Mathematical modeling of wave propagation in viscoelastic media with the fractional Zener model
dc.citation.epage | 615 | |
dc.citation.issue | 4 | |
dc.citation.spage | 601 | |
dc.contributor.affiliation | Університет Хасана II Касабланки | |
dc.contributor.affiliation | Hassan II University of Casablanca | |
dc.contributor.author | Аіт Ічоу, М. | |
dc.contributor.author | Ель Амрі, Х. | |
dc.contributor.author | Ецціані, А. | |
dc.contributor.author | Ait Ichou, M. | |
dc.contributor.author | El Amri, H. | |
dc.contributor.author | Ezziani, A. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-11-01T07:49:43Z | |
dc.date.available | 2023-11-01T07:49:43Z | |
dc.date.created | 2021-03-01 | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | У цій роботі розглянута задача математичого моделювання поширення хвилі в дисипативних середовищах. Розглянуто узагальнену дробову модель Зенера вимірності d (d = 1, 2, 3). Ця робота присвячена математичному аналізу такої моделі, а саме: існування та єдиність сильного та слабкого розв’язку та загасання енергії, що забезпечує розсіювання хвиль. Також подаються апріорні оцінки розв’язків, що допомагають показати існування слабкого розв’язку. | |
dc.description.abstract | The question of interest for the presented study is the mathematical modeling of wave propagation in dissipative media. The generalized fractional Zener model in the case of dimension d (d = 1, 2, 3) is considered. This work is devoted to the mathematical analysis of such model: existence and uniqueness of the strong and weak solution and energy decay result which guarantees the wave dissipation. The existence of the weak solution is shown using a priori estimates for solutions which are also presented. | |
dc.format.extent | 601-615 | |
dc.format.pages | 15 | |
dc.identifier.citation | Ait Ichou M. Mathematical modeling of wave propagation in viscoelastic media with the fractional Zener model / M. Ait Ichou, H. El Amri, A. Ezziani // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 601–615. | |
dc.identifier.citationen | Ait Ichou M. Mathematical modeling of wave propagation in viscoelastic media with the fractional Zener model / M. Ait Ichou, H. El Amri, A. Ezziani // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 601–615. | |
dc.identifier.doi | 10.23939/mmc2021.04.601 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60450 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 4 (8), 2021 | |
dc.relation.references | [1] Mainardi F. Fractional Calculus. In: Carpinteri A., Mainardi F. (eds) Fractals and Fractional Calculus in Continuum Mechanics. International Centre for Mechanical Sciences (Courses and Lectures), vol. 378. Springer, Vienna (1997). | |
dc.relation.references | [2] Mainardi F., Gorenflo R. Time-fractional derivatives in relaxation processes: a tutorial survey. An International Journal for Theory and Applications. 10, 269–308 (2008). | |
dc.relation.references | [3] Podlubny I. Fractional differential equation. Acadimic Press (1999). | |
dc.relation.references | [4] Heymans N., Bauwens J.-C. Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheologica Acta. 33, 210–219 (1994). | |
dc.relation.references | [5] Bachraoui M., Ait Ichou M., Hattaf K., Yousfi N. Spatiotemporal dynamics of a fractional model for hepatitis b virus infection with cellular immunity. Mathematical Modelling of Natural Phenomena. 16, 5 (2021). | |
dc.relation.references | [6] Ait-Bella F., El Rhabi M., Hakim A., Laghrib A. Analysis of the nonlocal wave propagation problem with volume constraints. Mathematical Modeling and Computing. 7 (2), 334–344 (2020). | |
dc.relation.references | [7] Atanackovic T. M., Janev M., Oparnica Lj., Pilipovic S., Zorica D. Space-time fractional Zener wave equation. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 471 (2174), 20140614 (2015). | |
dc.relation.references | [8] Metalert R., Shiessel H., Blument A., Nonnemachert T. F. Generalized viscoelastic models: Their fractional equation with solution. Journal of Physics A: Mathematical and General. 28, 6567–6584 (1995). | |
dc.relation.references | [9] Diethelm K., Ford N. J., Freed A. D., Luchko Yu. Algorithms for the fractional calculus: A selection of numerical methods. Computer Methods in Applied Mechanics and Engineering. 194 (6–8), 743–773 (2005). | |
dc.relation.references | [10] Ford N. J., Simpson A. C. The numerical solution of fractional differential equations: Speed versus accuracy. Numerical Algorithms. 26, 333–346 (2001). | |
dc.relation.references | [11] Mainardi F., Gorenflo R. Time-fractional derivatives in relaxation processes: a tutorial survey. Fractional Calculus and Applied Analysis. 10, 269–308 (2007). | |
dc.relation.references | [12] Moczo P., Kristek J. On the rheological models used for time-domain methods of seismic wave propagation. Geophysical Research Letters. 32 (1), (2005). | |
dc.relation.references | [13] Emmerich H., Korn M. Incorporation of attenuation into time-domain computations of seismic wave fields. Geophysic. 52 (9), 1252–1264 (1987). | |
dc.relation.references | [14] Konjik S., Oparnica L., Zorica D. Waves in fractional zener type viscoelastic media. Journal of Mathematical Analysis and Applications. 365 (10), 259–268 (2010). | |
dc.relation.references | [15] Ait Ichou M., El Amri H., Ezziani A. On existence and uniqueness of solution for space-time fractional Zener model. Acta Applicandae Mathematicae. 170, 593–609 (2020). | |
dc.relation.references | [16] Atanackovi´c T. M., Janev M., Konjik S., Pilipovi´c S. Wave equation for generalized Zener model containing complex order fractional derivatives. Continuum Mechanics and Thermodynamics. 29, 569–583 (2017). | |
dc.relation.references | [17] Ezziani A. Mod´elisation math´ematique et num´erique de la propagation d’ondes dans les milieux visco´elastiques et poro´elastiques. PhD thesis, Universit´e Paris Dauphine (2005). | |
dc.relation.references | [18] Haddar H., Li J.-R., Matignon D. Efficient solution of a wave equation with fractional-order-dissipative terms. Journal of Computational and Applied Mathematics. 234 (6), 2003–2010 (2010). | |
dc.relation.references | [19] Duvaut G., Lions J. L. In´equations en m`ecanique et en physique. Dunod (1972). | |
dc.relation.references | [20] Nitsche J. A. On Korn’s second inequality. R.A.I.R.O Numerical Analysis (1981). | |
dc.relation.referencesen | [1] Mainardi F. Fractional Calculus. In: Carpinteri A., Mainardi F. (eds) Fractals and Fractional Calculus in Continuum Mechanics. International Centre for Mechanical Sciences (Courses and Lectures), vol. 378. Springer, Vienna (1997). | |
dc.relation.referencesen | [2] Mainardi F., Gorenflo R. Time-fractional derivatives in relaxation processes: a tutorial survey. An International Journal for Theory and Applications. 10, 269–308 (2008). | |
dc.relation.referencesen | [3] Podlubny I. Fractional differential equation. Acadimic Press (1999). | |
dc.relation.referencesen | [4] Heymans N., Bauwens J.-C. Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheologica Acta. 33, 210–219 (1994). | |
dc.relation.referencesen | [5] Bachraoui M., Ait Ichou M., Hattaf K., Yousfi N. Spatiotemporal dynamics of a fractional model for hepatitis b virus infection with cellular immunity. Mathematical Modelling of Natural Phenomena. 16, 5 (2021). | |
dc.relation.referencesen | [6] Ait-Bella F., El Rhabi M., Hakim A., Laghrib A. Analysis of the nonlocal wave propagation problem with volume constraints. Mathematical Modeling and Computing. 7 (2), 334–344 (2020). | |
dc.relation.referencesen | [7] Atanackovic T. M., Janev M., Oparnica Lj., Pilipovic S., Zorica D. Space-time fractional Zener wave equation. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 471 (2174), 20140614 (2015). | |
dc.relation.referencesen | [8] Metalert R., Shiessel H., Blument A., Nonnemachert T. F. Generalized viscoelastic models: Their fractional equation with solution. Journal of Physics A: Mathematical and General. 28, 6567–6584 (1995). | |
dc.relation.referencesen | [9] Diethelm K., Ford N. J., Freed A. D., Luchko Yu. Algorithms for the fractional calculus: A selection of numerical methods. Computer Methods in Applied Mechanics and Engineering. 194 (6–8), 743–773 (2005). | |
dc.relation.referencesen | [10] Ford N. J., Simpson A. C. The numerical solution of fractional differential equations: Speed versus accuracy. Numerical Algorithms. 26, 333–346 (2001). | |
dc.relation.referencesen | [11] Mainardi F., Gorenflo R. Time-fractional derivatives in relaxation processes: a tutorial survey. Fractional Calculus and Applied Analysis. 10, 269–308 (2007). | |
dc.relation.referencesen | [12] Moczo P., Kristek J. On the rheological models used for time-domain methods of seismic wave propagation. Geophysical Research Letters. 32 (1), (2005). | |
dc.relation.referencesen | [13] Emmerich H., Korn M. Incorporation of attenuation into time-domain computations of seismic wave fields. Geophysic. 52 (9), 1252–1264 (1987). | |
dc.relation.referencesen | [14] Konjik S., Oparnica L., Zorica D. Waves in fractional zener type viscoelastic media. Journal of Mathematical Analysis and Applications. 365 (10), 259–268 (2010). | |
dc.relation.referencesen | [15] Ait Ichou M., El Amri H., Ezziani A. On existence and uniqueness of solution for space-time fractional Zener model. Acta Applicandae Mathematicae. 170, 593–609 (2020). | |
dc.relation.referencesen | [16] Atanackovi´c T. M., Janev M., Konjik S., Pilipovi´c S. Wave equation for generalized Zener model containing complex order fractional derivatives. Continuum Mechanics and Thermodynamics. 29, 569–583 (2017). | |
dc.relation.referencesen | [17] Ezziani A. Mod´elisation math´ematique et num´erique de la propagation d’ondes dans les milieux visco´elastiques et poro´elastiques. PhD thesis, Universit´e Paris Dauphine (2005). | |
dc.relation.referencesen | [18] Haddar H., Li J.-R., Matignon D. Efficient solution of a wave equation with fractional-order-dissipative terms. Journal of Computational and Applied Mathematics. 234 (6), 2003–2010 (2010). | |
dc.relation.referencesen | [19] Duvaut G., Lions J. L. In´equations en m`ecanique et en physique. Dunod (1972). | |
dc.relation.referencesen | [20] Nitsche J. A. On Korn’s second inequality. R.A.I.R.O Numerical Analysis (1981). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | дробова похідна | |
dc.subject | сильний розв’язок | |
dc.subject | слабкий розв’язок | |
dc.subject | загасання енергії | |
dc.subject | плоскі хвилі | |
dc.subject | в’язкопружні хвилі | |
dc.subject | модель Зенера | |
dc.subject | fractional derivative | |
dc.subject | strong solution | |
dc.subject | weak solution | |
dc.subject | energy decay | |
dc.subject | plane waves | |
dc.subject | viscoelastic waves | |
dc.subject | Zener’s model | |
dc.title | Mathematical modeling of wave propagation in viscoelastic media with the fractional Zener model | |
dc.title.alternative | Математичне моделювання поширення хвиль у в’язкопружних середовищах за допомогою дробової моделі Зенера | |
dc.type | Article |
Files
License bundle
1 - 1 of 1