The effect of additional off-diagonal disorder of interionic interaction on charge-storage in sub-nanometer pores of supramolecular carbon supercapacitors

dc.citation.epage157
dc.citation.issue2
dc.citation.spage147
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКлапчук, М.
dc.contributor.authorГригорчак, І.
dc.contributor.authorKlapchuk, M.
dc.contributor.authorGrygorchak, I.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-02-27T08:51:48Z
dc.date.available2020-02-27T08:51:48Z
dc.date.created2018-02-26
dc.date.issued2018-02-26
dc.description.abstractВ роботі методами супрамолекулярної інженерії вперше синтезовано субнанопористий карбон для ефективного накопичення енергії на межі його розділу з електролітом. Досягнуте значення диференціальної ємності більш як вдвічі перевищує відповідну величину для відомих карбонових структур. На основі побудованої імпедансної моделі та мікроскопічної теорії запропоновано фізичні механізми досліджених процесів.
dc.description.abstractIn this work, we report sub-nanoporous carbon which is synthesized for the first time by means of supramolecular engineering methods for efficient energy storage at the electrode/electrolyte interface. The achieved value of the differential capacitance more than twice exceeds the corresponding value for the known carbon structures. Based on the constructed impedance model and microscopic theory, the physical mechanisms of the investigated processes are suggested.
dc.format.extent147-157
dc.format.pages11
dc.identifier.citationKlapchuk M. The effect of additional off-diagonal disorder of interionic interaction on charge-storage in sub-nanometer pores of supramolecular carbon supercapacitors / M. Klapchuk, I. Grygorchak // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 147–157.
dc.identifier.citationenKlapchuk M. The effect of additional off-diagonal disorder of interionic interaction on charge-storage in sub-nanometer pores of supramolecular carbon supercapacitors / M. Klapchuk, I. Grygorchak // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 147–157.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46136
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 2 (5), 2018
dc.relation.references1. Gryglewicz G., Machnikowski J., Lorenc-Grabowska E., Lota G., Frackowiak E. Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochimica Acta. 50 (5), 1197–1206 (2005).
dc.relation.references2. Conway B. Electrochemical Supercapacitors. New York, Plenum Publishing (1999).
dc.relation.references3. Abioye A. M., Ani F. N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and Sustainable Energy Reviews. 52, 1282–1293 (2015).
dc.relation.references4. David B. Optimization of power and energy densities in supercapacitors. Journal of Power Sources. 195, 748–3756 (2010).
dc.relation.references5. Gonzalez A., Goikolea E., Barrena J. A., Mysyk R. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews. 58, 1189–2006 (2016).
dc.relation.references6. Zhan C., Lian C., Zhang Yu, Thompson M.W., Xie Yu, Wu J., Kent P. R. C., Cummings P. T., Jiang D., Wesolowski D. J. Computational insights into materials and interfaces for capacitive energy storage. Adv. Sci. 4 (7), 1700059 (2017).
dc.relation.references7. Salanne M., Rotenberg B., Naoi K., Kaneko K., Taberna P.-L., Grey C. P., Dunn B., Simon P. Efficient storage mechanisms for building better supercapacitors. Nature Energy. 1, 1–10 (2016).
dc.relation.references8. Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., Taberna P. L. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science. 313, 1760–1763 (2006).
dc.relation.references9. Len J. Supramolecular chemistry. Concepts and perspectives. Novosybirsk, Nauka (1998), (in Russian).
dc.relation.references10. Stid D., Etvud D. Supramolecular chemisty. Moscow, Akademkniga (2007), (in Russian).
dc.relation.references11. Stojnov S. B., Grafov B. M., Savova-Stojnova B., Yelkin V. V. Electrochemical impedance. Moscow, Nauka (1991), (in Russian).
dc.relation.references12. Barsoukov E., Macdonald J. Impedance spectroscopy. Theory, experiment and application. Wiley R. Interscience, Canada (2005).
dc.relation.references13. Kondrat S., Kornyshev A. Superionic state in double-layer capacitors with nanoporous electrodes. Journal of Physics: Condensed Matter. 23, 2–10 (2010).
dc.relation.references14. Skinner B., Chen T., Loth M. S., Shklovskii B.I. Theory of volumetric capacitance of an electric double-layer supercapacitor. Phys. Rev. E. 83, 056102 (2011).
dc.relation.references15. Merlet A., P´ean C., Rotenberg B., Madden P. A., Daffos B., Taberna P.-L., Simon P., Salanne M. Highly confined ions store charge more efficiently in supercapacitors. Nature Communications. 4, 2701 (2013).
dc.relation.references16. Lee A. A., Kondrat S., Kornyshev A. A. Single-File Charge storage in conducting nanopores. Phys. Rev. Lett. 113, 048701 (2014).
dc.relation.references17. Rochester C., Sartor A., Pruessner G., Kornyshev A. A. “One dimensional” double layer. The effect of size asymmetry of cations and anions on charge-storage in ultranarrownanopores — an Ising model theory. Russian Journal of Electrochemistry. 53 (10), 1165–1170 (2017).
dc.relation.references18. Hu G. Y., O’Connell R. F. Analytical inversion of symmetric tridiagonal matrices. J. Phys: A.: Math. Gen. 29, 1511–1513 (1996).
dc.relation.referencesen1. Gryglewicz G., Machnikowski J., Lorenc-Grabowska E., Lota G., Frackowiak E. Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochimica Acta. 50 (5), 1197–1206 (2005).
dc.relation.referencesen2. Conway B. Electrochemical Supercapacitors. New York, Plenum Publishing (1999).
dc.relation.referencesen3. Abioye A. M., Ani F. N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and Sustainable Energy Reviews. 52, 1282–1293 (2015).
dc.relation.referencesen4. David B. Optimization of power and energy densities in supercapacitors. Journal of Power Sources. 195, 748–3756 (2010).
dc.relation.referencesen5. Gonzalez A., Goikolea E., Barrena J. A., Mysyk R. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews. 58, 1189–2006 (2016).
dc.relation.referencesen6. Zhan C., Lian C., Zhang Yu, Thompson M.W., Xie Yu, Wu J., Kent P. R. C., Cummings P. T., Jiang D., Wesolowski D. J. Computational insights into materials and interfaces for capacitive energy storage. Adv. Sci. 4 (7), 1700059 (2017).
dc.relation.referencesen7. Salanne M., Rotenberg B., Naoi K., Kaneko K., Taberna P.-L., Grey C. P., Dunn B., Simon P. Efficient storage mechanisms for building better supercapacitors. Nature Energy. 1, 1–10 (2016).
dc.relation.referencesen8. Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., Taberna P. L. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science. 313, 1760–1763 (2006).
dc.relation.referencesen9. Len J. Supramolecular chemistry. Concepts and perspectives. Novosybirsk, Nauka (1998), (in Russian).
dc.relation.referencesen10. Stid D., Etvud D. Supramolecular chemisty. Moscow, Akademkniga (2007), (in Russian).
dc.relation.referencesen11. Stojnov S. B., Grafov B. M., Savova-Stojnova B., Yelkin V. V. Electrochemical impedance. Moscow, Nauka (1991), (in Russian).
dc.relation.referencesen12. Barsoukov E., Macdonald J. Impedance spectroscopy. Theory, experiment and application. Wiley R. Interscience, Canada (2005).
dc.relation.referencesen13. Kondrat S., Kornyshev A. Superionic state in double-layer capacitors with nanoporous electrodes. Journal of Physics: Condensed Matter. 23, 2–10 (2010).
dc.relation.referencesen14. Skinner B., Chen T., Loth M. S., Shklovskii B.I. Theory of volumetric capacitance of an electric double-layer supercapacitor. Phys. Rev. E. 83, 056102 (2011).
dc.relation.referencesen15. Merlet A., P´ean C., Rotenberg B., Madden P. A., Daffos B., Taberna P.-L., Simon P., Salanne M. Highly confined ions store charge more efficiently in supercapacitors. Nature Communications. 4, 2701 (2013).
dc.relation.referencesen16. Lee A. A., Kondrat S., Kornyshev A. A. Single-File Charge storage in conducting nanopores. Phys. Rev. Lett. 113, 048701 (2014).
dc.relation.referencesen17. Rochester C., Sartor A., Pruessner G., Kornyshev A. A. "One dimensional" double layer. The effect of size asymmetry of cations and anions on charge-storage in ultranarrownanopores - an Ising model theory. Russian Journal of Electrochemistry. 53 (10), 1165–1170 (2017).
dc.relation.referencesen18. Hu G. Y., O’Connell R. F. Analytical inversion of symmetric tridiagonal matrices. J. Phys: A., Math. Gen. 29, 1511–1513 (1996).
dc.rights.holderCMM IAPMM NASU
dc.rights.holder© 2018 Lviv Polytechnic National University
dc.subjectсупрамолекулярні ансамблі
dc.subjectнанопористий карбон
dc.subjectпориста структура
dc.subjectімпедансна спектроскопія
dc.subjectдіаграма Найквіста
dc.subject1D модель подвійного електричного шару
dc.subjectметод рівнянь руху
dc.subjectsupramolecular assemblies
dc.subjectnanoporous carbon
dc.subjectporous structure
dc.subjectimpedance spectroscopy
dc.subjectNyquist diagram
dc.subject1D model of EDL
dc.subjectequation-of-motion method
dc.subject.udc541.136.2
dc.titleThe effect of additional off-diagonal disorder of interionic interaction on charge-storage in sub-nanometer pores of supramolecular carbon supercapacitors
dc.title.alternativeВплив додаткового позадіагонального безладу міжіонної взаємодії на зберігання заряду у субнанопорах супрамолекулярного карбону суперконденсаторів
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2018v5n2_Klapchuk_M-The_effect_of_additional_147-157.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2018v5n2_Klapchuk_M-The_effect_of_additional_147-157__COVER.png
Size:
421.61 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.99 KB
Format:
Plain Text
Description: