Nonlinear the first kind Fredholm integro-differential first-order equation with degenerate kernel and nonlinear maxima
dc.citation.epage | 82 | |
dc.citation.issue | 1 | |
dc.citation.spage | 74 | |
dc.contributor.affiliation | Національний університет Узбекистану | |
dc.contributor.affiliation | Малазійський університет Теренггану | |
dc.contributor.affiliation | Університет Путра Малайзія | |
dc.contributor.affiliation | National University of Uzbekistan | |
dc.contributor.affiliation | University Malaysia Terengganu | |
dc.contributor.affiliation | Universiti Putra Malaysia | |
dc.contributor.author | Юлдашев, Т. К. | |
dc.contributor.author | Ешкуватов, З. К. | |
dc.contributor.author | Н. М. А. Нік Лонг | |
dc.contributor.author | Yuldashev, T. K. | |
dc.contributor.author | Eshkuvatov, Z. K. | |
dc.contributor.author | N. M. A. Nik Long | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-12-13T09:11:14Z | |
dc.date.available | 2023-12-13T09:11:14Z | |
dc.date.created | 2021-03-01 | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | У цій статті розглянуто проблеми розв’язності та побудови розв’язків нелінійного інтегро-диференціального рівняння Фредгольма першого порядку з виродженим ядром та нелінійними максимумами. Використовуючи метод виродженого ядра у поєднанні з методом регуляризації, отримано неявне функціонально-диференціальне рівняння першого порядку з нелінійними максимумами. Використовуємо початкові граничні умови, щоб забезпечити єдиність розв’язку. Для застосування методу послідовного наближення та доведення однозначного розв’язування, перетворено отримане неявне функціонально-диференціальне рівняння до нелінійного інтегро-диференціального рівняння Вольтерра з нелінійними максимумами | |
dc.description.abstract | In this note, the problems of solvability and construction of solutions for a nonlinear Fredholm one-order integro-differential equation with degenerate kernel and nonlinear maxima are considered. Using the method of degenerate kernel combined with the method of regularization, we obtain an implicit the first-order functional-differential equation with the nonlinear maxima. Initial boundary conditions are used to ensure the solution uniqueness. In order to use the method of a successive approximations and prove the one value solvability, the obtained implicit functional-differential equation is transformed to the nonlinear Volterra type integro-differential equation with the nonlinear maxima. | |
dc.format.extent | 74-82 | |
dc.format.pages | 9 | |
dc.identifier.citation | Yuldashev T. K. Nonlinear the first kind Fredholm integro-differential first-order equation with degenerate kernel and nonlinear maxima / T. K. Yuldashev, Z. K. Eshkuvatov, N. M. A. Nik Long // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 1. — P. 74–82. | |
dc.identifier.citationen | Yuldashev T. K. Nonlinear the first kind Fredholm integro-differential first-order equation with degenerate kernel and nonlinear maxima / T. K. Yuldashev, Z. K. Eshkuvatov, N. M. A. Nik Long // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 1. — P. 74–82. | |
dc.identifier.doi | 10.23939/mmc2022.01.074 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60557 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 1 (9), 2022 | |
dc.relation.references | [1] Bakirova E. A., Assanova A. T., Kadirbayeva Z. M. A problem with parameter for the integro-differential equations. Mathematical Modelling and Analysis. 26 (1), 34–54 (2021). | |
dc.relation.references | [2] Efendiev M., Vougalter V. Solvability of some integro-differential equations with drift. Osaka Journal of Mathematics. 57 (2), 247–265 (2020). | |
dc.relation.references | [3] El-Sayeda A. M. A., Aahmed R. G. Solvability of the functional integro-differential equation with selfreference and state-dependence. Journal of Nonlinear Sciences and Applications. 13 (1), 1–8 (2020). | |
dc.relation.references | [4] Sidorov N., Sidorov D., Dreglea A. Solvability and bifurcation of solutions of nonlinear equations with Fredholm operator. Symmetry. 12 (6), 912 (2020). | |
dc.relation.references | [5] Rojas E. M., Sidorov N. A., Sinitsyn A. V. A boundary value problem for noninsulated magnetic regime in a vacuum diode. Symmetry. 12 (4), 617 (2020). | |
dc.relation.references | [6] Zhang Y. Solvability of a class of integro-differential equations and connections to one-dimensional inverse problems. Journal of Mathematical Analysis and Applications. 321 (1), 286–298 (2006). | |
dc.relation.references | [7] Falaleev M. V. Fundamental operator-valued functions of singular integrodifferential operators in Banach spaces. Journal of Mathematical Sciences. 230 (5), 782–785 (2018). | |
dc.relation.references | [8] Falaleev M. V., Orlov S. S. Degenerate integro-differential operators in Banach spaces and their applications. Russian Mathematics. 55 (10), 59–69 (2011). | |
dc.relation.references | [9] Assanova A. T., Bakirova E. A., Kadirbayeva Z. M. Numerical solution to a control problem for integrodifferential equations. Computational Mathematics and Mathematical Physics. 60 (2), 203–221 (2020). | |
dc.relation.references | [10] Dzhumabaev D. S. New general solutions to linear Fredholm integro-differential equations and their applications on solving the boundary value problems. Journal of Computational and Applied Mathematics. 327 (1), 79–108 (2018). | |
dc.relation.references | [11] Dzhumabaev D. S., Mynbayeva S. T. New general solution to a nonlinear Fredholm integro-differential equation. Eurasian Mathematical Journal. 10 (4), 24–33 (2019). | |
dc.relation.references | [12] Dzhumabaev D. S., Mynbayeva S. T. One approach to solve a nonlinear boundary value problem for the Fredholm integro-differential equation. Bulletin of the Karaganda university-Mathematics. 97 (1), 27–36 (2020). | |
dc.relation.references | [13] Dzhumabaev D. S., Zharmagambetov A. S. Numerical method for solving a linear boundary value problem for Fredholm integro-differential equations. News of the National Academy of Sciences of the Republic of Kazakhstan-Series Physico-Mathematical. 2 (312), 5–11 (2017). | |
dc.relation.references | [14] Yuldashev T. K. Nonlocal mixed-value problem for a Boussinesq-type integrodifferential equation with degenerate kernel. Ukrainian Mathematical Journal. 68 (8), 1278–1296 (2016). | |
dc.relation.references | [15] Yuldashev T. K. Mixed problem for pseudoparabolic integrodifferential equation with degenerate kernel. Differential equations. 53 (1), 99–108 (2017). | |
dc.relation.references | [16] Yuldashev T. K. Determination of the coefficient and boundary regime in boundary value problem for integro-differential equation with degenerate kernel. Lobachevskii Journal of Mathematics. 38 (3), 547–553 (2017). | |
dc.relation.references | [17] Yuldashev T. K. Nonlocal boundary value problem for a nonlinear Fredholm integro-differential equation with degenerate kernel. Differential Equations. 54 (2), 1646–1653 (2018). | |
dc.relation.references | [18] Yuldashev T. K. Spectral features of the solving of a Fredholm homogeneous integro-differential equation with integral conditions and reflecting deviation. Lobachevskii Journal of Mathematics. 40 (12), 2116–2123 (2019). | |
dc.relation.references | [19] Yuldashev T. K. On the solvability of a boundary value problem for the ordinary Fredholm integrodifferential equation with a degenerate kernel. Computational Mathematics and Mathematical Physics. 59 (2), 241–252 (2019). | |
dc.relation.references | [20] Yuldashev T. K. On a boundary-value problem for a fourth-order partial integro-differential equation with degenerate kernel. Journal of Mathematical Sciences. 245 (4), 508–523 (2020). | |
dc.relation.references | [21] Imanaliev M. I., Asanov A. Regularization, Uniqueness and Existence of Solution for Volterra Integral Equations of First Kind. Studies by Integro-Diff. Equations. Frunze, Ilim. 21, 3–38 (1988), (in Russian). | |
dc.relation.references | [22] Lavrent’ev M. M., Romanov V. G. Shishatskii S. R. Noncorrect problems of mathematical physics and analysis. Moscow, Nauka (1980), (in Russian). | |
dc.relation.referencesen | [1] Bakirova E. A., Assanova A. T., Kadirbayeva Z. M. A problem with parameter for the integro-differential equations. Mathematical Modelling and Analysis. 26 (1), 34–54 (2021). | |
dc.relation.referencesen | [2] Efendiev M., Vougalter V. Solvability of some integro-differential equations with drift. Osaka Journal of Mathematics. 57 (2), 247–265 (2020). | |
dc.relation.referencesen | [3] El-Sayeda A. M. A., Aahmed R. G. Solvability of the functional integro-differential equation with selfreference and state-dependence. Journal of Nonlinear Sciences and Applications. 13 (1), 1–8 (2020). | |
dc.relation.referencesen | [4] Sidorov N., Sidorov D., Dreglea A. Solvability and bifurcation of solutions of nonlinear equations with Fredholm operator. Symmetry. 12 (6), 912 (2020). | |
dc.relation.referencesen | [5] Rojas E. M., Sidorov N. A., Sinitsyn A. V. A boundary value problem for noninsulated magnetic regime in a vacuum diode. Symmetry. 12 (4), 617 (2020). | |
dc.relation.referencesen | [6] Zhang Y. Solvability of a class of integro-differential equations and connections to one-dimensional inverse problems. Journal of Mathematical Analysis and Applications. 321 (1), 286–298 (2006). | |
dc.relation.referencesen | [7] Falaleev M. V. Fundamental operator-valued functions of singular integrodifferential operators in Banach spaces. Journal of Mathematical Sciences. 230 (5), 782–785 (2018). | |
dc.relation.referencesen | [8] Falaleev M. V., Orlov S. S. Degenerate integro-differential operators in Banach spaces and their applications. Russian Mathematics. 55 (10), 59–69 (2011). | |
dc.relation.referencesen | [9] Assanova A. T., Bakirova E. A., Kadirbayeva Z. M. Numerical solution to a control problem for integrodifferential equations. Computational Mathematics and Mathematical Physics. 60 (2), 203–221 (2020). | |
dc.relation.referencesen | [10] Dzhumabaev D. S. New general solutions to linear Fredholm integro-differential equations and their applications on solving the boundary value problems. Journal of Computational and Applied Mathematics. 327 (1), 79–108 (2018). | |
dc.relation.referencesen | [11] Dzhumabaev D. S., Mynbayeva S. T. New general solution to a nonlinear Fredholm integro-differential equation. Eurasian Mathematical Journal. 10 (4), 24–33 (2019). | |
dc.relation.referencesen | [12] Dzhumabaev D. S., Mynbayeva S. T. One approach to solve a nonlinear boundary value problem for the Fredholm integro-differential equation. Bulletin of the Karaganda university-Mathematics. 97 (1), 27–36 (2020). | |
dc.relation.referencesen | [13] Dzhumabaev D. S., Zharmagambetov A. S. Numerical method for solving a linear boundary value problem for Fredholm integro-differential equations. News of the National Academy of Sciences of the Republic of Kazakhstan-Series Physico-Mathematical. 2 (312), 5–11 (2017). | |
dc.relation.referencesen | [14] Yuldashev T. K. Nonlocal mixed-value problem for a Boussinesq-type integrodifferential equation with degenerate kernel. Ukrainian Mathematical Journal. 68 (8), 1278–1296 (2016). | |
dc.relation.referencesen | [15] Yuldashev T. K. Mixed problem for pseudoparabolic integrodifferential equation with degenerate kernel. Differential equations. 53 (1), 99–108 (2017). | |
dc.relation.referencesen | [16] Yuldashev T. K. Determination of the coefficient and boundary regime in boundary value problem for integro-differential equation with degenerate kernel. Lobachevskii Journal of Mathematics. 38 (3), 547–553 (2017). | |
dc.relation.referencesen | [17] Yuldashev T. K. Nonlocal boundary value problem for a nonlinear Fredholm integro-differential equation with degenerate kernel. Differential Equations. 54 (2), 1646–1653 (2018). | |
dc.relation.referencesen | [18] Yuldashev T. K. Spectral features of the solving of a Fredholm homogeneous integro-differential equation with integral conditions and reflecting deviation. Lobachevskii Journal of Mathematics. 40 (12), 2116–2123 (2019). | |
dc.relation.referencesen | [19] Yuldashev T. K. On the solvability of a boundary value problem for the ordinary Fredholm integrodifferential equation with a degenerate kernel. Computational Mathematics and Mathematical Physics. 59 (2), 241–252 (2019). | |
dc.relation.referencesen | [20] Yuldashev T. K. On a boundary-value problem for a fourth-order partial integro-differential equation with degenerate kernel. Journal of Mathematical Sciences. 245 (4), 508–523 (2020). | |
dc.relation.referencesen | [21] Imanaliev M. I., Asanov A. Regularization, Uniqueness and Existence of Solution for Volterra Integral Equations of First Kind. Studies by Integro-Diff. Equations. Frunze, Ilim. 21, 3–38 (1988), (in Russian). | |
dc.relation.referencesen | [22] Lavrent’ev M. M., Romanov V. G. Shishatskii S. R. Noncorrect problems of mathematical physics and analysis. Moscow, Nauka (1980), (in Russian). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | інтегро-диференціальне рівняння | |
dc.subject | нелінійне функціонально-диференціальне рівняння | |
dc.subject | вироджене ядро | |
dc.subject | нелінійні максимуми | |
dc.subject | регуляризація | |
dc.subject | однозначне розв’язування | |
dc.subject | integro-differential equation | |
dc.subject | nonlinear functional-differential equation | |
dc.subject | degenerate kernel | |
dc.subject | nonlinear maxima | |
dc.subject | regularization | |
dc.subject | one value solvability | |
dc.title | Nonlinear the first kind Fredholm integro-differential first-order equation with degenerate kernel and nonlinear maxima | |
dc.title.alternative | Нелінійне інтегро-диференціальне рівняння Фредгольма першого порядку з виродженим ядром і нелінійними максимумами | |
dc.type | Article |
Files
License bundle
1 - 1 of 1