Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol

dc.citation.epage268
dc.citation.issue2
dc.citation.spage261
dc.contributor.affiliationNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
dc.contributor.affiliationUkrainian State Chemical-Engineering University
dc.contributor.authorVorobyova, Victoria
dc.contributor.authorChygyrynets’, Olena
dc.contributor.authorSkiba, Margarita
dc.contributor.authorOverchenko, Tatiana
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-03-02T12:28:10Z
dc.date.available2020-03-02T12:28:10Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractТимол досліджено як новий леткий інгібітор атмосферної корозії сталі. Для оцінки складу та характеристики сформованих захисних шарів використовували гравіметричні та електрохімічні дослідження, доповнені спектральними FT-IR та мікроскопічними методами аналізу SEM. Плівка, утворена на поверхні сталі з парогазової фази тимолу, забезпечує ефект післядії на рівні 90% за періодичної конденсації вологи впродовж 504 годин. Для оцінки адсорбційної здатності тимолу проведені квантово-хімічні розрахунки енергетичних параметрів молекули тимолу.
dc.description.abstractThe inhibition effect of thymol during the early stage of steel corrosion under adsorbed thin electrolyte layers was investigated. Its vapor corrosion inhibition property was evaluated under simulated operational conditions. Electrochemical techniques complemented by FTIR and SEM surface analyses were used to evaluate the composition and characteristics of the layers. The results indicate that thymol can form a protective film on the metal surface, which protects the metal against further corrosion. Quantum chemical calculations studies were also performed to support weight loss and electrochemical experimental observations.
dc.format.extent261-268
dc.format.pages8
dc.identifier.citationExperimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol / Victoria Vorobyova, Olena Chygyrynets’, Margarita Skiba, Tatiana Overchenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 261–268.
dc.identifier.citationenExperimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol / Victoria Vorobyova, Olena Chygyrynets’, Margarita Skiba, Tatiana Overchenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 261–268.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46467
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (13), 2019
dc.relation.references1. Zhang D-Q., Gao L-X., Zhou G-D.: Surf. Coat. Technol., 2010, 204, 1646. https://doi.org/10.1016/j.surfcoat.2009.10.054
dc.relation.references2. Zhang D-Q., An Z-X., Pan Q-Y. et al.: Corros. Sci., 2006, 48, 1437. https://doi.org/10.1016/j.corsci.2005.06.007
dc.relation.references3. Sudheer A., Quraishi E., Eno E., NatesanM.: Int. J. Electrochem. Sci., 2012, 7, 7463.
dc.relation.references4. Quraishi M., Jamal D.: Corrosion, 2002, 58, 5, 387. https://doi.org/10.5006/1.3277627
dc.relation.references5. Montemor M.: Act. Protect. Coat., 2016, 233, 107. https://doi.org/10.1007/978-94-017-7540-3_6
dc.relation.references6. Chygyrynets’ E., Vorobyova V.: Chem. Chem. Technol., 2014, 8, 235.
dc.relation.references7. Vorob’iova V., Chyhyrynets’ O., Vasyl’kevych O.:Mater. Sci., 2015, 50, 726. https://doi.org/10.1007/s11003-015-9778-z
dc.relation.references8. Chyhyrynets O.,Vorob'iova V.:Mater. Sci., 2013, 49, 318. https://doi.org/10.1007/s11003-013-9617-z
dc.relation.references9. Poongothai N., Rajendran P., NatesanM. et al.: Indian J. Chem. Technol., 2005, 12, 641.
dc.relation.references10. Premkumar P., Kannan K., NatesanM.: Asian J. Chem., 2008, 20, 445.
dc.relation.references11. Premkumar P., Kannan K., NatesanM.: J. Metall. Mater. Sci., 2008, 50, 227.
dc.relation.references12. Li X., Deng S., Fu H., Xie X.: Corros. Sci., 2014, 78, 29. https://doi.org/10.1016/j.corsci.2013.08.025
dc.relation.references13. Leygraf C., Wallinder I.,Tidblad J., Graedel T.: Atmospheric Corrosion. John Wiley & Sons, Inc., Hoboken 2016.
dc.relation.references14. Kaya S., Tüzün B., Kaya C., Obot I.: J. Taiwan Inst. Chem. Eng., 2016, 58, 528. https://doi.org/10.1016/j.jtice.2015.06.009
dc.relation.references15. Gece G.: Corros. Sci., 2008, 50, 11, 2981. https://doi.org/10.1016/j.jtice.2015.06.009
dc.relation.references16. Koopmans T.: Physica, 1934, 1, 104. https://doi.org/10.1016/S0031-8914(34)90011-2
dc.relation.references17. Kovacevic N., Kokalj A.: Corros. Sci., 2011, 53, 3, 909. https://doi.org/10.1016/j.corsci.2010.11.016
dc.relation.references18. Parr R., Pearson R.: J. Am. Chem. Soc., 1983, 105, 7512. https://doi.org/10.1021/ja00364a005
dc.relation.references19. Parr R., Donnelly R., LewyM., Palke W.: J. Chem. Phys., 1978, 68, 3801. https://doi.org/10.1063/1.436185
dc.relation.references20. Pearson R.: Proc. Nats. Acad. Sci. USA, 1986, 83, 8440.
dc.relation.references21. Chattaraj P., Sarkar R., Roy D.: Chem. Rev., 2006, 106, 2065. https://doi.org/10.1021/cr040109f
dc.relation.references22. Parr R., von Szentpaly L., Liu S.: J. Am. Chem. Soc. 1999, 121, 1922. https://doi.org/10.1021/ja983494x
dc.relation.references23. Kaya S., Kaya C.: Comput. Theor. Chem., 2015, 1052, 42. https://doi.org/10.1016/j.comptc.2014.11.017
dc.relation.references24. HyperChemTM, Hypercube, Inc., 1994
dc.relation.references25. Rosliza R. et al.: J. Appl. Electrochem., 2010, 40, 833. https://doi.org/10.1007/s10800-009-0066-1
dc.relation.references26. FerreiraM., Varela H., Torresi R., Tremiliosi-Filho G.: Electrochim. Acta, 2006, 52, 434. https://doi.org/10.1016/j.electacta.2006.05.025
dc.relation.references27. Lukovits I., Kálmán E., Zucchi F.: Corrosion. 2001, 57, 3. https://doi.org/10.5006/1.3290328
dc.relation.referencesen1. Zhang D-Q., Gao L-X., Zhou G-D., Surf. Coat. Technol., 2010, 204, 1646. https://doi.org/10.1016/j.surfcoat.2009.10.054
dc.relation.referencesen2. Zhang D-Q., An Z-X., Pan Q-Y. et al., Corros. Sci., 2006, 48, 1437. https://doi.org/10.1016/j.corsci.2005.06.007
dc.relation.referencesen3. Sudheer A., Quraishi E., Eno E., NatesanM., Int. J. Electrochem. Sci., 2012, 7, 7463.
dc.relation.referencesen4. Quraishi M., Jamal D., Corrosion, 2002, 58, 5, 387. https://doi.org/10.5006/1.3277627
dc.relation.referencesen5. Montemor M., Act. Protect. Coat., 2016, 233, 107. https://doi.org/10.1007/978-94-017-7540-3_6
dc.relation.referencesen6. Chygyrynets’ E., Vorobyova V., Chem. Chem. Technol., 2014, 8, 235.
dc.relation.referencesen7. Vorob’iova V., Chyhyrynets’ O., Vasyl’kevych O.:Mater. Sci., 2015, 50, 726. https://doi.org/10.1007/s11003-015-9778-z
dc.relation.referencesen8. Chyhyrynets O.,Vorob'iova V.:Mater. Sci., 2013, 49, 318. https://doi.org/10.1007/s11003-013-9617-z
dc.relation.referencesen9. Poongothai N., Rajendran P., NatesanM. et al., Indian J. Chem. Technol., 2005, 12, 641.
dc.relation.referencesen10. Premkumar P., Kannan K., NatesanM., Asian J. Chem., 2008, 20, 445.
dc.relation.referencesen11. Premkumar P., Kannan K., NatesanM., J. Metall. Mater. Sci., 2008, 50, 227.
dc.relation.referencesen12. Li X., Deng S., Fu H., Xie X., Corros. Sci., 2014, 78, 29. https://doi.org/10.1016/j.corsci.2013.08.025
dc.relation.referencesen13. Leygraf C., Wallinder I.,Tidblad J., Graedel T., Atmospheric Corrosion. John Wiley & Sons, Inc., Hoboken 2016.
dc.relation.referencesen14. Kaya S., Tüzün B., Kaya C., Obot I., J. Taiwan Inst. Chem. Eng., 2016, 58, 528. https://doi.org/10.1016/j.jtice.2015.06.009
dc.relation.referencesen15. Gece G., Corros. Sci., 2008, 50, 11, 2981. https://doi.org/10.1016/j.jtice.2015.06.009
dc.relation.referencesen16. Koopmans T., Physica, 1934, 1, 104. https://doi.org/10.1016/S0031-8914(34)90011-2
dc.relation.referencesen17. Kovacevic N., Kokalj A., Corros. Sci., 2011, 53, 3, 909. https://doi.org/10.1016/j.corsci.2010.11.016
dc.relation.referencesen18. Parr R., Pearson R., J. Am. Chem. Soc., 1983, 105, 7512. https://doi.org/10.1021/ja00364a005
dc.relation.referencesen19. Parr R., Donnelly R., LewyM., Palke W., J. Chem. Phys., 1978, 68, 3801. https://doi.org/10.1063/1.436185
dc.relation.referencesen20. Pearson R., Proc. Nats. Acad. Sci. USA, 1986, 83, 8440.
dc.relation.referencesen21. Chattaraj P., Sarkar R., Roy D., Chem. Rev., 2006, 106, 2065. https://doi.org/10.1021/cr040109f
dc.relation.referencesen22. Parr R., von Szentpaly L., Liu S., J. Am. Chem. Soc. 1999, 121, 1922. https://doi.org/10.1021/ja983494x
dc.relation.referencesen23. Kaya S., Kaya C., Comput. Theor. Chem., 2015, 1052, 42. https://doi.org/10.1016/j.comptc.2014.11.017
dc.relation.referencesen24. HyperChemTM, Hypercube, Inc., 1994
dc.relation.referencesen25. Rosliza R. et al., J. Appl. Electrochem., 2010, 40, 833. https://doi.org/10.1007/s10800-009-0066-1
dc.relation.referencesen26. FerreiraM., Varela H., Torresi R., Tremiliosi-Filho G., Electrochim. Acta, 2006, 52, 434. https://doi.org/10.1016/j.electacta.2006.05.025
dc.relation.referencesen27. Lukovits I., Kálmán E., Zucchi F., Corrosion. 2001, 57, 3. https://doi.org/10.5006/1.3290328
dc.relation.urihttps://doi.org/10.1016/j.surfcoat.2009.10.054
dc.relation.urihttps://doi.org/10.1016/j.corsci.2005.06.007
dc.relation.urihttps://doi.org/10.5006/1.3277627
dc.relation.urihttps://doi.org/10.1007/978-94-017-7540-3_6
dc.relation.urihttps://doi.org/10.1007/s11003-015-9778-z
dc.relation.urihttps://doi.org/10.1007/s11003-013-9617-z
dc.relation.urihttps://doi.org/10.1016/j.corsci.2013.08.025
dc.relation.urihttps://doi.org/10.1016/j.jtice.2015.06.009
dc.relation.urihttps://doi.org/10.1016/S0031-8914(34)90011-2
dc.relation.urihttps://doi.org/10.1016/j.corsci.2010.11.016
dc.relation.urihttps://doi.org/10.1021/ja00364a005
dc.relation.urihttps://doi.org/10.1063/1.436185
dc.relation.urihttps://doi.org/10.1021/cr040109f
dc.relation.urihttps://doi.org/10.1021/ja983494x
dc.relation.urihttps://doi.org/10.1016/j.comptc.2014.11.017
dc.relation.urihttps://doi.org/10.1007/s10800-009-0066-1
dc.relation.urihttps://doi.org/10.1016/j.electacta.2006.05.025
dc.relation.urihttps://doi.org/10.5006/1.3290328
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Vorobyova V., Chygyrynets’ O., SkibaM., Overchenko T., 2019
dc.subjectатмосферна корозія
dc.subjectтимол
dc.subjectсталь
dc.subjectінгібітор корозії
dc.subjectквантово-хімічні розрахунки
dc.subjectatmospheric corrosion
dc.subjectthymol
dc.subjectsteel
dc.subjectvolatile inhibitor
dc.subjectquantum chemical calculations
dc.titleExperimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol
dc.title.alternativeЕкспериментальні та теоретичні дослідження протикорозійних властивостей тимолу
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v13n2_Vorobyova_V-Experimental_and_Theoretical_261-268.pdf
Size:
530.59 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v13n2_Vorobyova_V-Experimental_and_Theoretical_261-268__COVER.png
Size:
534.83 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3 KB
Format:
Plain Text
Description: