Quantum Accumulation of Electrical Energy at Interfacial Boundaries in Heterophase Inorganic/Organic Clathrates

dc.citation.epage36
dc.citation.issue1
dc.citation.spage30
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationPolitechnika Czestochowska, Czestochowa, Poland
dc.contributor.authorМаксимич, Віталій
dc.contributor.authorШвець, Роман
dc.contributor.authorІващишин, Федір
dc.contributor.authorMaksymych, Vitalii
dc.contributor.authorShvets, Roman
dc.contributor.authorIvashchyshyn, Fedir
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-04-26T09:41:15Z
dc.date.available2023-04-26T09:41:15Z
dc.date.created2022-04-04
dc.date.issued2022-04-04
dc.description.abstractРозглянуто актуальну сьогодні проблему пошуку нових способів та механізмів накопичення електричної енергії високої густини. В результаті здійснених досліджень запропоновано систему, яка дає змогу накопичувати електричний заряд за рахунок квантових ефектів та явищ без використання хімічних реакцій. Основна ідея полягає у формуванні матеріалу з колосальною площею внутрішньої активної поверхні із різко анізотропним хімічним зв’язком. Відповідно, основною метою було створення та дослідження електродних матеріалів на основі інтеркалантних гетерофазних структур із різним типом ієрархії, здатних накопичувати електричну енергію на квантовому рівні. Методом інтеркаляційної наноінженерії сформовано структури на основі монокристалів селеніду галію та впроваджених між його шарами тіосечовиною і хлоридом самарію. На підставі отриманих результатів імпедансної спектроскопії встановлено, що одержані клатратні структури перспективні для використання як кавітандні електроди у квантовому акумуляторі, а також, що найважливіше, дають змогу значно підвищити його ємність.
dc.description.abstractThe work is devoted to the current problem of finding new ways and mechanisms of highdensity electric energy accumulation. As a result of the conducted researches the system which allows to accumulate an electric charge at the expense of quantum effects and the phenomena without use of chemical reactions is offered. The basic idea was to form a material with a colossal area of the inner active surface with a sharply anisotropic chemical bonding character. Accordingly, the main goal was to create and study electrode materials based on intercalant heterophase structures with different types of hierarchy, capable of storing electrical energy at the quantum level. Based on the results of impedance spectroscopy, it was found that the obtained clathrate structures are promising for use as a cavitand electrode in a quantum battery, and, most importantly, can significantly increase its capacity.
dc.format.extent30-36
dc.format.pages7
dc.identifier.citationMaksymych V. Quantum Accumulation of Electrical Energy at Interfacial Boundaries in Heterophase Inorganic/Organic Clathrates / Vitalii Maksymych, Roman Shvets, Fedir Ivashchyshyn // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 12. — No 1. — P. 30–36.
dc.identifier.citationenMaksymych V., Shvets R., Ivashchyshyn F. (2022) Quantum Accumulation of Electrical Energy at Interfacial Boundaries in Heterophase Inorganic/Organic Clathrates. Computational Problems of Electrical Engineering (Lviv), vol. 12, no 1, pp. 30-36.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/58475
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofComputational Problems of Electrical Engineering, 1 (12), 2022
dc.relation.references[1] Application PCT BY 99/00012 “Quantum-Size Electronic Devices and Operating Conditions Thereof” (International Publication Number: WO 00/41247, 13.07.2000).
dc.relation.references[2] S. Krohns, P. Lunkenheimer, Ch. Kant, A. V. Pronin, H. B. Brom, A. A. Nugroho, M. Diantoro, and A. Loidl, “Colossal dielectric constant up to gigahertz at room temperature”, Appl. Phys. Lett, vol. 94, pp. 122903-1–122903-3, 2009. DOI: http://dx.doi.org/10.1063/1.3105993;
dc.relation.references[3] Alfred W. Hübler and Onyeama Osuagwu, “Digital quantum batteries: Energy and information storage in nanovacuum tube arrays”, Wiley Periodicals Inc. Complexity, vol. 15, no. 5, pp. 48–55, 2010. DOI: 10.1002/cplx.20306.
dc.relation.references[4] Application PCT BY 99/00012 “Quantum-Size Electronic Devices and Operating Conditions Thereof” (International Publication Number: WO 00/41247, 13.07.2000).
dc.relation.references[5] Piotr Chabecki, Dariusz Całus, Fedir Ivashchyshyn, Anna Pidluzhna, Orest Hryhorchak, Ihor Bordun, Oleksandr Makarchuk, and Andriy Kityk, “Functional Energy Accumulation, Photo- and Magnetosensitive Hybridity in the GaSe-Based Hierarchical Structures”, Energies, vol. 13, Issue 17, pp. 4321(1–16), 2020. https://doi.org/10.3390/en13174321;
dc.relation.references[6] I. Grygorchak, D. Calus, A Pidluzhna, F. Ivashchyshyn, O. Hryhorchak, P. Chabecki, and R. Shvets, “Thermogalvanic and local field effects in SiO2<SmCl3> structure”, Applied Nanoscience, vol. 10 (12), pp. 4725–4731, 2020. https://doi.org/10.1007/s13204-020-01447-2.
dc.relation.references[7] Fedir Ivashchyshyn, Dariusz Calus, Anna Pidluzhna, and Piotr Chabecki, “Electric Properties of MCM41 SmCl3 Nanohybrid Encapsulate”, Journal of Nano- and Electronic Physics, vol. 12(3), pp. 03014(1–5), 2020. DOI: 10.21272/jnep.12(3).03014.
dc.relation.references[8] R. M. A. Lies, “III–VI Compounds, Preparation and cryst. growth material with layered structure”, Dordrecht-Boston, pp. 225–254, 1977.
dc.relation.references[9] Shumaila; G. B. Lakshmi, M. Alam, A. M. Siddiqui, M. Husain, “Samarium Chloride (SmCl3) Doped Poly(o-Toluidine): Synthesis and Characterization”, Sci. Adv. Mater, vol. 5, pp. 64–70, 2013. DOI: 10.1166/sam.2013.1432.
dc.relation.references[10]C. Puzzarini, “Molecular Structure of Thiourea”, J. Phys. Chem. A, vol. 116, pp. 4381–4387, 2012. DOI: 10.1021/jp301493b.
dc.relation.references[11]K. D. M. Harris, A. E. Aliev, P. Girard, M. J. Jones, F. Guillaume, and A.-J. Dianoux, “Molecular dynamics of cyclohexane guest molecules in the cyclohexane/thiourea inclusion compound: an incoherent quasielastic neutron scattering investigation”, Mol. Phys, vol. 93, pp. 545–554, 1998. DOI:10.1080/002689798168880.
dc.relation.references[12]T. Pluta and A. J. Sadlej, “Electric properties of urea and thiourea”, J. Chem. Phys. vol. 114, p. 136, 2001. DOI: 10.1063/1.1328398.
dc.relation.references[13]Z. Stoynov, B. Grafow, B. Savova-Stoynov, and V. Elkin, Electrochemical Impedance; Moscow: Nauk:, Russia, 1991. (In Russian).
dc.relation.references[14]E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy. In Theory, Experiment and Application. Wiley: Hoboken, NJ, USA, 2005; 585.
dc.relation.references[15]I. Grygorchak, F. Ivashchyshyn, P. Stakhira, R. R. Reghu, V. Cherpak, and J. V. Grazulevicius, “Intercalated Nanostructure Consisting of Inorganic Receptor and Organic Ambipolar”, Journal of Nanoelectronics and Optoelectronics, vol. 8(3), pp. 292–296, 2013.
dc.relation.references[16]I. I. Grigorchak, V. V. Netyaga, and Z. D. Kovalyuk, “On some physical properties of InSe and GaSe semiconducting crystals intercalated by ferroelectrics”, J. Phys.: Condens. Mater. vol. 9, pp. L191–L195, 1997.
dc.relation.referencesen[1] Application PCT BY 99/00012 "Quantum-Size Electronic Devices and Operating Conditions Thereof" (International Publication Number: WO 00/41247, 13.07.2000).
dc.relation.referencesen[2] S. Krohns, P. Lunkenheimer, Ch. Kant, A. V. Pronin, H. B. Brom, A. A. Nugroho, M. Diantoro, and A. Loidl, "Colossal dielectric constant up to gigahertz at room temperature", Appl. Phys. Lett, vol. 94, pp. 122903-1–122903-3, 2009. DOI: http://dx.doi.org/10.1063/1.3105993;
dc.relation.referencesen[3] Alfred W. Hübler and Onyeama Osuagwu, "Digital quantum batteries: Energy and information storage in nanovacuum tube arrays", Wiley Periodicals Inc. Complexity, vol. 15, no. 5, pp. 48–55, 2010. DOI: 10.1002/cplx.20306.
dc.relation.referencesen[4] Application PCT BY 99/00012 "Quantum-Size Electronic Devices and Operating Conditions Thereof" (International Publication Number: WO 00/41247, 13.07.2000).
dc.relation.referencesen[5] Piotr Chabecki, Dariusz Całus, Fedir Ivashchyshyn, Anna Pidluzhna, Orest Hryhorchak, Ihor Bordun, Oleksandr Makarchuk, and Andriy Kityk, "Functional Energy Accumulation, Photo- and Magnetosensitive Hybridity in the GaSe-Based Hierarchical Structures", Energies, vol. 13, Issue 17, pp. 4321(1–16), 2020. https://doi.org/10.3390/en13174321;
dc.relation.referencesen[6] I. Grygorchak, D. Calus, A Pidluzhna, F. Ivashchyshyn, O. Hryhorchak, P. Chabecki, and R. Shvets, "Thermogalvanic and local field effects in SiO2<SmCl3> structure", Applied Nanoscience, vol. 10 (12), pp. 4725–4731, 2020. https://doi.org/10.1007/s13204-020-01447-2.
dc.relation.referencesen[7] Fedir Ivashchyshyn, Dariusz Calus, Anna Pidluzhna, and Piotr Chabecki, "Electric Properties of MCM41 SmCl3 Nanohybrid Encapsulate", Journal of Nano- and Electronic Physics, vol. 12(3), pp. 03014(1–5), 2020. DOI: 10.21272/jnep.12(3).03014.
dc.relation.referencesen[8] R. M. A. Lies, "III–VI Compounds, Preparation and cryst. growth material with layered structure", Dordrecht-Boston, pp. 225–254, 1977.
dc.relation.referencesen[9] Shumaila; G. B. Lakshmi, M. Alam, A. M. Siddiqui, M. Husain, "Samarium Chloride (SmCl3) Doped Poly(o-Toluidine): Synthesis and Characterization", Sci. Adv. Mater, vol. 5, pp. 64–70, 2013. DOI: 10.1166/sam.2013.1432.
dc.relation.referencesen[10]C. Puzzarini, "Molecular Structure of Thiourea", J. Phys. Chem. A, vol. 116, pp. 4381–4387, 2012. DOI: 10.1021/jp301493b.
dc.relation.referencesen[11]K. D. M. Harris, A. E. Aliev, P. Girard, M. J. Jones, F. Guillaume, and A.-J. Dianoux, "Molecular dynamics of cyclohexane guest molecules in the cyclohexane/thiourea inclusion compound: an incoherent quasielastic neutron scattering investigation", Mol. Phys, vol. 93, pp. 545–554, 1998. DOI:10.1080/002689798168880.
dc.relation.referencesen[12]T. Pluta and A. J. Sadlej, "Electric properties of urea and thiourea", J. Chem. Phys. vol. 114, p. 136, 2001. DOI: 10.1063/1.1328398.
dc.relation.referencesen[13]Z. Stoynov, B. Grafow, B. Savova-Stoynov, and V. Elkin, Electrochemical Impedance; Moscow: Nauk:, Russia, 1991. (In Russian).
dc.relation.referencesen[14]E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy. In Theory, Experiment and Application. Wiley: Hoboken, NJ, USA, 2005; 585.
dc.relation.referencesen[15]I. Grygorchak, F. Ivashchyshyn, P. Stakhira, R. R. Reghu, V. Cherpak, and J. V. Grazulevicius, "Intercalated Nanostructure Consisting of Inorganic Receptor and Organic Ambipolar", Journal of Nanoelectronics and Optoelectronics, vol. 8(3), pp. 292–296, 2013.
dc.relation.referencesen[16]I. I. Grigorchak, V. V. Netyaga, and Z. D. Kovalyuk, "On some physical properties of InSe and GaSe semiconducting crystals intercalated by ferroelectrics", J. Phys., Condens. Mater. vol. 9, pp. L191–L195, 1997.
dc.relation.urihttp://dx.doi.org/10.1063/1.3105993;
dc.relation.urihttps://doi.org/10.3390/en13174321;
dc.relation.urihttps://doi.org/10.1007/s13204-020-01447-2
dc.rights.holder© Національний університет „Львівська політехніка“, 2022
dc.subjectsupramolecular ensembles
dc.subjectclathrates
dc.subjectnanohybrids
dc.subjectgallium selenide
dc.subjectimpedance spectroscopy
dc.subjectquantum batteries
dc.titleQuantum Accumulation of Electrical Energy at Interfacial Boundaries in Heterophase Inorganic/Organic Clathrates
dc.title.alternativeКвантове накопичення елект ричної енергії на міжфазних межах у гетерофазних неорганічних/органічних клатратах
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2022v12n1_Maksymych_V-Quantum_Accumulation_of_30-36.pdf
Size:
703.99 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: