Anisotropic parabolic problem with variable exponent and regular data

dc.citation.epage535
dc.citation.issue3
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage519
dc.contributor.affiliationУніверситет Мсіла
dc.contributor.affiliationUniversity of M’sila
dc.contributor.authorМечетер, Р.
dc.contributor.authorRabah, Mecheter
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:33:05Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractУ цій роботі досліджується існування слабких розв’язків для класу нелінійних параболічних рівнянь із регулярними даними у просторах Соболєва зі змінною експонентою. Доводиться “версія” слабкої оцінки простору Лебега, яка сходить до “Lions J. L. Quelques m´ethodes de r´esolution des probl`emes aux limites. Dunod, Paris (1969)”, для параболічних рівнянь з анізотропними постійними показниками (pi(·) = pi).
dc.description.abstractIn this paper, we study the existence of weak solutions for a class of nonlinear parabolic equations with regular data in the setting of variable exponent Sobolev spaces. We prove a "version" of a weak Lebesgue space estimate that goes back to "Lions J. L. Quelques méthodes de résolution des problèmes aux limites. Dunod, Paris (1969)" for parabolic equations with anisotropic constant exponents (pi(⋅)=pi).
dc.format.extent519-535
dc.format.pages17
dc.identifier.citationRabah M. Anisotropic parabolic problem with variable exponent and regular data / Rabah Mecheter // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 519–535.
dc.identifier.citationenRabah M. Anisotropic parabolic problem with variable exponent and regular data / Rabah Mecheter // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 519–535.
dc.identifier.doidoi.org/10.23939/mmc2022.03.519
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63477
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 3 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 3 (9), 2022
dc.relation.references[1] Almeida A., Harjulehto P., H¨ast¨o P., Lukkari T. Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces. Annali di Matematica Pura ed Applicata. 194 (4), 405–424 (2015).
dc.relation.references[2] Antontsev S., Shmarev S. Anisotropic Parabolic Equations with variable non linearity. Publicacions Matem`atiques. 53 (2), 355–399 (2009).
dc.relation.references[3] Atik Y. Introduction aux probl`emes elliptiques quasi-lin´eaires а donn´ee mesure. Cours sp´eciaux de l’ENSKouba, Alger (1998).
dc.relation.references[4] Bendahmane M., Wittbold P. Renormalized solutions for nonlinear elliptic equations with variable exponents and L1-data. Nonlinear Analysis: Theory, Methods & Applications. 70 (2), 567–583 (2009).
dc.relation.references[5] Boureanu M.-M., V´elez-Santiago A. Fine regularity for elliptic and parabolic anisotropic Robin problems with variable exponents. Journal of Differential Equations. 266 (12), 8164–8232 (2019).
dc.relation.references[6] Brezis H. Analyse fonctionnelle: Th´eorie et applications. Masson, Paris (1983).
dc.relation.references[7] Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011).
dc.relation.references[8] Fan X. Anisotropic variable exponent Sobolev spaces and p(x) → Laplacian equations. Complex Variables and Elliptic Equations. 56 (7–9), 623–642 (2011).
dc.relation.references[9] Fan X. Local boundedness of quasi-minimizers of integral functionals with variable exponent anisotropic growth and applications. Nonlinear Differential Equations and Applications. 17 (5), 619–637 (2010).
dc.relation.references[10] Lions J. L. Quelques m´ethodes de r´esolution des probl`emes aux limites. Dunod, Paris (1969).
dc.relation.references[11] Mokhtari F. Regularity of the Solution to Nonlinear Anisotropic Elliptic Equations with Variable Exponents and Irregular Data. Mediterranean Journal of Mathematics. 14, 141 (2017).
dc.relation.references[12] Mokhtari F. Anisotropic parabolic problems with measur data. Differential Equations and Applications. 2, 123–150 (2010).
dc.relation.references[13] Mokhtari F. Probl`emes paraboliques anisotropes а donn´ees dans un espace d’Orlicz ou mesures. Th`ese de doctorat. (2011).
dc.relation.references[14] Prignet A. Probl`emes elliptiques et paraboliques dans un cadre non variationnel. UMPA-ENS Lyon France (1997).
dc.relation.references[15] Rakotoson J. M. A compactness lemma for quasilinear problems: application to parabolic equations. Journal of Functional Analysis. 106 (2), 358–374 (1992).
dc.relation.references[16] Simon J. Compact sets in the space Lp (0, T ; B). Annali di Matematica Pura ed Applicata. 146, 65–96 (1987).
dc.relation.references[17] Stampacchia G. Le probl`eme de Dirichlet pour les `equations elliptiques du seconde ordre `а coefficientes discontinus. Annales de l’Institut Fourier. 15 (1), 189–258 (1965).
dc.relation.references[18] Troisi M. Theoremi di inclusione per Spazi di Sobolev non isotropi. Ricerche di Matematica. 18, 3–24 (1969).
dc.relation.referencesen[1] Almeida A., Harjulehto P., H¨ast¨o P., Lukkari T. Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces. Annali di Matematica Pura ed Applicata. 194 (4), 405–424 (2015).
dc.relation.referencesen[2] Antontsev S., Shmarev S. Anisotropic Parabolic Equations with variable non linearity. Publicacions Matem`atiques. 53 (2), 355–399 (2009).
dc.relation.referencesen[3] Atik Y. Introduction aux probl`emes elliptiques quasi-lin´eaires a donn´ee mesure. Cours sp´eciaux de l’ENSKouba, Alger (1998).
dc.relation.referencesen[4] Bendahmane M., Wittbold P. Renormalized solutions for nonlinear elliptic equations with variable exponents and L1-data. Nonlinear Analysis: Theory, Methods & Applications. 70 (2), 567–583 (2009).
dc.relation.referencesen[5] Boureanu M.-M., V´elez-Santiago A. Fine regularity for elliptic and parabolic anisotropic Robin problems with variable exponents. Journal of Differential Equations. 266 (12), 8164–8232 (2019).
dc.relation.referencesen[6] Brezis H. Analyse fonctionnelle: Th´eorie et applications. Masson, Paris (1983).
dc.relation.referencesen[7] Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011).
dc.relation.referencesen[8] Fan X. Anisotropic variable exponent Sobolev spaces and p(x) → Laplacian equations. Complex Variables and Elliptic Equations. 56 (7–9), 623–642 (2011).
dc.relation.referencesen[9] Fan X. Local boundedness of quasi-minimizers of integral functionals with variable exponent anisotropic growth and applications. Nonlinear Differential Equations and Applications. 17 (5), 619–637 (2010).
dc.relation.referencesen[10] Lions J. L. Quelques m´ethodes de r´esolution des probl`emes aux limites. Dunod, Paris (1969).
dc.relation.referencesen[11] Mokhtari F. Regularity of the Solution to Nonlinear Anisotropic Elliptic Equations with Variable Exponents and Irregular Data. Mediterranean Journal of Mathematics. 14, 141 (2017).
dc.relation.referencesen[12] Mokhtari F. Anisotropic parabolic problems with measur data. Differential Equations and Applications. 2, 123–150 (2010).
dc.relation.referencesen[13] Mokhtari F. Probl`emes paraboliques anisotropes a donn´ees dans un espace d’Orlicz ou mesures. Th`ese de doctorat. (2011).
dc.relation.referencesen[14] Prignet A. Probl`emes elliptiques et paraboliques dans un cadre non variationnel. UMPA-ENS Lyon France (1997).
dc.relation.referencesen[15] Rakotoson J. M. A compactness lemma for quasilinear problems: application to parabolic equations. Journal of Functional Analysis. 106 (2), 358–374 (1992).
dc.relation.referencesen[16] Simon J. Compact sets in the space Lp (0, T ; B). Annali di Matematica Pura ed Applicata. 146, 65–96 (1987).
dc.relation.referencesen[17] Stampacchia G. Le probl`eme de Dirichlet pour les `equations elliptiques du seconde ordre `a coefficientes discontinus. Annales de l’Institut Fourier. 15 (1), 189–258 (1965).
dc.relation.referencesen[18] Troisi M. Theoremi di inclusione per Spazi di Sobolev non isotropi. Ricerche di Matematica. 18, 3–24 (1969).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectанізотропні параболічні
dc.subjectнелінійні параболічні рівняння
dc.subjectрегулярні дані
dc.subjectanisotropic parabolic
dc.subjectnonlinear parabolic equations
dc.subjectregular data
dc.titleAnisotropic parabolic problem with variable exponent and regular data
dc.title.alternativeАнізотропна параболічна задача зі змінним показником регулярними даними
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n3_Rabah_M-Anisotropic_parabolic_problem_519-535.pdf
Size:
2.35 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n3_Rabah_M-Anisotropic_parabolic_problem_519-535__COVER.png
Size:
306.19 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: