Analysis of blood flow through curved artery with mild stenosis

dc.citation.epage225
dc.citation.issue2
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage217
dc.contributor.affiliationУніверситет Трібхуван
dc.contributor.affiliationTribhuvan University
dc.contributor.authorКафле, Дж.
dc.contributor.authorГайре, Х. П.
dc.contributor.authorПохрел, П. Р.
dc.contributor.authorКаттель, П.
dc.contributor.authorKafle, J.
dc.contributor.authorGaire, H. P.
dc.contributor.authorPokhrel, P. R.
dc.contributor.authorKattel, P.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:14:27Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractУтворення бляшок звужує артерії, зменшуючи приплив крові до серця, викликаючи біль у грудях, задишку або інші ознаки та симптоми ішемічної хвороби серця. Реалізуючи рівняння Нав’є—Стокса в циліндричній системі координат і припускаючи осьову симетрію потоку за умов ламінарного потоку, проведено дослідження двох аспектів динаміки кровотоку, а саме: профілю швидкості та об’ємної швидкості кровотоку навколо викривленого стенозу зі зміною кривизни артерії та товщини стенозу. Також досліджено поведінку кровотоку для різних значеннь коефіцієнта в’язкості.
dc.description.abstractBuilding-up of plaque narrows arteries, decreasing blood flow to the heart, causing chest pain, shortness of breath, or other coronary artery disease signs and symptoms. Implementing Navier–Stokes equations in a cylindrical coordinate system and assuming axial symmetry under laminar flow conditions, the study has been conducted on the two aspects of blood flow dynamics viz., velocity profile and volumetric flow rate of blood around curved stenosis with a variation of curvature of the artery and the stenosis thickness. The blood flow behavior taking different values for the viscosity coefficient has been also studied.
dc.format.extent217-225
dc.format.pages9
dc.identifier.citationAnalysis of blood flow through curved artery with mild stenosis / J. Kafle, H. P. Gaire, P. R. Pokhrel, P. Kattel // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 217–225.
dc.identifier.citationenAnalysis of blood flow through curved artery with mild stenosis / J. Kafle, H. P. Gaire, P. R. Pokhrel, P. Kattel // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 217–225.
dc.identifier.doidoi.org/10.23939/mmc2022.02.217
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63448
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 2 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 2 (9), 2022
dc.relation.references[1] Tan F. P. P., Soloperto G., Wood N. B., Thom S., Hughes A., Xu X. Y. Advanced computational models for disturbed and turbulent flow in stenosed human carotid artery bifurcation. Proceeding of the 4th Kuala Lumpur International Conference on Biomedical Engineering 2008. 21, 390–394 (2008).
dc.relation.references[2] Phaijoo G. R. Mathematical study of blood flow characteristics during catheterization in stenosed artery. Unpublished dissertation in partial fulfillment of the requirements of Master of Philosophy, School of Science, Kathmandu University, Nepal (2013).
dc.relation.references[3] Pralhad J. N., Schultz D. H. Modeling of arterial stenosis and its applications to blood diseases. Mathematical Biosciences. 190 (2), 203–220 (2004).
dc.relation.references[4] Jain M., Sharma G. C., Singh R. Mathematical modeling of blood flow in a stenosed artery under MHD effect through porous medium. International Journal of Engineering. 23 (3), 243–252 (2010).
dc.relation.references[5] Kapur J. N. Mathematical models in biology and medicine. In: Models for blood flows. Affiliated EastWest Press Pvt. Ltd. 347 (1985).
dc.relation.references[6] Pokhrel P. R., Kafle J., Kattel P., Gaire H. P. Analysis of blood flow through artery with mild stenosis. Journal of Institute of Science and Technology. 25 (2), 33–38 (2020).
dc.relation.references[7] Padmanabhan N., Jayaraman G. Flow in a curved tube with constriction — an application to the arterial system. Medical and Biological Engineering and Computing. 22 (3), 216–224 (1984).
dc.relation.references[8] Chakravarty S. Effects of stenosis on the flow-behaviour of blood in an artery. International Journal of Engineering Science. 25 (8), 1003–1016 (1987).
dc.relation.references[9] Dash R. K., Jayaraman G., Meheta K. N. Flow in a catherized curved artery with stenosis. Journal of Biomechanics. 32 (1), 49–61 (1999).
dc.relation.references[10] Schilt S., Moore J. E., Delfino A., Meister J. J. The effects of time-varying curvature on velocity profiles in a model of the coronary arteries. Journal of Biomechanics. 29 (4), 469–474 (1996).
dc.relation.references[11] Nosovitsky V. A., Ilegbusi O. J., Jiang J., Stone P. H., Feldman C. L. Effects of curvature and stenosis-like narrowing on wall shear stress in a coronary artery model with phasic flow. Computers and Biomedical Research. 30, 61–82 (1997).
dc.relation.references[12] Santamarina A., Weydahl E., Siegel J. M., Moore J. E. Jr. Computational analysis of flow in a curved tube model of the coronary arteries: Effects of time-varying curvature. Annals of Biomedical Engineering. 26, 944–954 (1998).
dc.relation.references[13] Yao H., Ang K. C., Yeo J. H., Sim E. K. W. Computational modelling of blood flow through curved stenosed arteries. Journal of Medical Engineering & Technology. 24 (4), 163–168 (2000).
dc.relation.references[14] Liu B. The influences of stenosis on the downstream flow pattern in curved arteries. Medical Engineering & Physics. 29 (8), 868–876 (2007).
dc.relation.references[15] Kafle J., Pokhrel P. R., Khattri K. B., Kattel P., Tuladhar B. M., Pudasaini S. P. Submarine landslide and particle transport in mountain lakes, reservoirs and hydraulic plants. Annals of Glaciology. 57 (71), 232–244 (2016).
dc.relation.references[16] Kafle J., Kattel P., Mergili M., Fischer J.-T., Pudasaini S. P. Dynamic response of submarine obstacles to two-phase landslide and tsunami impact on reservoirs. Acta Mechanica. 230 (9), 3143–3169 (2019).
dc.relation.references[17] Kattel P., Khattri K. B., Pokhrel P. R., Kafle J., Tuladhar B. M., Pudasaini S. P. Simulating glacial lake outburst floods with a two-phase mass flow model. Annals of Glaciology. 57 (71), 349–358 (2016).
dc.relation.references[18] Kattel P., Kafle J., Fischer J.-T., Mergili M., Tuladhar B. M., Pudasaini S. P. Interaction of two-phase debris flow with obstacles. Engineering Geology. 242, 197–217 (2018).
dc.relation.references[19] Paudel K., Bhandari P., Kafle J. Analytical solution for advection-dispersion equation of the pollutant concentration using laplace transformation. Journal of Nepal Mathematical Society. 4 (1), 33–40 (2021).
dc.relation.references[20] Kafle J., Bagale L., K. C. D. J. Numerical solution of parabolic partial differential equation by using finite difference method. Journal of Nepal Physical Society. 6 (2), 57–65 (2020).
dc.relation.references[21] Pokhrel P. R., Lamsal B., Kafle J., Kattel P. Analysis of displacement of vibrating of mass-spring due to opposition force. Tribhuvan University Journal. 35 (1), 21–32 (2020).
dc.relation.references[22] Kafle J., Thakur B. K., Bhandari I. B. Visualization formulation and intuitive explanation of iterative methods for transient analysis of series RLC circuit. Bibechana. 18 (2), 9–17 (2021).
dc.relation.references[23] Adhikari K., Gautam R., Pokhrel A., Uprety K. N., Vaidya N. K. Transmission dynamics of COVID-19 in Nepal: Mathematical model uncovering effective controls. Journal of Theoretical Biology. 521 (21), 110680 (2021).
dc.relation.references[24] Agarwal P., Nieto J. J., Ruzhansky M., Torres D. F. M. Analysis of infectious disease problems (Covid-19) and their global impact. Springer, Singapore (2021).
dc.relation.references[25] Shrestha S., Gurung D. B., Gokul K. C. Mathematical modeling of temperature variation in breast tissue with and without tumor/cyst during menstrual cycle. Mathematical Modeling and Computing. 8 (2), 192–202 (2021).
dc.relation.referencesen[1] Tan F. P. P., Soloperto G., Wood N. B., Thom S., Hughes A., Xu X. Y. Advanced computational models for disturbed and turbulent flow in stenosed human carotid artery bifurcation. Proceeding of the 4th Kuala Lumpur International Conference on Biomedical Engineering 2008. 21, 390–394 (2008).
dc.relation.referencesen[2] Phaijoo G. R. Mathematical study of blood flow characteristics during catheterization in stenosed artery. Unpublished dissertation in partial fulfillment of the requirements of Master of Philosophy, School of Science, Kathmandu University, Nepal (2013).
dc.relation.referencesen[3] Pralhad J. N., Schultz D. H. Modeling of arterial stenosis and its applications to blood diseases. Mathematical Biosciences. 190 (2), 203–220 (2004).
dc.relation.referencesen[4] Jain M., Sharma G. C., Singh R. Mathematical modeling of blood flow in a stenosed artery under MHD effect through porous medium. International Journal of Engineering. 23 (3), 243–252 (2010).
dc.relation.referencesen[5] Kapur J. N. Mathematical models in biology and medicine. In: Models for blood flows. Affiliated EastWest Press Pvt. Ltd. 347 (1985).
dc.relation.referencesen[6] Pokhrel P. R., Kafle J., Kattel P., Gaire H. P. Analysis of blood flow through artery with mild stenosis. Journal of Institute of Science and Technology. 25 (2), 33–38 (2020).
dc.relation.referencesen[7] Padmanabhan N., Jayaraman G. Flow in a curved tube with constriction - an application to the arterial system. Medical and Biological Engineering and Computing. 22 (3), 216–224 (1984).
dc.relation.referencesen[8] Chakravarty S. Effects of stenosis on the flow-behaviour of blood in an artery. International Journal of Engineering Science. 25 (8), 1003–1016 (1987).
dc.relation.referencesen[9] Dash R. K., Jayaraman G., Meheta K. N. Flow in a catherized curved artery with stenosis. Journal of Biomechanics. 32 (1), 49–61 (1999).
dc.relation.referencesen[10] Schilt S., Moore J. E., Delfino A., Meister J. J. The effects of time-varying curvature on velocity profiles in a model of the coronary arteries. Journal of Biomechanics. 29 (4), 469–474 (1996).
dc.relation.referencesen[11] Nosovitsky V. A., Ilegbusi O. J., Jiang J., Stone P. H., Feldman C. L. Effects of curvature and stenosis-like narrowing on wall shear stress in a coronary artery model with phasic flow. Computers and Biomedical Research. 30, 61–82 (1997).
dc.relation.referencesen[12] Santamarina A., Weydahl E., Siegel J. M., Moore J. E. Jr. Computational analysis of flow in a curved tube model of the coronary arteries: Effects of time-varying curvature. Annals of Biomedical Engineering. 26, 944–954 (1998).
dc.relation.referencesen[13] Yao H., Ang K. C., Yeo J. H., Sim E. K. W. Computational modelling of blood flow through curved stenosed arteries. Journal of Medical Engineering & Technology. 24 (4), 163–168 (2000).
dc.relation.referencesen[14] Liu B. The influences of stenosis on the downstream flow pattern in curved arteries. Medical Engineering & Physics. 29 (8), 868–876 (2007).
dc.relation.referencesen[15] Kafle J., Pokhrel P. R., Khattri K. B., Kattel P., Tuladhar B. M., Pudasaini S. P. Submarine landslide and particle transport in mountain lakes, reservoirs and hydraulic plants. Annals of Glaciology. 57 (71), 232–244 (2016).
dc.relation.referencesen[16] Kafle J., Kattel P., Mergili M., Fischer J.-T., Pudasaini S. P. Dynamic response of submarine obstacles to two-phase landslide and tsunami impact on reservoirs. Acta Mechanica. 230 (9), 3143–3169 (2019).
dc.relation.referencesen[17] Kattel P., Khattri K. B., Pokhrel P. R., Kafle J., Tuladhar B. M., Pudasaini S. P. Simulating glacial lake outburst floods with a two-phase mass flow model. Annals of Glaciology. 57 (71), 349–358 (2016).
dc.relation.referencesen[18] Kattel P., Kafle J., Fischer J.-T., Mergili M., Tuladhar B. M., Pudasaini S. P. Interaction of two-phase debris flow with obstacles. Engineering Geology. 242, 197–217 (2018).
dc.relation.referencesen[19] Paudel K., Bhandari P., Kafle J. Analytical solution for advection-dispersion equation of the pollutant concentration using laplace transformation. Journal of Nepal Mathematical Society. 4 (1), 33–40 (2021).
dc.relation.referencesen[20] Kafle J., Bagale L., K. C. D. J. Numerical solution of parabolic partial differential equation by using finite difference method. Journal of Nepal Physical Society. 6 (2), 57–65 (2020).
dc.relation.referencesen[21] Pokhrel P. R., Lamsal B., Kafle J., Kattel P. Analysis of displacement of vibrating of mass-spring due to opposition force. Tribhuvan University Journal. 35 (1), 21–32 (2020).
dc.relation.referencesen[22] Kafle J., Thakur B. K., Bhandari I. B. Visualization formulation and intuitive explanation of iterative methods for transient analysis of series RLC circuit. Bibechana. 18 (2), 9–17 (2021).
dc.relation.referencesen[23] Adhikari K., Gautam R., Pokhrel A., Uprety K. N., Vaidya N. K. Transmission dynamics of COVID-19 in Nepal: Mathematical model uncovering effective controls. Journal of Theoretical Biology. 521 (21), 110680 (2021).
dc.relation.referencesen[24] Agarwal P., Nieto J. J., Ruzhansky M., Torres D. F. M. Analysis of infectious disease problems (Covid-19) and their global impact. Springer, Singapore (2021).
dc.relation.referencesen[25] Shrestha S., Gurung D. B., Gokul K. C. Mathematical modeling of temperature variation in breast tissue with and without tumor/cyst during menstrual cycle. Mathematical Modeling and Computing. 8 (2), 192–202 (2021).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectстеноз артерій
dc.subjectв’язкість крові
dc.subjectвплив кривизни на кровотік
dc.subjectпрофіль швидкості
dc.subjectоб’ємна швидкість потоку
dc.subjectarterial stenosis
dc.subjectblood viscosity
dc.subjectblood flow curvature effect
dc.subjectvelocity profile
dc.subjectvolumetric flow rate
dc.titleAnalysis of blood flow through curved artery with mild stenosis
dc.title.alternativeАналіз кровотоку через викривлену артерію з легким стенозом
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n2_Kafle_J-Analysis_of_blood_flow_through_217-225.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n2_Kafle_J-Analysis_of_blood_flow_through_217-225__COVER.png
Size:
444.31 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: