Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol
dc.citation.epage | 268 | |
dc.citation.issue | 2 | |
dc.citation.spage | 261 | |
dc.contributor.affiliation | National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” | |
dc.contributor.affiliation | Ukrainian State Chemical-Engineering University | |
dc.contributor.author | Vorobyova, Victoria | |
dc.contributor.author | Chygyrynets’, Olena | |
dc.contributor.author | Skiba, Margarita | |
dc.contributor.author | Overchenko, Tatiana | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-03-02T12:28:10Z | |
dc.date.available | 2020-03-02T12:28:10Z | |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.description.abstract | Тимол досліджено як новий леткий інгібітор атмосферної корозії сталі. Для оцінки складу та характеристики сформованих захисних шарів використовували гравіметричні та електрохімічні дослідження, доповнені спектральними FT-IR та мікроскопічними методами аналізу SEM. Плівка, утворена на поверхні сталі з парогазової фази тимолу, забезпечує ефект післядії на рівні 90% за періодичної конденсації вологи впродовж 504 годин. Для оцінки адсорбційної здатності тимолу проведені квантово-хімічні розрахунки енергетичних параметрів молекули тимолу. | |
dc.description.abstract | The inhibition effect of thymol during the early stage of steel corrosion under adsorbed thin electrolyte layers was investigated. Its vapor corrosion inhibition property was evaluated under simulated operational conditions. Electrochemical techniques complemented by FTIR and SEM surface analyses were used to evaluate the composition and characteristics of the layers. The results indicate that thymol can form a protective film on the metal surface, which protects the metal against further corrosion. Quantum chemical calculations studies were also performed to support weight loss and electrochemical experimental observations. | |
dc.format.extent | 261-268 | |
dc.format.pages | 8 | |
dc.identifier.citation | Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol / Victoria Vorobyova, Olena Chygyrynets’, Margarita Skiba, Tatiana Overchenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 261–268. | |
dc.identifier.citationen | Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol / Victoria Vorobyova, Olena Chygyrynets’, Margarita Skiba, Tatiana Overchenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 2. — P. 261–268. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46467 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (13), 2019 | |
dc.relation.references | 1. Zhang D-Q., Gao L-X., Zhou G-D.: Surf. Coat. Technol., 2010, 204, 1646. https://doi.org/10.1016/j.surfcoat.2009.10.054 | |
dc.relation.references | 2. Zhang D-Q., An Z-X., Pan Q-Y. et al.: Corros. Sci., 2006, 48, 1437. https://doi.org/10.1016/j.corsci.2005.06.007 | |
dc.relation.references | 3. Sudheer A., Quraishi E., Eno E., NatesanM.: Int. J. Electrochem. Sci., 2012, 7, 7463. | |
dc.relation.references | 4. Quraishi M., Jamal D.: Corrosion, 2002, 58, 5, 387. https://doi.org/10.5006/1.3277627 | |
dc.relation.references | 5. Montemor M.: Act. Protect. Coat., 2016, 233, 107. https://doi.org/10.1007/978-94-017-7540-3_6 | |
dc.relation.references | 6. Chygyrynets’ E., Vorobyova V.: Chem. Chem. Technol., 2014, 8, 235. | |
dc.relation.references | 7. Vorob’iova V., Chyhyrynets’ O., Vasyl’kevych O.:Mater. Sci., 2015, 50, 726. https://doi.org/10.1007/s11003-015-9778-z | |
dc.relation.references | 8. Chyhyrynets O.,Vorob'iova V.:Mater. Sci., 2013, 49, 318. https://doi.org/10.1007/s11003-013-9617-z | |
dc.relation.references | 9. Poongothai N., Rajendran P., NatesanM. et al.: Indian J. Chem. Technol., 2005, 12, 641. | |
dc.relation.references | 10. Premkumar P., Kannan K., NatesanM.: Asian J. Chem., 2008, 20, 445. | |
dc.relation.references | 11. Premkumar P., Kannan K., NatesanM.: J. Metall. Mater. Sci., 2008, 50, 227. | |
dc.relation.references | 12. Li X., Deng S., Fu H., Xie X.: Corros. Sci., 2014, 78, 29. https://doi.org/10.1016/j.corsci.2013.08.025 | |
dc.relation.references | 13. Leygraf C., Wallinder I.,Tidblad J., Graedel T.: Atmospheric Corrosion. John Wiley & Sons, Inc., Hoboken 2016. | |
dc.relation.references | 14. Kaya S., Tüzün B., Kaya C., Obot I.: J. Taiwan Inst. Chem. Eng., 2016, 58, 528. https://doi.org/10.1016/j.jtice.2015.06.009 | |
dc.relation.references | 15. Gece G.: Corros. Sci., 2008, 50, 11, 2981. https://doi.org/10.1016/j.jtice.2015.06.009 | |
dc.relation.references | 16. Koopmans T.: Physica, 1934, 1, 104. https://doi.org/10.1016/S0031-8914(34)90011-2 | |
dc.relation.references | 17. Kovacevic N., Kokalj A.: Corros. Sci., 2011, 53, 3, 909. https://doi.org/10.1016/j.corsci.2010.11.016 | |
dc.relation.references | 18. Parr R., Pearson R.: J. Am. Chem. Soc., 1983, 105, 7512. https://doi.org/10.1021/ja00364a005 | |
dc.relation.references | 19. Parr R., Donnelly R., LewyM., Palke W.: J. Chem. Phys., 1978, 68, 3801. https://doi.org/10.1063/1.436185 | |
dc.relation.references | 20. Pearson R.: Proc. Nats. Acad. Sci. USA, 1986, 83, 8440. | |
dc.relation.references | 21. Chattaraj P., Sarkar R., Roy D.: Chem. Rev., 2006, 106, 2065. https://doi.org/10.1021/cr040109f | |
dc.relation.references | 22. Parr R., von Szentpaly L., Liu S.: J. Am. Chem. Soc. 1999, 121, 1922. https://doi.org/10.1021/ja983494x | |
dc.relation.references | 23. Kaya S., Kaya C.: Comput. Theor. Chem., 2015, 1052, 42. https://doi.org/10.1016/j.comptc.2014.11.017 | |
dc.relation.references | 24. HyperChemTM, Hypercube, Inc., 1994 | |
dc.relation.references | 25. Rosliza R. et al.: J. Appl. Electrochem., 2010, 40, 833. https://doi.org/10.1007/s10800-009-0066-1 | |
dc.relation.references | 26. FerreiraM., Varela H., Torresi R., Tremiliosi-Filho G.: Electrochim. Acta, 2006, 52, 434. https://doi.org/10.1016/j.electacta.2006.05.025 | |
dc.relation.references | 27. Lukovits I., Kálmán E., Zucchi F.: Corrosion. 2001, 57, 3. https://doi.org/10.5006/1.3290328 | |
dc.relation.referencesen | 1. Zhang D-Q., Gao L-X., Zhou G-D., Surf. Coat. Technol., 2010, 204, 1646. https://doi.org/10.1016/j.surfcoat.2009.10.054 | |
dc.relation.referencesen | 2. Zhang D-Q., An Z-X., Pan Q-Y. et al., Corros. Sci., 2006, 48, 1437. https://doi.org/10.1016/j.corsci.2005.06.007 | |
dc.relation.referencesen | 3. Sudheer A., Quraishi E., Eno E., NatesanM., Int. J. Electrochem. Sci., 2012, 7, 7463. | |
dc.relation.referencesen | 4. Quraishi M., Jamal D., Corrosion, 2002, 58, 5, 387. https://doi.org/10.5006/1.3277627 | |
dc.relation.referencesen | 5. Montemor M., Act. Protect. Coat., 2016, 233, 107. https://doi.org/10.1007/978-94-017-7540-3_6 | |
dc.relation.referencesen | 6. Chygyrynets’ E., Vorobyova V., Chem. Chem. Technol., 2014, 8, 235. | |
dc.relation.referencesen | 7. Vorob’iova V., Chyhyrynets’ O., Vasyl’kevych O.:Mater. Sci., 2015, 50, 726. https://doi.org/10.1007/s11003-015-9778-z | |
dc.relation.referencesen | 8. Chyhyrynets O.,Vorob'iova V.:Mater. Sci., 2013, 49, 318. https://doi.org/10.1007/s11003-013-9617-z | |
dc.relation.referencesen | 9. Poongothai N., Rajendran P., NatesanM. et al., Indian J. Chem. Technol., 2005, 12, 641. | |
dc.relation.referencesen | 10. Premkumar P., Kannan K., NatesanM., Asian J. Chem., 2008, 20, 445. | |
dc.relation.referencesen | 11. Premkumar P., Kannan K., NatesanM., J. Metall. Mater. Sci., 2008, 50, 227. | |
dc.relation.referencesen | 12. Li X., Deng S., Fu H., Xie X., Corros. Sci., 2014, 78, 29. https://doi.org/10.1016/j.corsci.2013.08.025 | |
dc.relation.referencesen | 13. Leygraf C., Wallinder I.,Tidblad J., Graedel T., Atmospheric Corrosion. John Wiley & Sons, Inc., Hoboken 2016. | |
dc.relation.referencesen | 14. Kaya S., Tüzün B., Kaya C., Obot I., J. Taiwan Inst. Chem. Eng., 2016, 58, 528. https://doi.org/10.1016/j.jtice.2015.06.009 | |
dc.relation.referencesen | 15. Gece G., Corros. Sci., 2008, 50, 11, 2981. https://doi.org/10.1016/j.jtice.2015.06.009 | |
dc.relation.referencesen | 16. Koopmans T., Physica, 1934, 1, 104. https://doi.org/10.1016/S0031-8914(34)90011-2 | |
dc.relation.referencesen | 17. Kovacevic N., Kokalj A., Corros. Sci., 2011, 53, 3, 909. https://doi.org/10.1016/j.corsci.2010.11.016 | |
dc.relation.referencesen | 18. Parr R., Pearson R., J. Am. Chem. Soc., 1983, 105, 7512. https://doi.org/10.1021/ja00364a005 | |
dc.relation.referencesen | 19. Parr R., Donnelly R., LewyM., Palke W., J. Chem. Phys., 1978, 68, 3801. https://doi.org/10.1063/1.436185 | |
dc.relation.referencesen | 20. Pearson R., Proc. Nats. Acad. Sci. USA, 1986, 83, 8440. | |
dc.relation.referencesen | 21. Chattaraj P., Sarkar R., Roy D., Chem. Rev., 2006, 106, 2065. https://doi.org/10.1021/cr040109f | |
dc.relation.referencesen | 22. Parr R., von Szentpaly L., Liu S., J. Am. Chem. Soc. 1999, 121, 1922. https://doi.org/10.1021/ja983494x | |
dc.relation.referencesen | 23. Kaya S., Kaya C., Comput. Theor. Chem., 2015, 1052, 42. https://doi.org/10.1016/j.comptc.2014.11.017 | |
dc.relation.referencesen | 24. HyperChemTM, Hypercube, Inc., 1994 | |
dc.relation.referencesen | 25. Rosliza R. et al., J. Appl. Electrochem., 2010, 40, 833. https://doi.org/10.1007/s10800-009-0066-1 | |
dc.relation.referencesen | 26. FerreiraM., Varela H., Torresi R., Tremiliosi-Filho G., Electrochim. Acta, 2006, 52, 434. https://doi.org/10.1016/j.electacta.2006.05.025 | |
dc.relation.referencesen | 27. Lukovits I., Kálmán E., Zucchi F., Corrosion. 2001, 57, 3. https://doi.org/10.5006/1.3290328 | |
dc.relation.uri | https://doi.org/10.1016/j.surfcoat.2009.10.054 | |
dc.relation.uri | https://doi.org/10.1016/j.corsci.2005.06.007 | |
dc.relation.uri | https://doi.org/10.5006/1.3277627 | |
dc.relation.uri | https://doi.org/10.1007/978-94-017-7540-3_6 | |
dc.relation.uri | https://doi.org/10.1007/s11003-015-9778-z | |
dc.relation.uri | https://doi.org/10.1007/s11003-013-9617-z | |
dc.relation.uri | https://doi.org/10.1016/j.corsci.2013.08.025 | |
dc.relation.uri | https://doi.org/10.1016/j.jtice.2015.06.009 | |
dc.relation.uri | https://doi.org/10.1016/S0031-8914(34)90011-2 | |
dc.relation.uri | https://doi.org/10.1016/j.corsci.2010.11.016 | |
dc.relation.uri | https://doi.org/10.1021/ja00364a005 | |
dc.relation.uri | https://doi.org/10.1063/1.436185 | |
dc.relation.uri | https://doi.org/10.1021/cr040109f | |
dc.relation.uri | https://doi.org/10.1021/ja983494x | |
dc.relation.uri | https://doi.org/10.1016/j.comptc.2014.11.017 | |
dc.relation.uri | https://doi.org/10.1007/s10800-009-0066-1 | |
dc.relation.uri | https://doi.org/10.1016/j.electacta.2006.05.025 | |
dc.relation.uri | https://doi.org/10.5006/1.3290328 | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | |
dc.rights.holder | © Vorobyova V., Chygyrynets’ O., SkibaM., Overchenko T., 2019 | |
dc.subject | атмосферна корозія | |
dc.subject | тимол | |
dc.subject | сталь | |
dc.subject | інгібітор корозії | |
dc.subject | квантово-хімічні розрахунки | |
dc.subject | atmospheric corrosion | |
dc.subject | thymol | |
dc.subject | steel | |
dc.subject | volatile inhibitor | |
dc.subject | quantum chemical calculations | |
dc.title | Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol | |
dc.title.alternative | Експериментальні та теоретичні дослідження протикорозійних властивостей тимолу | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1