation of poly[N-vinyl-2-pyrrolidonepolyethylene glycol diacrylate]-chitosan interpolymeric pH-responsive hydrogels for oral drug delivery. International Journal of Pharmaceutics, 207(1–2), 65–70. doi:10.1016/s0378-5173(00)00533-0.
dc.relation.referencesen8. Xiong, L., Luo, Q., Wang, Y., Li, X., Shen, Z., & Zhu, W. (2015). An injectable drug-loaded hydrogel based on a supramolecular polymeric prodrug. Chemical Communications, 51(78), 14644–14647. doi:10.1039/P.5cc06025g.
dc.relation.referencesen9. Seliktar, D., Black, R. A., Vito, R. P., & Nerem, R. M. (2000). Dynamic Mechanical Conditioning of Collagen-Gel Blood Vessel Constructs Induces Remodeling In Vitro. Annals of Biomedical Engineering, 28(4), 351–362. doi:10.1114/1.275.
dc.relation.referencesen10. George. M., Joseph L., Francis L. T. (2017). Development and evaluation of silver sulphadiazine loaded sodium alginate gelatin film for wound dressing applications. European Journal of Pharmaceutical and Medical Research, 4(11), 420–423.
dc.relation.referencesen11. Naik, E. R., Reddy, K. V., & Swetha, N. (2019). Super Porous Hydrogels. Research Journal of Pharmacy and Technology, 12(1), 434. doi:10.5958/0974-360x.2019.00079.9.
dc.relation.referencesen12. Lin, R., Chen, Y., Moreno-Luna, R., Khademhosseini, A., & Melero-Martin, J. M. (2013). Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials, 34(28), 6785–6796. doi:10.1016/j.biomaterials.2013.05.060.
dc.relation.referencesen13. Stoica, A. E., Chircov, C., & Grumezescu, A. M. (2020). Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview. Materials, 13(12), 2853. doi:10.3390/ma13122853.
dc.relation.referencesen14. Tavakoli, J., & Tang, Y. (2017). Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies. Materials Science and Engineering: C, 77, 318–325. doi:10.1016/j.msec.2017.03.272.
dc.relation.referencesen15. El-Mohdy, H. A., & Safrany, A. (2008). Preparation of fast response superabsorbent hydrogels byradiation polymerization and crosslinking of Nisopropylacrylamide in solution. Radiation Physics and Chemistry, 77(3), 273–279. doi:10.1016/j.radphyschem. 2007.05.006.
dc.relation.referencesen16. Rodrigues, F. H., Spagnol, C., Pereira, A. G., Martins, A. F., Fajardo, A. R., Rubira, A. F., & Muniz, E. C. (2013). Superabsorbent hydrogel composites with a focus on hydrogels containing nanofibers or nanowhiskers of cellulose and chitin. Journal of Applied Polymer Science, 131(2). doi:10.1002/app.39725.
dc.relation.referencesen17. Park, J., Kim, H., Choi, J., Gwon, H., Shin, Y., Lim, Y., Nho, Y. (2012). Effects of annealing and the addition of PEG on the PVA based hydrogel by gamma ray. Radiation Physics and Chemistry, 81(7), 857–860. doi:10.1016/j.radphyschem.2012.02.005.
dc.relation.referencesen18. Neimash V. B., Kupianskyi H. D., Olkhovyk I. V., Povarchuk V. Yu., Rohutskyi I. S. (2017). Fizychni vlastyvosti radiatsiino-zshytykh hidroheliv polivinilovyi spyrt-polietylenhlikol v konteksti zastosuvannia v medychnykh poviazkakh. Ukrainskyi Fizychnyi Zhurnal, 62(5), 400–409.
dc.relation.referencesen19. Zhang, Y., Wu, F., Li, M., & Wang, E. (2005). PH switching on-off semi-IPN hydrogel based on crosslinked poly(acrylamide-co-acrylic acid) and linear polyallyamine. Polymer, 46(18), 7695–7700. doi:10.1016/j.polymer.2005.05.121.
dc.relation.referencesen20. Nosova N. H., Samaryk V. Ia., Varvarenko S. M., Ferens M. V., Voronovska A. V., Nahorniak M. I., Khomiak S. V., Nadashkevych Z. Ia., Voronov S. A. (2016). Porysti poliakrylamidni hidroheli – oderzhannia ta vlastyvosti. Voprosy khymyy y khymycheskoi tekhnolohyy, 5(6), 78–86.
dc.relation.referencesen21. Samaryk, V., Varvarenko, S., Nosova, N., Fihurka, N., Musyanovych, A., Landfester, K., Voronov, S. (2017). Optical properties of hydrogels filled with dispersed nanoparticles. Chemistry & Chemical Technology, 11(4), 449–453. doi:10.23939/chcht11.04.449.
dc.relation.referencesen22. Christensen, L., Breiting, V., Vuust, J., & Hogdall, E. (2005). Adverse reactions following injection with a permanent facial filler polyacrylamide hydrogel (Aquamid): Causes and treatment. European Journal of Plastic Surgery, 28(7), 464–471. doi:10.1007/s00238-005-0005-2.
dc.relation.referencesen23. Abramova L. Y., Baiburdov T. A., Hryhorian E. P. Polyakrylamyd (1992). Khymyia.
dc.relation.referencesen24. Nilimanka D. Preparation methods and properties of hydrogel: a review. (2013). International Journal of Pharmacy and Pharmaceutical Sciences, 5(3), 112–117.
dc.relation.referencesen25. Dwivedi S., Khatri P., Mehra G.R., Kumar V. Conceptual hydrogel-A, overview. (2001). International Journal of Pharmaceutical and Biological Archive, 2(6), 1588–1597.
dc.relation.referencesen26. Sonali B. D., Ganesh V. D., Sandeep S. T., Atul S. B., Avinash P. T., Hrishikesh A. J., Rajendra N. P. Hydrogel new trend in drug delivery system. Review. (2017). European Journal of Pharmaceutical and Medical Research, 4(1), 503–512.
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectполіакриламід
dc.subjectгідрогель
dc.subjectрН середовища
dc.subjectгель-фракція
dc.subjectступінь набрякання
dc.subjectpolyacrylamide
dc.subjecthydrogel
dc.subjectpH value
dc.subjectgel-fraction
dc.subjectswelling degree
dc.titleДослідження особливостей гелеутворення та властивостей гідрогелів при структуруванні форполімерів акриламіду
dc.title.alternativeInvestigation of gel formation peculiarities and properties of hydrogels obtained by the structuring of acrylamide prepolymers
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2021v4n1_Maikovych_O_V-Investigation_of_gel_179-185.pdf
Size:
742.21 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2021v4n1_Maikovych_O_V-Investigation_of_gel_179-185__COVER.png
Size:
469.35 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: